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Abstract—Reconstructing a signal from squared linear (rank-1
quadratic) measurements is a challenging problem with important
applications in optics and imaging, where it is known as phase
retrieval. This paper proposes two new phase retrieval algorithms
based on nonconvex quadratically constrained quadratic program-
ming) formulations, and a recently proposed approximation tech-
nique dubbed feasible point pursuit (FPP). The first is designed
for uniformly distributed bounded measurement errors, such as
those arising from high-rate quantization (B-FPP). The second is
designed for Gaussian measurement errors, using a least-squares
criterion (LS-FPP). Their performance is measured against state-
of-the-art algorithms and the Cramér–Rao bound (CRB), which
is also derived here. Simulations show that LS-FPP outperforms
the existing schemes and operates close to the CRB. Compact CRB
expressions, properties, and insights are obtained by explicitly com-
puting the CRB in various special cases—including when the sig-
nal of interest admits a sparse parametrization, using harmonic
retrieval as an example.

Index Terms—Cramér–Rao bound (CRB), feasible point
pursuit (FPP), phase retrieval, quadratically constrained quadratic
programming (QCQP), semidefinite programming (SDP).

I. INTRODUCTION

PHASE retrieval is the problem of reconstructing a signal
x ∈ CN from measurements of the form

yi = |aH
i x|2 , i ∈ {1, . . . , M} (1)

where | · | is the magnitude of a complex number, (·)H is the
conjugate transpose and ai ∈ CN is a known measurement vec-
tor. The above problem appears in many applications such as
crystallography [2], diffraction imaging [3]–[5] and microscopy
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[6]–[7], where it is often far easier to measure the magnitude
than the phase.

During the past decades, numerous phase retrieval solvers
have been developed in the literature. Among them, the
Gerchberg–Saxton (GS) [8] and Fienup [9] algorithms are the
most well-known and widely used methods in practice. These
approaches are based on alternating optimization in which the
unknown x is iteratively estimated by solving a least squares
(LS) problem, i.e.,

min
x,u | |ui |=1, ∀i

||√y � u − AH x||22 (2)

where y = [y1 , . . . , yM ]T is the data vector, A =
[a1 , . . . , aM ] is the known measurement matrix, u is the phase
of

√
y (an extra unknown, together with x), || · ||2 is the 2-norm

and � denotes element-wise multiplication. The main problem
with this type of algorithms is that they tend to hit local minima,
thus requiring careful initialization, and often fail to perform
satisfactorily even after multiple initializations.

Recently, modern convex relaxation techniques were applied
to phase retrieval. PhaseLift [10]–[11] employs matrix lifting to
recast phase retrieval as a semi-definite programming problem.
Specifically, the PhaseLift scheme regards the measurements in
(1) as a linear function of X = xxH which is a rank-1 Hermitian
matrix, i.e.,

yi = |aH
i x|2 = xH aiaH

i x = tr(AiX) (3)

where Ai = aiaH
i and tr(·) denotes the trace of a matrix. Thus,

the recovery of x is equivalent to finding a positive semidefinite
rank-1 matrix X through solving a rank minimization problem:

min
X

rank(X)

s.t. yi = tr(AiX), i ∈ {1, . . . , M}
X � 0. (4)

Since rank minimization is a non-convex problem which is dif-
ficult to solve in a computationally efficient manner, PhaseLift
relaxes (4) via semidefinite relaxation (SDR)—see [12] for a
tutorial overview. It has been shown in [10] that if the measure-
ment vectors are i.i.d. Gaussian distributed, then PhaseLift can
recover x with high probability when the number of measure-
ments M ∼ O(N log N). However, when the measurements
are corrupted by noise, there is no guarantee that PhaseLift will
yield a rank-1 solution [13].

PhaseCut [14] takes a similar approach as PhaseLift, but
instead of directly aiming for x it tries to find u first. Substituting
the conditional LS estimate x̂ = (AH )†diag(

√
y)u of x given
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u where diag(·) denotes a diagonal matrix and (·)† denotes the
pseudo-inverse, PhaseCut aims at recovering u by solving the
non-convex quadratic program

min
u

uH Mu

s.t. |ui | = 1, i ∈ {1, . . . , M} (5)

where M = diag(
√

y)(IM − AH (AH )†)diag(
√

y) with IM

being a M × M identity matrix. Formulation (5) resembles
the classical MaxCut problem in networks, enabling fast SDR
algorithms originally developed for MaxCut to be adapted for
PhaseCut. This makes PhaseCut faster than PhaseLift.

More recently, a new approach to phase retrieval was pro-
posed, in what appears to be an instance of a new algorithmic
genre that relies on smart ‘statistical’ initialization followed
by relatively simple descent-type refinement named Wirtinger
Flow (WF) [15]. It has been theoretically shown that when suffi-
ciently many i.i.d. Gaussian measurement vectors are used, WF
will recover the desired solution with high probability. How-
ever, recovery cannot be guaranteed when the number of mea-
surements is small, or when the measurement vectors are not
random—mainly because the principal eigenvector used for ini-
tialization is not a good approximation of x in such cases. This
means that for systematic (non-random) measurement designs
and/or relatively short sample sizes there is considerable room
for improvement.

In this paper, the focus is on recovering x from noisy mea-
surements, i.e.,

yi =
∣
∣aH

i x
∣
∣
2 + ni, i ∈ {1, . . . , M} (6)

where ni is additive noise. To this end, in Section II, two novel
algorithms are developed. These algorithms build upon a method
called feasible point pursuit (FPP) that we recently developed
for non-convex quadratically constrained quadratic program-
ming (QCQP) problems [16]. The first algorithm (B-FPP) is
designed for independent and uniformly distributed bounded
measurement errors, such as those arising from high-rate quan-
tization. The second (LS-FPP) is designed for i.i.d. Gaussian
measurement errors, thereby using a LS criterion. Their per-
formance is measured against state-of-art algorithms and the
general Cramér–Rao bound (CRB) for phase retrieval from mag-
nitude measurements in additive Gaussian noise, which is also
derived here in terms of phase and amplitude of the input signal.
Interestingly, only partial CRB results under additional model
restrictions and/or different noisy measurement models (e.g.,
for real- and complex-valued x [17]–[19], noise added prior
to taking the magnitude [20], 2-D Fourier-based measurements
[21]) were previously available, despite decades of research in
phase retrieval. Simulations show that LS-FPP outperforms the
state-of-art and operates close to the CRB. Compact CRB ex-
pressions, properties, and insights are obtained by simplifying
the CRB in special cases. These can help improve the design of
measurement apparatus, by providing a way to score different
designs.

Section IV presents a special case where x is in the form
of a linear combination of several Vandermonde vectors, i.e.,
a harmonic mixture, leading to harmonic retrieval from rank-1

quadratic measurements. By predefining an overcomplete fre-
quency basis, sparsity in the frequency domain can be exploited,
resulting in modified versions of B-FPP and LS-FPP for sparse
phase retrieval. Furthermore, the CRB for frequency estimation
is derived for this case.

Section V contains numerical simulations designed to illus-
trate the performance of the proposed algorithms versus Phase-
Cut, PhaseLift, WF, and CRB. Finally, conclusions are drawn
in Section VI.

II. PROPOSED ALGORITHMS

In this section, we formulate the phase retrieval problem as
non-convex QCQP in two different ways, and derive two corre-
sponding algorithms, B-FPP and LS-FPP, to recover x.

A. B-FPP Algorithm

In the absence of noise, phase retrieval can be cast as

min
x

||x||22

s.t. xH Aix = yi, i ∈ {1, . . . , M} , (7)

i.e., a minimum norm solution to a system of quadratic equa-
tions in x. If the equality constraints are consistent, then using
the minimum norm to pick a solution can be motivated from
a Bayesian perspective, if we assume a zero-mean uncorre-
lated complex circularly symmetric Gaussian prior on x.1 In
practice noise will render the equality constraints in (7) in-
consistent, so (7) will not admit any solution. High-resolution
uniform scalar quantization of otherwise noiseless quadratic
measurements will result in additive quantization noise that is
independent across measurements, bounded, and approximately
uniformly distributed over the quantization interval. This moti-
vates using interval constraints, as follows:

∣
∣yi − xH Aix

∣
∣ ≤ ε, ∀i. (8)

Replacing the constraints in (7) by (8) yields

min
x

||x||22 (9a)

s.t. xH AH
i x ≤ yi + ε (9b)

xH AH
i x ≥ yi − ε,∀i. (9c)

It is clear that due to the non-convex constraints in (9c), (9)
belongs to the class of non-convex QCQP problems which is
NP-hard in general. For ε = 0 we recover the ‘standard’ phase
retrieval problem, which is NP-hard [22].

To approximately solve (9), we follow [16]. Recall that Ai is
of rank one and it has only one positive eigenvalue. For any z
and x, we have

(x − z)H Ai(x − z) ≥ 0. (10)

Expanding the left-hand side of (10) yields

xH Aix ≥ 2Re{zH Aix} − zH Aiz (11)

1Since ||x||22 = tr(xxH), the minimum norm criterion is also reminiscent of
SDR of rank minimization.



5284 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 20, OCTOBER 15, 2016

Algorithm 1: B-FPP Algorithm for Phase Retrieval.

1: function x̂ = B-FPP(A,y, λ, ε, z)
2: repeat
3: x̂ ← solution of (13)
4: z = x̂
5: until a stopping criterion on the cost function of

(13) is satisfied
6: end function

where Re {·} takes the real part of its argument. Following the
rationale in [16], we replace (9c) by

2Re{zH Aix} + si ≥ zH Aiz + yi − ε (12)

where si ≥ 0 is a slack variable. The idea here is that linear
restriction turns the non-convex problem into a convex one, but
at the risk of infeasibility. The slack variables restore feasibil-
ity, but they should be sparingly used [16]. This leads to the
following formulation:

min
x,s

||x||22 + λ

M∑

i=1

si

s. t. xH Aix ≤ yi + ε

2Re
{

zH Aix
}

+ si ≥ zH Aiz + yi − ε

si ≥ 0, ∀i (13)

where s = [s1 , . . . , sM ]T and the regularization parameter λ

balances the original cost versus the slack penalty term. Start-
ing with an initial (possibly random) z, we solve a sequence of
problems of type (13) to obtain (xk , sk ), and setting zk+1 = xk .
Since the cost function in (13) is independent of k and the solu-
tion of the kth iteration is also feasible for the (k + 1)th iteration,
this will always return a non-increasing cost sequence [16]. In
other words, the optimal value of the cost function in each itera-
tion step is non-increasing. It follows that this sequential process
will converge in terms of the cost function. The steps for B-FPP
are summarized in Algorithm 1.

Whereas B-FPP has been motivated from a uniform high-
resolution quantization point of view (and indeed matches that
noise model), the resultant algorithm can also be used for Gaus-
sian noise, although the choice of ε is less obvious in this case. It
is instructive to illustrate this by means of an example. Assume
x is uncorrelated zero-mean Gaussian with length N = 16, and
M = 80 measurements are used for signal recovery. 200 Monte-
Carlo trials are employed to calculate the mean square error
(MSE). In each trial, ai , x and σn are fixed, and the noise is
generated from a white Gaussian process with mean zero and
standard deviation σn = 0.4. Fig. 1 shows the MSE versus ε. It
is observed that when ε < 0.4, B-FPP exhibits a relative small
MSE. Otherwise, its performance gets worse as ε increases. We
conclude that B-FPP still works for Gaussian noise, provided
ε ∼ σn .

Fig. 1. MSE versus ε. (N = 16, M = 80).

B. LS-FPP Algorithm

The B-FPP method requires a user-defined tolerance ε to
bound the noise perturbation in the constraints, which is difficult
to appropriately determine from the magnitude measurements
without prior knowledge of the noise standard deviation. More
to the point, B-FPP is not tailored for Gaussian noise. In this
section we develop LS-FPP based on the LS criterion, which is
equivalent to maximum likelihood for additive white Gaussian
noise. The LS formulation of phase retrieval has been recently
considered in [15], but the WF approach does not always work
well, as we will show in our simulations in Section V. This is
not surprising, of course, since we are dealing with an NP-hard
problem. Our contribution here is to recast LS phase retrieval as
a non-convex quadratic-plus-linear problem, and then approx-
imate it using FPP. As we will show, our approach gives con-
sistently better approximation results, especially in challenging
scenarios, at the cost of additional computational complexity.

The LS formulation for phase retrieval is [15]

min
x

M∑

i=1

(yi − xH Aix)2 (14)

The first step in our approach is to recast (14) in the following
equivalent form

min
w , x

||w||22

s. t. xH Aix + wi = yi, ∀i (15)

where

w = [w1 , . . . , wM ]T (16)

with (·)T being the transpose. We rewrite the equality constraints
as

xH Aix + wi ≤ yi (17a)

xH Aix + wi ≥ yi. (17b)
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Algorithm 2: LS-FPP Algorithm for Phase Retrieval.

1: function x̂ = LS-FPP(A, y, λ, z)
2: repeat
3: x̂ ← solution of (19)
4: z = x̂
5: until a stopping criterion on the cost function of

(19) is satisfied
6: end function

In a similar manner as we process the non-convex constraints
in FPP, (17b) can be replaced by

2Re
{

zH Aix
}

+ wi + si ≥ yi + zH Aiz (18)

to obtain the following convex QCQP:

min
x, w , s

||w||22 + λ

M∑

i=1

si

s. t. 2Re
{

zH Aix
}

+ wi + si ≥ yi + zH Aiz

xH Aix + wi ≤ yi,

si ≥ 0,∀i. (19)

The steps for LS-FPP are summarized in Algorithm 2.
Some important remarks are in order:
1) The problems in (13) and (19) are convex and can be

solved via interior point methods [23]–[24]. The worst-
case complexity of solving (13) and (19) are O

(

(N +
2M)3.5

)

and O
(

(N + 3M)3.5
)

, respectively. Moreover,
few outer iterations of B-FPP or LS-FPP are usually
needed, so that the overall approximation is often man-
ageable for moderate N .

2) In both B-FPP and LS-FPP, the regularizer λ is chosen
according to [16], where it is suggested to use λ � 1 to
steer the iterates towards the feasible region. Our expe-
rience is that FPP is not very sensitive to the choice of
λ. Usually, λ = 10 works well for B-FPP and LS-FPP in
most scenarios.

3) The sequences generated by B-FPP and LS-FPP are con-
fined in a compact set, therefore Algorithms 1 and 2 have a
convergent subsequence (cf., Appendix A). If it happens
that the slack variable s at the limit point is zero, then
from [25, Theorem 1] it follows that the x variable at the
limit point is also a Karush–Kuhn–Tucker (KKT) point of
the original problem (9) or (15), respectively. Given the
NP-hard nature of (9) and (15), these convergence claims
may be reassuring; but it is important to not lose sight
of the following caveat. Whereas numerical experiments
suggest that if the original problem is feasible then s is
very likely to be zero at the limit point, this is not al-
ways true—counterexamples have been found [16], and
this is consistent with the fact that the feasibility problem
is NP-hard.

4) Our work was inspired by the FPP-SCA (successive con-
vex approximation) algorithm originally proposed for
general non-convex QCQPs in [16]. The idea behind the

algorithm is closely related to the well-known difference
of convex programming (DCP) and the convex-concave
procedure (CCP) in optimization. The difference is these
classical procedures assume the availability of a feasible
starting point, which is the core challenge in our context.
FPP can be interpreted as first adding slack variables and
a slack penalty to the original problem to ensure feasibil-
ity (thereby circumventing the initialization challenge),
followed by application of DCP/CCP to the augmented
problem, see [16]. The same idea was independently pro-
posed in a parallel submission which appeared later in
[26]. An early version of the same basic idea can be found
in [27], which however neither considered general QC-
QPs, nor did it demonstrate that the method works well,
especially relative to standard SDR and randomization
baselines.

Given the apparent success of FPP in solving challenging
QCQP problems, we therefore propose using FPP to solve the
phase retrieval problem, where feasibility is the key stumbling
block. Whereas optimization theory measures success via the
optimality gap in terms of the cost function, estimation theory
naturally focuses on the estimation error. We therefore need a
statistical estimation baseline to assess how well FPP works
when applied to phase retrieval.

III. CRAMÉR–RAO BOUND FOR PHASE RETRIEVAL

In this section, we derive the CRB for phase retrieval for
measurements contaminated by additive white Gaussian noise
after magnitude squaring.

A. Previous Work on CRB

Let us summarize the (surprisingly scant) prior work on the
CRB for phase retrieval. Balan [18] has derived the Fisher Infor-
mation Matrix (FIM) for the model in (6) for complex-valued
x. Realizing that the FIM is singular, and implicitly attributing
this to the lack of global phase identifiability, he suggested using
side information about x (e.g., assuming one particular compo-
nent of x is real-valued) to reduce the dimension of the FIM,
resulting in a full-rank matrix. Thus, the CRB can be computed
by taking the inverse of the dimension-reduced FIM. Similar re-
sults have also been considered in [19], where the last row and
column of the FIM are deleted. However, these assumptions are
impractical and identifiability neither implies nor is implied by
a nonsingular FIM [28]. Instead of making additional assump-
tions on x to force a non-singular FIM, we can instead use the
pseudo-inverse of the full FIM as a lower bound:

Claim 3.1: For x ∈ CN , the CRB matrix for the phase re-
trieval model in (6) is

CRBc = F†
c (20)

where the FIM is given by

Fc =
4
σ2

n

GcGT
c (21)
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with

Gc =

[

Re{Adiag{AH x}}
Im{Adiag{AH x}}

]

. (22)

Proof: The FIM has been derived in [18] and [19] (in dif-
ferent but equivalent form). When the FIM is rank deficient, its
pseudo-inverse is a valid lower bound on the MSE of any unbi-
ased estimator [30], [31], albeit this bound is generally looser
than the usual CRB [32]. Perhaps surprisingly, this ‘optimistic’
bound is often attainable in practice and therefore predictive of
optimal estimator performance—see [33] and our simulations
that follow. Strictly speaking, the pseudo-inverse of a singu-
lar FIM is not the usual CRB, and some researchers distin-
guish the two bounds; but this is a technical detail with little
practical consequence, so we will refer to the resultant bound
as the CRB. �

In the case of real x, Balan’s result in [17] is valid only for
real measurement vectors. The CRB for real x can be easily
derived from Theorem 3.1. The result is as follows:

Claim 3.2: For x ∈ RN , the CRB matrix for the phase
retrieval model in (6) is

CRBr = F−1
r (23)

where (·)−1 denotes the inverse and

Fr =
4
σ2

n

GrGT
r (24)

with

Gr = Re{Adiag{AH x}}. (25)

Balan also derived [20] the FIM for complex white Gaussian
noise added prior to taking the magnitude square, i.e., yi =
|aH

i x + ni |2 , which is different from our model in (1). We also
note [21], where the CRB has been derived for a 2-D phase
retrieval model with 2-D Fourier measurements.

B. CRB on Phase and Amplitude of x

The phase of a complex signal is often more informative
than its amplitude—see [13] for a striking illustration. This is
particularly true when one is interested in measuring frequency-
or phase-modulated signals, where the amplitude carries little (if
any) information. This motivates using an explicit amplitude-
phase parametrization of the unknown vector, and computing
the associated CRB. This is the subject of the next theorem.
We also note that many other (non-Gaussian) noise probability
density functions possessing everywhere continuous first and
second derivatives can be easily handled—as the corresponding
CRB only differs by a noise distribution-specific shape factor
[29].

Theorem 3.1: The CRB for the phase retrieval model in (6)
on the phase and amplitude of x is

CRB = F† (26)

where the FIM is given by

F =
4
σ2

n

GGT (27)

with

G =

[

Re
{

diag(e−jθ)Adiag(AH x)
}

Im
{

diag(x∗)Adiag(AH x)
}

]

. (28)

In particular, the CRB for phase and amplitude have closed-form
expressions as

CRBθ = (Fθθ − FθbF−1
bb Fbθ )† (29)

CRBb = (Fbb − FbθF−1
θθ Fθb)† (30)

where Fθθ , Fbb , Fθb and Fbθ are defined in (73)–(76), respec-
tively. Moreover, the variance on phase and amplitude of any
unbiased phase retrieval estimators designed for model (6) is
bounded below by2

E
[∣
∣
∣
∣θ̂ − θ

∣
∣
∣
∣
2
2

]

≥ trace(CRBθ ) (31)

E
[∣
∣
∣
∣b − b

∣
∣
∣
∣
2
2

]

≥ trace(CRBb) (32)

Proof: See Appendix B. �

C. Some Useful Properties

The following proposition shows that the FIM in (27) is
always singular for nonzero x.

Proposition 3.1: When A is nontrivial and has full row rank
N , for both real and complex x, the FIM F in (27) is always
singular with rank deficit equal to one, and for any nonzero
α, [0T

N , α1T
N ]T always lies in the null space of F.

Proof: See Appendix C. �
As we have pointed out in Section III-A, for complex x the

FIM in (21) is always singular. For real x, the FIM in (24) is
nonsingular. Related observations have been noted in [17]–[19]
but without any proof. We provide precise claims and proofs in
the following.

Proposition 3.2: When A is nontrivial and has full row rank
N , for complex-valued x, Fc is always singular with rank deficit
equal to one, and the direction [−Im{x}T Re{x}T ]T is always
in its null space.

Proof: See Appendix D. �
Proposition 3.3: When A is nontrivial and has full row rank

N , for real-valued x, Fr is always nonsingular.
Proof: See Appendix E. �
We intuitively expect a reduced bound when more measure-

ments are added. The following theorem shows that this is indeed
true.

Proposition 3.4: For given x and fixed σn , the CRB in
Theorem 3.1 decreases as more measurements are made
available:

CRB(A(:, 1 : M + 1))  CRB(A(:, 1 : M)), (33)

where A(:, � : r) is (MATLAB notation for) the submatrix of A
comprising columns � to r inclusive.

2b = [b1 , . . . , bN ]T = |x|.
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Proof: To prove (33), we first rewrite G as

G =

[

Re
{

diag(e−jθ)[A1x · · · AM x]
}

Im {diag(x∗)[A1x · · · AM x]}

]

=: [g1 · · · gM ] (34)

where

gi =

[

Re
{

diag(e−jθ)Aix
}

Im {diag(x∗)Aix}

]

. (35)

Define F(M) and F(M + 1) as the FIMs for M and (M + 1)
measurements, respectively. Then, we have

F(M + 1) = F(M) +
4
σ2

n

gM +1gT
M +1 . (36)

It is seen that the second term in (36) is positive semidefinite. By
taking the pseudo-inverse of (36), (33) is established straight-
forwardly. �

IV. HARMONIC RETRIEVAL FROM RANK-ONE QUADRATIC

MEASUREMENTS

A. Signal Model

In this section, we consider a special case of (6) when x is
a linear combination of L Vandermonde vectors where each
vector contains a single frequency, i.e.,

x =
L∑

�=1

γ�v(ω�). (37)

Here, ω� and γ� stand for the �th unknown frequency and com-
plex amplitude, respectively, and

v(ω�) =
[
ejω� · · · ejN ω�

]T
. (38)

The main problem here is to estimate the frequencies
{ω1 , . . . , ωL} from y. Classical line spectra estimators such as
MUSIC and ESPRIT assume that x is sampled directly and there
is no phase noise. What if we observe generalized samples, i.e.,
linear combinations of the elements of x, and these are subject
to phase noise, i.e., p = diag(u)AH x, where ui models phase
noise in the ith measurement (|ui | = 1), which could arise, e.g.,
due to phase offsets when different measurements are collected
by different sensors in a network sensing scenario. In this case,
the phase of p is clearly uninformative, and we might as well
get rid of it by working with |p|—see also [35]. This yields a
phase retrieval problem where the unknown x possesses har-
monic structure. Can we adapt our algorithms and bounds to
account for this structure?

B. Sparse B-FPP and LS-FPP

We propose to adapt B-FPP and LS-FPP using sparse re-
gression with an overcomplete Vandermonde dictionary. Let
Ṽ ∈ CN ×P be a known overcomplete basis parametrized by
{ω̃1 , . . . , ω̃P }. More specifically, Ṽ can be expressed as

Ṽ =
[
v(ω̃1) · · · v(ω̃P )

]

. (39)

Note that P should be much larger than the number of active
frequencies L. Assuming a sufficiently dense grid, x can be
approximated as

x ≈ Ṽx̃ (40)

where x̃ ∈ CP is L-sparse. Substituting (40) into (6) yields

yi ≈ |bH
i x̃|2 + ni, ∀i (41)

where

bi = ṼH ai . (42)

The problem of frequency estimation has been converted to
sparse spectrum (x̃) estimation. An ideal description of sparsity
is the �0-norm ||x||0 , i.e., the number of nonzero entries in x.
However, this yields a ‘doubly NP-hard’ problem. In recent
years, numerous approximations have been developed such as
�1 and �p (p < 1) relaxations [36]–[37], to replace the �0-norm.
For sparse B-FPP, we can use �1 relaxation as follows:

min
x̃, s

||x̃||1 + λ1

M∑

i=1

si

s. t. 2Re{zH Bix̃} + si ≥ zH Biz + yi − ε

x̃H Bix̃ ≤ yi + ε

si ≥ 0, ∀i (43)

where Bi = bibH
i ∈ CP ×P , x̃ ∈ CP and z ∈ CP . For sparse

LS-FPP, we likewise have

min
x̃, w , s

||w||22 + λ1 ||x̃||1 + λ2

M∑

i=1

si

s. t. 2Re{zH Bix̃} + wi + si ≥ zH Biz + yi

x̃H Bix̃ + wi ≤ yi,

si ≥ 0,∀i. (44)

Remark 4.1: Similar to Algorithm 1 and Algorithm 2 for
‘plain’ phase retrieval, (43) and (44) can be solved repeatedly
using the previously obtained x̃ to obtain a new supporting
point z. Also note that sparse B-FPP and sparse LS-FPP are not
limited to harmonic retrieval—they are directly applicable to
other cases where x admits a sparse representation in a known
dictionary.

C. CRB for Harmonic Retrieval from Quadratic
Measurements

When x is modeled as a sum of a few harmonics, the CRB is
associated to the unknown frequencies ω� and complex ampli-
tudes γ� rather than x. The corresponding CRB is provided in
the following theorem.

Theorem 4.1: If x ∈ CN is a superposition of L Vander-
monde vectors as in (37), the CRB is

CRBv = F†
v (45)



5288 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 20, OCTOBER 15, 2016

where

Fv =
4
σ2

n

GvGT
v (46)

with

Gv =

⎡

⎢
⎣

Re{XH A1x} · · · Re{XH AM x}
Re{VH A1x} · · · Re{VH AM x}
Im{VH A1x} · · · Im{VH AM x}

⎤

⎥
⎦ (47)

X =
[

γ1
∂v1
∂ω1

· · · γL
∂vL

∂ωL

]

(48)

V =
[
v(ω1) · · · v(ωL )

]

(49)

∂v�

∂ω�
=
[
jejω� · · · jNejN ω�

]T
. (50)

Proof: See Appendix F. �
Note that Fv is singular, and its rank deficit is equal to one.

The proof is very similar to those in Appendices C and D, so it
is omitted for brevity.

V. SIMULATION RESULTS

We present simulations of the two proposed methods and
compare them with WF [15], GS [8], PhaseLift [10] and Phase-
Cut [14] in this section. The signal x = exp (j0.16πt), t =
1, . . . , N , is deterministic and fixed throughout all Monte Carlo
trials. Furthermore, the SNR is defined as

SNR =
∑M

i=1

∣
∣aH

i x
∣
∣
4

Mσ2
n

. (51)

We consider two different types of measurements: 1) Gaussian
measurements which are generated from a complex Gaussian
distribution, i.e., the real and imaginary parts of each entry in ai

are generated from the normal distribution; 2) masked Fourier
measurements of the following form:

AH =

⎡

⎢
⎢
⎣

FD1

...

FDK

⎤

⎥
⎥
⎦

(52)

where K = M/N , F is a N × N Fourier matrix and Di is a
N × N diagonal masking matrix with its diagonal entries inde-
pendently generated by b1b2 , where b1 and b2 are independent
and distributed as [15]

b1 =

⎧

⎪⎪⎨

⎪⎪⎩

1 with prob. 0.25
−1 with prob. 0.25
−j with prob. 0.25

j with prob. 0.25

(53)

and

b2 =

{√
2/2 with prob. 0.8
√

3 with prob. 0.2.
(54)

The noise is assumed to be white Gaussian with mean zero and
variance σ2

n . The stopping criterion for B-FPP, LS-FPP, WF
and GS is the relative improvement in the cost function value

Fig. 2. CRB versus SNR for different M with Gaussian measurements.
(a) Amplitude. (b) Phase.

dropping below 10−7 , i.e.,

||y − |AH xk−1 |2 ||22 − ||y − |AH xk |2 ||22
||y − |AH xk−1 |2 ||22

≤ 10−7 (55)

or a limit on the maximum number of iterations being reached.
This limit is set to 100, 100, 2000 and 2000, iterations for B-FPP,
LS-FPP, WF and GS, respectively.

A. CRB versus SNR

As a first sanity check, Fig. 2 plots the CRB as a function
of SNR for M = 2N, 4N, and 8N for the complex-valued sig-
nal (top) and the real-valued signal (bottom), for N = 16. It is
seen that as predicted by Theorem 3.1, the bound on the stan-
dard deviation of the estimated x decreases as SNR increases.
As expected, we also find that the CRB associated to a larger
M produces a smaller bound on the standard deviation, which
validates our analytical results in (33).

B. MSE Performance Comparison

We now compare the performance of B-FPP and LS-FPP
with PhaseLift, PhaseCut3, WF [15] and GS. For PhaseLift,

3PhaseCut works with
√

y; y can have negative elements at low SNR, so
we use Re{√y} for PhaseCut. Also note that, due to the nonlinear transforma-
tion, noise will no longer be additive Gaussian for PhaseCut, which matches a
different measurement model, namely zi = |aH

i x|.
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Fig. 3. Signal recovery performance comparison with spectrum initialization.
(a) Masked Fourier measurements. (b) Gaussian measurements.

PhaseCut, and WF, we use publicly available code4. We use the
LS version of PhaseLift that is appropriate for additive Gaussian
noise. For B-FPP, ε is set equal to the standard deviation of the
noise, for all our experiments.

To begin, let us illustrate the recovery performance of B-FPP
and LS-FPP by means of example. We set N = 16, M = 64 and
SNR = 25 dB. We consider two different initialization methods
to start B-FPP, LS-FPP, WF and GS:

1) Spectrum initialization—picking the leading eigenvector
of
∑M

i=1 yiaiaH
i as an initial guess of x;

2) Gaussian random initialization—each element of the ini-
tial point is randomly generated from a complex Gaussian
distribution with zero mean and unit variance.

Figs. 3 and 4 plot the histogram bar chart of 500 independent
MSE samples where MSE is defined as

MSE = 10 log10
(

||x̂ − x||22
)

. (56)

We note that there always exists global phase ambiguity, so
before we compute MSE we first use θ = ∠(x̂H x) to calcu-
late the global phase, and then let x̂ = x̂ejθ . This is justified
because we are interested in assessing estimation performance

4Downloaded from http://www-bcf.usc.edu/˜soltanol/PhaseRetrieval_CDP.
zip, http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip, and
http://www-bcf.usc.edu/˜soltanol/WFcode.html, respectively.

up to this inherently unresolvable ambiguity. It is seen that for
masked Fourier measurements, BS-FPP, LS-FPP, WF and GS
perform very similarly and they outperform the PhaseLift and
PhaseCut algorithms, since the latter frequently fail to find a
rank-1 matrix. In the Gaussian measurement case, since both
real and imaginary parts of each measurement vector are drawn
from a standard normal distribution, E(aiaH

i ) = 2I. Therefore,
the expected value of 1

M

∑M
i=1 yiaiaH

i is 2(I + xxH ), and its
leading eigenvector represents an estimate of x. However, we
only have a finite number of measurements. Due to the noise
corruption, the top two eigenvectors of 1

M

∑M
i=1 yiaiaH

i might
be mixed together and the leading eigenvector will no longer be
a good guess of x with a finite number of measurements. Due
to this, we can see in Fig. 3(b) that the WF method (which is
sensitive to the starting point), suffers from performance degra-
dation. Furthermore, it is observed from Fig. 4 that by using
random initialization, all the algorithms have more outages than
the case in Fig. 3, and FPP-based methods are better than the
others. Quantitative MSE results summarized in Table I, from
which we can see that LS-FPP achieves the smallest variance
in all the scenarios. Although it is seen from Figs. 3 and 4 that
GS has as few outages as B- and LS-FPP, its MSE is still much
larger than the latter methods. Note that the MSEs reported
have been computed after removing outages, where we have
defined MSE larger than 0 dB as an outage. The CRB is an
averaged result over 500 Monte Carlo tests and is computed via
Theorem 3.1. Furthermore, it is seen in Table II that for masked
Fourier measurements the outage percentage of LS-FPP is
slightly larger than that of WF; while for Gaussian measure-
ments, FPP-based methods are much better than WF and GS. It
is interesting that, although the MSEs of PhaseLift and Phase-
Cut are not as good, the two relaxation-based methods still do
very well in terms of avoiding outages.

Remark: These results suggest using the principal eigenvector
of SDR to initialize FPP, and indeed this further reduces the num-
ber of outages, as well as the number of outer iterations in B-FPP
and LS-FPP. The drawback is that as the size of N = length(x)
becomes larger, SDR quickly becomes the complexity bottle-
neck, since it lifts the problem to a much higher-dimensional
O(N 2) space. Still, using SDR for initialization is well worth
the effort for smaller N , as the overall complexity is still of
the same order as that of FPP per se. This is never the case for
WF and GS, which are relatively lightweight algorithms whose
computational cost is always dominated by SDR.

Next, we compare the MSE performance as a function of
SNR, using N = 16, M = 128, and 200 Monte Carlo trials.

MSE on amplitude = 10 log10

(

1
200

M∑

i=1

|| |x̂i | − |x| ||22

)

MSE on phase = 10 log10

(

1
200

M∑

i=1

||∠(x̂i) − ∠(x) ||22

)

where ∠(·) takes the phase of its argument and x̂i stands for an
estimate of x obtained from the ith Monte-Carlo test. The CRB
in Theorem 3.1 is also included as a benchmark. Fig. 5 depicts
the MSE results for masked Fourier measurements, from which

http://www-bcf.usc.edu/~soltanol/PhaseRetrieval_CDP.zip
http://www-bcf.usc.edu/~soltanol/PhaseRetrieval_CDP.zip
http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip
http://www-bcf.usc.edu/~soltanol/WFcode.html
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TABLE I
AVERAGED MSE AND CRB (BOTH IN DB) AFTER REMOVING OUTAGES

TABLE II
OUTAGE PERCENTAGES

Fig. 4. Signal recovery performance comparison with random initialization.
(a) Masked Fourier measurements, (b) Gaussian measurements.

we observe that LS-FPP and WF followed by B-FPP achieve the
best performance and all of them outperform PhaseLift, Phase-
Cut and GS when SNR is higher than 10 dB. In Fig. 6, GS and
WF exhibit relative high MSE in the high SNR regime, which is
mainly caused by occasional outages (we noted that GS and WF

Fig. 5. Performance comparison with masked Fourier measurements. (a) MSE
on amplitude. (b) MSE on phase.

produce three or four outages during the 200 Monte Carlo trials,
at SNR > 30 dB). When SNR ≤ 5 dB, there is no MSE value
reported for WF because WF frequently returns NaN (not a
number). The reason is that the noise variance is commensurate
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Fig. 6. Performance comparison with Gaussian measurements. (a) MSE on
amplitude. (b) MSE on phase.

Fig. 7. CRB versus SNR for harmonic retrieval from quadratic measurements.

to the useful signal power and the eigenvalues of
∑M

i=1 aiaH
i

are of the same order, thus the leading eigenvector is no longer
useful as initialization. Note that WF, LS PhaseLift, and LS-
FPP actually attempt to solve the same problem formulation
here, however only LS-FPP is insensitive to initialization and
competitive in terms of statistical efficiency in this scenario.

Fig. 8. Signal recovery for harmonic retrieval from quadratic measurements.

C. Performance Comparison for Harmonic Retrieval From
Rank-One Quadratic Measurements

We consider a scenario where x has the form of a 1-D har-
monic model. Assume that there are two frequencies contained
in x, i.e.,

x = v(ω1) + v(ω2).

We study the CRB in (45) as a function of SNR. In this
example, we assume that N = 8 and M = 40. Fig. 7 plots
two CRB curves corresponding to widely-spaced frequencies
(ω1 = −0.15π and ω2 = 0.15π) and closely-spaced frequen-
cies (ω1 = −0.05π and ω2 = 0.05π). As expected, the CRB for
closely-spaced frequencies is larger than that for widely-spaced
ones. Fig. 8 plots the pseudo power spectra, i.e., x̃, obtained by
sparse B-FPP and sparse LS-FPP. In this example, the parame-
ters are ω1 = −0.16π, ω2 = 0.16π, N = 8, M = 16 and SNR
= 30 dB. The dictionary is of length 51, obtained by uniformly
sampling the [−π/2, π/2] frequency sector. It is observed from
Fig. 8 that sparse LS-FPP has two distinct peaks around the true
ω, while sparse B-FPP has a small bias on the estimate of ω2 .

VI. CONCLUSIONS

The problem of phase retrieval has been revisited from a
non-convex QCQP point of view. Building upon recent work
on feasible point pursuit for non-convex QCQP problems, two
novel algorithms were developed for phase retrieval from noisy
measurements: B-FPP and LS-FPP. B-FPP is designed for uni-
form additive noise, such as quantization noise introduced by
high-resolution uniform quantization. LS-FPP is matched to
white Gaussian noise that is added after taking the magnitude
squared of the linear measurements, such as analog transmis-
sion noise. For the latter model, the Cramér–Rao bound was also
derived and studied. Simulations suggest that B-FPP and LS-
FPP attain state-of-art performance, and LS-FPP outperforms
all earlier methods and comes very close to the CRB under
certain conditions (depending on the SNR, and the type and
number of measurements relative to the signal dimension). It
was also shown that what apparently hurts the average perfor-
mance of some of the most competitive algorithms is outages,
even when they are rare. LS-FPP exhibits the best outage perfor-
mance among all algorithms considered, including WF, which
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seems to be quite sensitive to outages, especially for system-
atic (as opposed to i.i.d. Gaussian) measurement vectors, which
throw off its initialization. Variations of B-FPP and LS-FPP
(and the corresponding CRB) for harmonic retrieval from rank-
1 quadratic measurements were also developed and illustrated
in simulations. The drawback of B-FPP and LS-FPP is their rel-
atively high computational complexity, especially compared to
WF. Ways of bringing down this complexity are currently under
investigation.

APPENDIX A
CONVERGENCE OF B-FPP AND LS-FPP

An alternative interpretation of the proposed B-FPP and
LS-FPP is as follows. We first add slack variables to the bounded
noise formulation (9) or Gaussian noise formulation (15),
leading to

min
x,s

||x||22 + λ

M∑

i=1

si

s. t. xH Aix ≤ yi + ε

xH Aix + si ≥ yi − ε

si ≥ 0, ∀i (57)

and

min
x, w , s

||w||22 + λ

M∑

i=1

si

s. t. xH Aix + wi + si ≥ yi

xH Aix + wi ≤ yi,

si ≥ 0,∀i, (58)

and then apply successive convex approximation to (57)
or (58), respectively. According to [25, Theorem 1], every limit
point generated by B-FPP or LS-FPP is a KKT point for (57)
or (58), respectively. Furthermore, if it so happens that the slack
variables at the limit point are all zero, then that x is also a KKT
point for the original problem (9) or (15) [16]. However, the
theorem in [25] does not guarantee that there exists a limit point
(thus there exists a convergent subsequence) for the sequence
generated by B-FPP and LS-FPP.

If the infinite sequence is confined in a compact set, then
there must exist a limit point [38]. Because SCA is a descent
algorithm [16], [25], the sequence generated by B-FPP lies in a
compact set if the following set is compact
{

x, s| ‖x‖2
2 + λ

M∑

i=1

si ≤ ||x0 ||22 + λ

M∑

i=1

s0
i ,

xH Aix ≤ yi + ε, xH Aix + si ≥ yi − ε, si ≥ 0, ∀i

}

,

where x0 and s0 are the initial points for B-FPP which are
feasible for (57). It is indeed compact because it is closed and
x or s cannot go unbounded, if the rank-one components of the
Ai’s span RN , which holds in all cases considered in phase

retrieval. A similar argument can be made for the sequence
generated by LS-FPP. Related results on the convergence of
non-convex methods have appeared in [39]–[41].

APPENDIX B
PROOF OF THEOREM 3.1

The CRB states that the variance of any unbiased estimator is
at least as high as the inverse of the FIM. To determine the CRB,
we should first calculate the FIM and then take its inverse. The
likelihood function for the data model for complex x is

p(y;x) =
M∏

i=1

1
√

2πσ2
n

exp
{

− (yi − xH Aix)2

2σ2
n

}

. (59)

Hence, the log-likelihood function can be written as

ln p(y;x) = −M

2
ln(2πσ2

n ) − 1
2σ2

n

M∑

i=1

(yi − xH Aix)2 .

(60)

The vector of unknown parameters for complex x is

β = [ b1 , . . . , bN , θ1 , . . . , θN ]T (61)

where bi and θi are the amplitude and phase of xi , i.e.,

xi = bie
jθi . (62)

Thus, the FIM can be expressed as

F =

[

Fbb Fbθ

Fθb Fθθ

]

(63)

where the (m,n) entry of the FIM is given by

[F]m, n = −E

[
∂2 ln p(y;x)
∂βm ∂βn

]

(64)

and

[Fbb ]m, n = −E

[
∂2 ln p(y;x)

∂bm ∂bn

]

(65)

[Fθθ ]m, n = −E

[
∂2 ln p(y;x)

∂θm ∂θn

]

(66)

[Fθb ]m, n = −E

[
∂2 ln p(y;x)

∂θm ∂bn

]

(67)

[Fbθ ]m, n = −E

[
∂2 ln p(y;x)

∂bm ∂θn

]

. (68)

The second-order derivative of ln p(y;x) is

∂2 ln p(y;x)
∂βm ∂βn

=
1
σ2

n

M∑

i=1

(

(yi − xH Aix)
∂2xH Aix
∂βm ∂βn

−∂xH Aix
∂βm

∂xH Aix
∂βn

)

. (69)

Taking the expectation of both sides of (69) produces that

E

[
∂2 ln p(y;x)
∂βm ∂βn

]

= − 1
σ2

n

M∑

i=1

∂xH Aix
∂βm

∂xH Aix
∂βn

(70)
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where E[yi − xH Aix] = 0. Now,

∂xH Aix
∂θm

= − jx∗
mAi(m, :)x + jxmxH Ai(:,m)

= 2Re{−jx∗
mAi(m, :)x} (71)

∂xH Aix
∂bm

= e−jθm Ai(m, :)x + ejθm xH Ai(:,m)

= 2Re{e−jθm Ai(m, :)x} (72)

where (·)∗ is the conjugate, and A(i, :) and A(:, i) stand for the
ith row and column of A, respectively. Thus, by substituting
(71) and (72) into (70), after some matrix manipulations, we
obtain the matrix form of the sub-FIMs as

Fbb =
4
σ2

n

Re{diag(e−jθ)Adiag(AH x)}

× Re{diag(e−jθ)Adiag(AH x)}T (73)

Fθθ = − 4
σ2

n

Re{diag(x∗)Adiag(AH x)}

× Re{diag(x∗)Adiag(AH x)}T (74)

Fθb = − 4
σ2

n

Re{jdiag(x∗)Adiag(AH x)}

× Re{diag(e−jθ)Adiag(AH x)}T (75)

Fbθ =
4
σ2

n

FT
θb (76)

where θ = [θ1 , . . . , θN ]T . Inserting (73) to (76) into (64)
produces the whole FIM

F =
4
σ2

n

GGT (77)

where

G =

[

Re
{

diag(e−jθ)Adiag(AH x)
}

Im
{

diag(x∗)Adiag(AH x)
}

]

. (78)

Using block matrix inverse formula, the CRB associated to the
phase and amplitude can be expressed as

CRB†
θ = Fθθ − FθbF−1

bb Fbθ (79)

CRB−1
b = Fbb − FbθF

†
θθFθb . (80)

APPENDIX C
RANK-1 DEFICIENCY OF F

To show that F is rank-1 deficient, it suffices to find a non-zero
vector v such that Fv = 0.

Denote v ∈ R2N as [vT
1 vT

2 ]T , then

GT v = Re{diag(e−jθ)Adiag(AH x)}T v1

+ Im{diag(x∗)Adiag(AH x)}T v2

= Re{diag(x∗)Adiag(AH x)}T ṽ1

+ Im{diag(x∗)Adiag(AH x)}T v2 (81)

where ṽ1 = diag(|x|)−1v1 . Now let u = ṽ1 + jv2 , then

GT v = Re
{(

diag(x∗)Adiag(AH x)
)H

u
}

(82)

= Re
{

(AH x)∗ �
(

AH diag(x)u
)}

. (83)

Let u = j1N , then

GT v = Re
{

j
∣
∣AH x

∣
∣
2
}

= 0. (84)

This means that the direction v = [0T
N 1T

N ]T , which is non-
zero, lies in the null space of G, thus also in the null space of F.
Moreover, suppose the vector AH x does not contain any zero
elements, which is true almost surely. To find another null space
of G would require the vector AH diag(x)u to be the all zero
vector. A vector u that achieves this does not exist almost surely,
for example if A is a random Gaussian matrix. This means F is
rank-1 deficient almost surely.

APPENDIX D
RANK-1 DEFICIENCY OF Fc

Denote v ∈ R2N as [vT
1 vT

2 ]T , then

GT
c v = Re{Adiag(AH x)}T v1 + Im{Adiag(AH x)}T v2 .

Now let u = v1 + jv2 , then

GT
c v = Re

{(

Adiag(AH x)
)H

u
}

= Re
{

(AH x)∗ � (AH u)
}

Let u = jx, we have

GT
c v = Re

{

j
∣
∣AH x

∣
∣
2
}

= 0.

This means the direction v = [−Im{x}T Re{x}T ]T , which is
non-zero, lies in the null space of Gc , thus also in the null space
of Fc .

Moreover, suppose the vector AH x does not contain any zero
elements, which is true almost surely. To find another null space
of Gc would require the vector AH u to be the all zero vector.
Such a vector u does not exist almost surely, for example if A
is a random Gaussian matrix. This means Fc is rank-1 deficient
almost surely. It is also interesting to observe that for the Fisher
information matrix with respect to an arbitrary complex signal
x, the direction jx is always in its null space.

APPENDIX E
PROOF OF FULL RANK OF Fr

Similarly, to show that Fr is full rank, it suffices to show
that there does not exist a non-zero vector v ∈ RN such that
Frv = 0, or equivalently GT

r v = 0. Again we have that

GT
r v = Re

{

(AH x)∗ � (AH v)
}

.

However, we are not allowed to choose v = jx to make this
product zero, because v can only be real. Assume AH x does
not contain any zero elements, which is true almost surely, we
must find a v such that AH v = 0, which cannot happen almost
surely. Therefore, Fr is full rank almost surely.
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APPENDIX F
PROOF OF THEOREM 4.1

The likelihood function for x equal to a sum-of-harmonics
as in (37) has the same expression as (59). However, the pa-
rameter vector contains the L unknown frequencies and the
real and imaginary parts of the L unknown complex amplitudes
{γ1 · · · γL}:

ααα=[ω1 · · · ωL, Re{γ1} · · · Re{γL}, Im{γ1} · · · Im{γL}]T .
(85)

The FIM associated to ααα is expressed as

Fv =

⎡

⎢
⎣

Fωω FωRe{γ} Fω Im{γ}

FRe{γ}ω FRe{γ}Re{γ} FRe{γ}Im{γ}

FIm{γ}ω FIm{γ}Re{γ} FIm{γ}Im{γ}

⎤

⎥
⎦ (86)

where

FRe{γ}ω = FT
ωRe{γ} (87)

FIm{γ}ω = FT
ω Im{γ} (88)

FRe{γ}Im{γ} = FT
Im{γ}Re{γ}. (89)

Therefore, we only need to calculate the upper triangular part
of Fv .

∂ ln p(y;x)
∂αααm

=
1
σ2

n

M∑

i=1

(

(yi − xH Aix)
∂xH Aix

∂αααm

)

. (90)

Let us first compute

∂xH Aix
∂ωm

= γ∗
m

(
∂vm

∂ωm

)H

Aix + γmxH Ai
∂vm

∂ωm

= 2Re

{

γ∗
m

(
∂vm

∂ωm

)H

Aix

}

(91)

where

∂vm

∂ωm
=
[
jejωm · · · jNejN ωm

]T
. (92)

In the sequel, we compute

∂2 ln p(y;x)
∂ωm ∂ωn

=
1
σ2

n

M∑

i=1

(

(yi − xH Aix)
∂2xH Aix
∂ωm ∂ωn

−∂xH Aix
∂ωm

∂xH Aix
∂ωn

)

. (93)

To obtain (93), we consider two cases to calculate the value of
∂ 2 xH A i x
∂ωm ∂ωn

. If m �= n,

∂2xH Aix
∂ωm ∂ωn

= 2Re

{

γ∗
m γn

(
∂vm

∂ωm

)H

Ai
∂vn

∂ωn

}

. (94)

If m = n,

∂2xH Aix
∂ωm ∂ωn

= 2|γm |2
(

∂vm

∂ωm

)H

Ai
∂vm

∂ωm

+ 2Re

{

γ∗
m

(
∂2vm

∂ω2
m

)H

Aix

}

(95)

where

∂2vm

∂ω2
m

= −
[
ejωm · · · N 2ejN ωm

]T
. (96)

Taking the expectation of both sides of (93) yields

[Fωω ]m,n =
4
σ2

n

M∑

i=1

Re

{

γ∗
m

(
∂vm

∂ωm

)H

Aix

}

× Re

{

γ∗
n

(
∂vn

∂ωn

)H

Aix

}

. (97)

We next compute FωRe{γ}. Here, we point out that αm corre-
sponds to frequencies while αn corresponds to the real parts of
the amplitudes.

∂xH Aix
∂Re{γn}

= vH
n Aix + xH Aivn = 2Re{vH

n Aix}. (98)

Since the expected value of (yi − xH Aix) is zero, we directly
obtain

[FωRe{γ}]m,n =
4
σ2

n

M∑

i=1

Re

{

γ∗
m

(
∂vm

∂ωm

)H

Aix

}

× Re
{

vH
n Aix

}

. (99)

In a similar manner,

∂xH Aix
∂Im{γn}

= 2Im{vH
n Aix} (100)

which results in the following formula for Fω Im{γ}

[Fω Im{γ}]m,n =
4
σ2

n

M∑

i=1

Re

{

γ∗
m

(
∂vm

∂ωm

)H

Aix

}

× Im
{

vH
n Aix

}

. (101)

At this point, the expressions for the (m,n)th element of
FRe{γ}Re{γ} and FIm{γ}Im{γ} can be easily derived

[

FRe{γ}Re{γ}
]

m,n
=

4
σ2

n

M∑

i=1

Re
{

vH
m Aix

}

Re
{

vH
n Aix

}

(102)

[

FIm{γ}Im{γ}
]

m,n
=

4
σ2

n

M∑

i=1

Im
{

vH
m Aix

}

Im
{

vH
n Aix

}

. (103)

Substituting (97), (99), (101), (102) and (103) into (86), after
some matrix manipulations, we have

Fv =
4
σ2

n

GvGT
v (104)
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where

Gv =

⎡

⎢
⎢
⎣

Re{XH A1x} · · · Re{XH AM x}

Re{VH A1x} · · · Re{VH AM x}

Im{VH A1x} · · · Im{VH AM x}

⎤

⎥
⎥
⎦

(105)

X =
[

γ1
∂v1
∂ω1

· · · γL
∂vL

∂ωL

]

(106)

V = [v(ω1) · · · v(ωL )]. (107)

Note that using a similar proof as for the rank-1 deficiency
property of the FIM in (27), it can be easily shown that Fv is
also rank-1 deficient. As a result, the CRB for sum-of-harmonics
x is computed using the pseudo-inverse of Fv .
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