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Frugal Power Spectrum Sensing 
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 Motivation:  

 Crowdsourced spectrum sensing using smartphones 

 

 

 

 

 

 

 

  

 At the confluence of three areas:  

 Spectral analysis 

 Optimization 

 Distributed detection and estimation 
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Wireless Sensing Networks 

 

 

 

 

 

 Practical limitations 

 Sensors are battery-operated with limited power, limited 

transmission bandwidth 

 Sending analog-amplitude (finely-quantized) vector 

measurements to the FC is a heavy burden 
 

 Objective 

 Develop bandwidth- and energy-efficient strategies 

 How can the FC detect / estimate / track the signal of interest from 

(very) few received bits? 
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Fusion Center 
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Outline 

 

1. Frugal Sensing: Wideband power spectrum sensing from few 

bits 

 Non-parametric passive sensing 

 Linear programming (LP) formulation 

 Maximum likelihood (ML) formulation 

 Non-parametric active sensing 

 Cutting plane formulation  

 Parametric passive sensing for MA models 

 Non-convex QCQP formulation  

 

2. Frugal Channel Estimation and Tracking for Transmit 

Beamforming (originally planned; decided to skip) 
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Frugal Sensing  

Wideband Power Spectrum Sensing From Few Bits 

  

 



Wideband Spectrum Sensing 

 Cognitive radio: secondary users scan wide frequency band to 

identify spectral opportunities 
 

 Wideband sensing  

 High-resolution, high-speed, ADC 

 Hard to implement, expensive, high power consumption 
 

 Multiband sensing 

 Divide into narrowband channels + channel-by-channel sensing 

 Large number of bandpass filters, ignores correlation across bands 
 

 Compressive sensing [Tian-Giannakis’07, Candes’06, Donoho’06] 

 Sub-Nyquist sampling 

 Requires frequency-domain sparsity 
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Power Spectrum Sensing 

 Only power spectrum (PSD) is needed in many sensing 

applications (e.g. cognitive radio, radio astronomy)   

 No need to reconstruct the spectrum of the original signal 

 Estimated from Fourier transform of truncated autocorrelation       

 finite parameterization 

 Sampling rate requirements significantly decreased without 

requiring frequency-domain sparsity [Ariananda-Leus’11, Lexa-et-al’11]  

 

 Collaborative spectrum sensing 

 Reliable sensing exploiting spatial diversity of sensors 

 Opens the door for crowdsourcing spectrum sensing using 

today’s smart phones and other wireless devices 
 

 Challenge: collaborative wideband power spectrum sensing 

using low-end sensors with limited communication capabilities 
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Frugal Sensing 

Primary User   
FC 

Power spectrum estimation from very few bits  
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Sensor Measurement Chain 

X 

~ 

LPF 

Random, length-K 

FIR Filter  

gm(n) 

> < tm 
ADC 

Nyquist Rate 

(1/Ts) 

ym(t) ym(n) 
bm= 1 
 

bm= -1 

zm(n) 

Analog  

Filter 

ym(t) 

Sub-Nyquist Rate 

1/(NTs) 

Complex PN - known at the FC 

Equivalent analog measurement 

 Random wideband filters 

 Provide independent / complementary views of the underlying PS 

 Better than narrowband filters 

 Narrowband measurements affected by failure/fading 

 No sensor coordination: who covers what, add/remove sensors without reprogramming 
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Power Measurements 

 Received signal at sensor m 

 

 

 

 
 Random filter output  

 
 
 

 Filter output with no fading 

L-tap fading channel 

(frequency-selective) 

primary       

WSS signal 
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One-Bit Power Measurement 

Signal autocorrelation Filter deterministic autocorrelation 

Power measurement (no fading)  

1-bit measurement 

Linear in rx 

Estimated power  
Gaussian via CLT 

• Frequency-selective fading 

• Insufficient sample averaging 
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Power Spectrum 



Linear Programming Formulation 

 Assume small {em}:  
 

 Constraints 

 Received bits {bm}:  

                                         and 

    Proposition:   
 

 Cost function 

 Minimize total signal power: 
 

 Linear programming 

Spectral estimation from inequalities instead of equalities 
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O. Mehanna and N. D. Sidiropoulos, “Frugal sensing: wideband power spectrum sensing from few bits,” Trans. Signal Processing, May 2013 



Simulations 

M=100, K=24, tm=t, 30 sensors send bm=1 

 

M=100, K=10, tm=t, 50 sensors send bm=1 

100 bits equivalent to 3 single precision 

IEEE floats (rx(0) and rx(1)) 
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Sparse spectrum Dense spectrum 



Threshold Selection & Filter Length 

Threshold should be tuned such that 

fewer sensors are above threshold if 

the power spectrum is more sparse 

 

• Small K  smeared power spectrum 

estimate 

• Large K  more unknowns vs. 

inequality constraints (more under-

determined) 

• More M  optimal K* increases 

• Binary PN vs. Gaussian 
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K=20, M=60 

25% send bm=1 

Threshold vs. Sparsity Filter length vs. Number of sensors 



Maximum Likelihood Formulation 

 

 Constrained ML + Sparsity-inducing penalty 

 

 Convex 
 
 

Consistent 
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control sparsity 

 Joint PMF 

O. Mehanna and N. D. Sidiropoulos, “Maximum likelihood passive and active sensing of wideband power spectra from few bits,” TSP, in review 

i.i.d Gaussian 



Example: ML vs. LP 

M=150, K=10, tm=t, 50 sensors send bm=1, 

random errors flipped 24 sensor measurement bits (16%) 
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MSE vs. CRB 

Random errors flipped 17% of sensor measurement bits on average 
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Analog vs. 1-Bit Quantization 

Rayleigh fading: random errors flipped 30% of sensor measurement bits on average 
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1-Bit Power Measurement

Analog Measurement + Constrained LS

200 bits 

150x32 bits 
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Active Sensing 
 

(Adaptive Thresholding) 



Threshold Selection 

 Satisfactory estimation quality with fixed tm = t for all sensors 

 

 What if {tm} actively adapted online and communicated to 

sensors through downlink channel? 

 Significant payoff in terms of sensing accuracy  

 At the cost of higher complexity and communication overhead 
  

 Assume accurate power measurements (                                             ) 

 Receiving the M bits: 

 

 Volume of feasible region gives a measure of uncertainty about rx 
 

 Objective: adaptively select {tm} to ensure PM is as small as 

possible 
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Chebyshev Center (CC) 

 

 

 

 

 

 

 The CC of                                                            found by 

solving the LP                                                            

xc 
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Given P0, its CC xc
(0), and              

Adaptive Thresholding Algorithm 

For each time-slot / sensor m=1,…M, do 

1. Set tm = qm
Txc

(m-1), send it to senor m 

2. Upon receiving bm update: 

 

 

 

3. Compute the CC xc
(m) of Pm 

… 

…
 

xc
(M) converges linearly to rx as M     ∞ 
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O. Mehanna and N. D. Sidiropoulos, “Adaptive thresholding for distributed power spectrum sensing,” ICASSP 2013 

(1) 
(2) 

(M) 



2-D Example 

q1
Tx-t1= q1

T(x-xc
(0)) 

q3
Tx-t3 

q2
Tx-t2 

q4
Tx-t4 

xc
(0) 

xc
(1) 

xc
(2) 

xc
(3) 

xc
(4) 

Significant portion of the feasible region is cut-off after each iteration 

rx
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Active Sensing Performance 
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Chebyshev Center

Analytic Center

K=10 (19 real autocorrelation variables) 



Active Sensing with Gaussian Errors 

 Bit-flips due to errors prevent convergence of previous scheme  

 Received measurement bit does not imply inequality constraint, 

does not decrease the feasible region 
 

 Instead of CC, use ML estimate 

 

 

 Set   

 CRB minimized with  
 

 Low-complexity (approximate ML) 
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Performance with Errors 
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Random errors flipped 68 bits from 300 on average (K=10) 
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Parametric Sensing 
 



Parametric Frugal Sensing 

 Assume primary WSS signal admits an MA(q) representation  

 

 

 

 MA Signal Autocorrelation: 

 

 

 

 

 MA power spectrum:                              

 

 Parametric approach yields more parsimonious model for 

power spectrum 
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MA parameters Complex WGN 



QCQP Formulation 

 For small {em}:                                                        

                                                                           

 Assuming a postulated model order p 
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Quadratic in the MA parameters 

Linear in the auto-

correlation 



QCQP Formulation 

 Constraints 

 Assume single threshold:  

 Define sets  

 Received bits {bm}: 

 
 

 Cost function 

 Minimize total signal power:                                                     

 

 Quadratically Constrained Quadratic Programming (QCQP) 

Non-convex problem, known to be NP-Hard  

30 
A. Konar, N. D. Sidiropoulos, and O. Mehanna “Parametric Frugal Sensing of Power Spectra for Moving Average Models” TSP (submitted) 



Semidefinite Relaxation Approach 

 Equivalent reformulation of       

 

 

 

 

 

 

 Relaxed semidefinite programming (SDP) problem obtained by 

dropping rank constraints  
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Randomization Algorithm 

 If SDP solution is rank 1, then global optimum achieved 

 

 Randomization Approach  

 Scale prinicipal component of SDP solution to be feasible for        

                

 Employ Gaussian Randomization to obtain feasible solution 

 

 If randomization fails to obtain a feasible solution, 

 Scale principal component/use Gaussian Randomization to obtain 

feasible solution for       only 

 Justification:       is the activity detection set, MVDR interpretation   
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Successive Convex Approximation Approach 

 Linearize                          about point     for        to obtain lower 

bound                                       where 

             

 Proposition: Seek to “solve”      by solving the sequence of 

convex problems 

 

 

 

 

 

 If       is feasible and     is a feasible starting point, then, it can 

be shown that the sequence of solutions generated has 

monotonically non-increasing cost, and converges to a KKT 

point. [Beck-Ben Tal-Tetruashvili ’10]  
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SOCP Formulation with slack variables 

 Drawbacks: Obtaining a feasible starting point     non-trivial. 

 Alternative: Choose     to be feasible for       only 

 Issues:       maybe infeasible as a result of computing 

restriction of       about 

 Fixes: 

 Add positive slack variables            to convex constraints  

 Impose a weighted penalty on the sum-of-slacks 

 Scale              until it becomes tangent to the hyper-ellipse 

 

 Overall, we obtain the following problem                                    
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Can be formulated as a 

SOCP problem 



Feasible Point Pursuit Algorithm 

 

 

 

 

 

 Cost function is monotonically non-increasing in   

 

 Additionally,                                                   

 

 Furthermore,             in a finite number of iterations in many 

cases i.e., a feasible point is obtained.  

 

 Stop if feasibility achieved in        iterations. Otherwise re-

initialize from a different starting point. (Maximum of 5) 
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MA Model Fitting Approach 

 Fit an MA model of desired order to autocorrelation sequence 

estimate [Stoica-Moses’05] 

 Use autocorrelation estimate                        returned by LP 

formulation as starting point 

 

 Seek to solve the problem                                                                                                    

 

 

 

 Can be formulated as a Semidefinite Quadratic Linear 

Programming (SQLP) problem in  

 

 Take DTFT of          to obtain spectral estimate 
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where                                         and    
 



Simulations 

Mean Normalized Spectra Variance 

Real MA(5) model, M=100, K=24, tm=t, 30 sensors send 

bm=1, true model order known, 500 MC trials 

 
SDR fails in 99.8 % of trials. FPP – SCA successful in 100 % of trials (avg. 2.3 

iterations) 



Mean Spectral NMSE 

MA(9) model 

Parametric methods exhibit superior 

performance 
 

M=100, K=34, tm=t, true model order known, 100 MC trials for each of 50 

MA models  

 

FPP – SCA algorithm more successful 

in obtaining feasible solution  



Threshold Selection 

MA(3) model MA(6) model 

MA(9) model MA(12) model 

• M=80, K=30, tm=t, true model order known, 100 MC trials for each of 50 MA models 

• Optimal choice of threshold corresponds to 25-35% of  sensors transmitting bm=1 

 



Broadband Filter Length K 

40 

MA(6) model 

• M=100, tm=t, 20 sensors send bm=1, true model order known 

• K should be set greater than equal to q+1 for correct parametrization of MA model 

• For K = 7, LP formulation followed by MA model fitting yields best results 

• For larger values of K, LP formulation becomes more underdetermined, modelling 

mismatch increases, hence performance degrades. 

• Parametric methods exhibit improved performance for large K 



Postulated Model Order p 

MA(3) model 

M=100, K=24, tm=t, only upper bound on true model order available, 40 

sensors send bm=1, 100 MC trials for each of 50 MA models  

 

FPP – SCA algorithm more robust to 

model order estimation 
 

FPP – SCA algorithm more successful 

in obtaining feasible solution  



Take-home  

 Frugal sensing  

 Applicable for crowdsourcing spectrum sensing using smart phones 

 Adequate wideband power spectrum sensing from few bits 

 Spectral estimation from inequalities instead of equalities 

 LP formulation 

 ML formulation exploits Gaussian errors, robust to bit-flips 

 Active sensing (adaptive thresholding) 

 Fast convergence using adapted threshold information 

 Parametric frugal sensing for MA models 

 Ongoing work: AR, ARMA FS; active MA FS 

 Frugal channel tracking (didn’t have time to cover) 

 Results pave the way for using massive MIMO in FDD mode 
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