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What do these have in common?

Machine learning - e.g., clustering and co-clustering, social network
analysis
Speech - separating unknown mixtures of speech signals in reverberant
environments
Audio - untangling audio sources in the spectrogram domain
Communications, signal intelligence - unraveling CDMA mixtures,
breaking codes
Passive localization + radar (angles, range, Doppler, profiles)
Chemometrics: Chemical signal separation, e.g., fluorescence,
‘mathematical chromatography’ (90’s -)
Psychometrics: Analysis of individual differences, preferences (70’s -)
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Matrices, rank decomposition

A matrix (or two-way array) is a dataset X indexed by two indices, (i , j)-th
entry X(i , j).
Simple matrix S(i , j) = a(i)b(j), ∀i , j ; separable, every row (column)
proportional to every other row (column). Can write as S = abT .
rank(X) := smallest number of ‘simple’ (separable, rank-one) matrices
needed to generate X - a measure of complexity.

X(i , j) =
F∑

f =1

af (i)bf (j); or X =
F∑

f =1

af bT
f = ABT .

Turns out rank(X) = maximum number of linearly independent rows (or,
columns) in X.
Rank decomposition for matrices is not unique (except for matrices of
rank = 1), as ∀ invertible M:

X = ABT = (AM)
(

M−T BT
)

= (AM)
(
BM−1)T

= ÃB̃T .
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Tensor? What is this?

CS ‘slang’ for three-way array: dataset X indexed by three indices,
(i , j , k)-th entry X(i , j , k).
In plain words: a ‘shoebox’!
For two vectors a (I × 1) and b (J × 1), a ◦ b is an I × J rank-one matrix
with (i , j)-th element a(i)b(j); i.e., a ◦ b = abT .
For three vectors, a (I × 1), b (J × 1), c (K × 1), a ◦ b ◦ c is an I × J × K
rank-one three-way array with (i , j , k)-th element a(i)b(j)c(k).
The rank of a three-way array X is the smallest number of outer products
needed to synthesize X.
Example: NELL / Tom Mitchell @ CMU

X

≈

object

subject

verb

~a1

~b1
~c1

+

~a2

~b2
~c2

+

~aF

~bF
~cF

. . . +
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Rank decomposition for tensors

• Tensor:

X =
F∑

f =1

af ◦ bf ◦ cf

• Scalar:

X(i , j , k) =
F∑

f =1

ai,f bj,f ck,f ,
∀i ∈ {1, · · · , I}
∀j ∈ {1, · · · , J}
∀k ∈ {1, · · · ,K}

• Slabs:
Xk = ADk (C)BT , k = 1, · · · ,K

• Matrix:
X(KJ×I) = (B� C)AT

• Tall vector:

x(KJI) := vec
(

X(KJ×I)
)

= (A� (B� C)) 1F×1 = (A� B� C) 1F×1
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Tensors vs. Matrices

Matrix rank always ≤ min(I, J).
rank(randn(I, J)) = min(I, J) w.p. 1.
SVD is rank-revealing.
SVD provides best rank-R approximation.

Whereas ...
Tensor rank can be > max(I, J,K ); ≤ min(IJ, JK , IK ) always.
rank(randn(2,2,2)) ∈ {2,3}, both with positive probability.
Finding tensor rank is NP-hard.
Computing best rank-1 approximation to a tensor is NP-hard.
Best rank-R approximation may not even exist.
True for n-way arrays of any order n ≥ 3 - matrices are the only exception!

Don’t be turned off - there are many good things about tensors!
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Tensor Singular Value Decomposition?

For matrices, SVD is instrumental: rank-revealing, Eckart-Young
So is there a tensor equivalent to the matrix SVD?
Yes, ... and no! In fact there is no single tensor SVD.
Two basic decompositions:

CANonical DECOMPosition (CANDECOMP), also known as PARAllel
FACtor (PARAFAC) analysis, or CANDECOMP-PARAFAC (CP) for short:
non-orthogonal, unique under certain conditions.
Tucker3, orthogonal without loss of generality, non-unique except for very
special cases.

Both are outer product decompositions, but with very different structural
properties.
Rule of thumb: use Tucker3 for subspace estimation and tensor
approximation, e.g., compression applications; use PARAFAC for latent
parameter estimation - recovering the ‘hidden’ rank-one factors.
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Tucker3

I × J × K three-way array X
A : I × L, B : J ×M, C : K × N mode loading matrices
G : L×M × N Tucker3 core
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Tucker3, continued

Consider an I × J × K three-way array X comprising K matrix slabs
{Xk}K

k=1, arranged into matrix X := [vec(X1), · · · , vec(XK )].
The Tucker3 model can be written as

X ≈ (B⊗ A)GCT ,

where G is the Tucker3 core tensor G recast in matrix form. The non-zero
elements of the core tensor determine the interactions between columns
of A, B, C.
The associated model-fitting problem is

min
A,B,C,G

||X− (B⊗ A)GCT ||2F ,

which is usually solved using an alternating least squares procedure.
vec(X) ≈ (C⊗ B⊗ A) vec(G).
Highly non-unique - e.g., rotate C, counter-rotate G using unitary matrix.
Subspaces can be recovered; Tucker3 is good for tensor approximation,
not latent parameter estimation.
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PARAFAC

X

≈

object

subject

verb

~a1

~b1
~c1

+

~a2

~b2
~c2

+

~aF

~bF
~cF

. . . +

Low-rank tensor decomposition / approximation

X ≈
F∑

f =1

af ◦ bf ◦ cf ,

PARAFAC [Harshman ’70-’72], CANDECOMP [Carroll & Chang, ’70], now
CP; also cf. [Hitchcock, ’27]
Combining slabs and using Khatri-Rao product,

X ≈ (B� A)CT ⇐⇒ vec(X) ≈ (C� B� A) 1
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Uniqueness

Under certain conditions, PARAFAC is essentially unique, i.e., (A,B,C)
can be identified from X up to permutation and scaling of columns -
there’s no rotational freedom; cf. [Kruskal ’77, Sidiropoulos et al ’00 - ’07,
de Lathauwer ’04-, Stegeman ’06-, Chiantini, Ottaviani ’11-, ...]
I × J × K tensor X of rank F , vectorized as IJK × 1 vector
x = (A� B� C) 1, for some A (I × F ), B (J × F ), and C (K × F ) - a
PARAFAC model of size I × J × K and order F parameterized by
(A,B,C).
The Kruskal-rank of A, denoted kA, is the maximum k such that any k
columns of A are linearly independent (kA ≤ rA := rank(A)).
spark(A) = kA + 1
Given X (⇔ x), if kA + kB + kC ≥ 2F + 2, then (A,B,C) are unique up to a
common column permutation and scaling/counter-scaling (e.g., multiply
first column of A by 5, divide first column of B by 5, outer product stays
the same) - cf. [Kruskal, 1977]

N-way case:
∑N

n=1 kA(n) ≥ 2F + (N − 1) [Sidiropoulos & Bro, 2000]
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Alternating Least Squares (ALS)

Based on matrix view:

X(KJ×I) = (B� C)AT

Multilinear LS problem:

min
A,B,C

||X(KJ×I) − (B� C)AT ||2F

NP-hard - even for a single component, i.e., vector a,b,c. See [Hillar and
Lim, “Most tensor problems are NP-hard,” 2013]
But ... given interim estimates of B, C, can easily solve for conditional LS
update of A:

ACLS =
(

(B� C)†X(KJ×I)
)T

Similarly for the CLS updates of B, C (symmetry); alternate until cost
function converges (monotonically).
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Other algorithms?

Many! - first-order (gradient-based), second-order (Hessian-based)
Gauss-Newton, line search, Levenberg-Marquardt, weighted least
squares, majorization
Algebraic initialization (matters)
See Tomasi and Bro, 2006, for a good overview
Second-order advantage when close to optimum, but can (and do)
diverge
First-order often prone to local minima, slow to converge
Stochastic gradient descent (CS community) - simple, parallel, but very
slow
Difficult to incorporate additional constraints like sparsity, non-negativity,
unimodality, etc.
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ALS

No parameters to tune!
Easy to program, uses standard linear LS
Monotone convergence of cost function
Does not require any conditions beyond model identifiability
Easy to incorporate additional constraints, due to multilinearity, e.g.,
replace linear LS with linear NNLS for NN
Even non-convex (e.g., FA) constraints can be handled with column-wise
updates (optimal scaling lemma)
Cons: sequential algorithm, convergence can be slow
Still workhorse after all these years
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Outliers, sparse residuals

Instead of LS,
min ||X(KJ×I) − (B� C)AT ||1

Conditional update: LP
Almost as good: coordinate-wise, using weighted median filtering (very
cheap!) [Vorobyov, Rong, Sidiropoulos, Gershman, 2005]
PARAFAC CRLB: [Liu & Sidiropoulos, 2001] (Gaussian); [Vorobyov,
Rong, Sidiropoulos, Gershman, 2005] (Laplacian, etc differ only in
pdf-dependent scale factor).
Alternating optimization algorithms approach the CRLB when the
problem is well-determined (meaning: not barely identifiable).
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Big (tensor) data

Tensors can easily become really big! - size exponential in the number of
dimensions (‘ways’, or ‘modes’).
Datasets with millions of items per mode - e.g., NELL, social networks,
marketing, Google.
Cannot load in main memory; may reside in cloud storage.
Sometimes very sparse - can store and process as (i,j,k,value) list,
nonzero column indices for each row, runlength coding, etc.
(Sparse) Tensor Toolbox for Matlab [Kolda et al].
Avoids explicitly computing dense intermediate results.
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Tensor partitioning?

Parallel algorithms for matrix algebra use data partitioning
Can we reuse some of these ideas?

Low-hanging fruit?
First considered in [Phan, Cichocki, Neurocomputing, 2011] -
identifiability issues, matching permutations and scalings?
Later revisited in [Almeida, Kibangou, CAMSAP 2013, ICASSP 2014] -
no loss of optimality (as if working w/ full data), but inter-process
communication overhead, additional identifiability conditions.
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Tensor compression

Commonly used compression method for ‘moderate’-size tensors: fit
orthogonal Tucker3 model, regress data onto fitted mode-bases.

Implemented in n-way toolbox (Rasmus Bro) http://www.mathworks.
com/matlabcentral/fileexchange/1088-the-n-way-toolbox

Lossless if exact mode bases used [CANDELINC]; but Tucker3 fitting is
itself cumbersome for big tensors (big matrix SVDs), cannot compress
below mode ranks without introducing errors
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Tensor compression

Consider compressing x = vec(X) into y = Sx, where S is d × IJK ,
d � IJK .
In particular, consider a specially structured compression matrix
S = UT ⊗ VT ⊗WT

Corresponds to multiplying (every slab of) X from the I-mode with UT ,
from the J-mode with VT , and from the K -mode with WT , where U is I×L,
V is J ×M, and W is K × N, with L ≤ I, M ≤ J, N ≤ K and LMN � IJK

I 

L 

M 

I 

J 

J 

K 
N 

L 

K 

M 
X 

N 
Y 

_ 
_ 
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Key

Due to a property of the Kronecker product(
UT ⊗ VT ⊗WT

)
(A� B� C) =(

(UT A)� (VT B)� (WT C)
)
,

from which it follows that

y =
(

(UT A)� (VT B)� (WT C)
)

1 =
(

Ã� B̃� C̃
)

1.

i.e., the compressed data follow a PARAFAC model of size L×M × N
and order F parameterized by (Ã, B̃, C̃), with Ã := UT A, B̃ := VT B,
C̃ := WT C.
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Random multi-way compression can be better!

Sidiropoulos & Kyrillidis, IEEE SPL Oct. 2012
Assume that the columns of A,B,C are sparse, and let na (nb, nc) be an
upper bound on the number of nonzero elements per column of A
(respectively B, C).
Let the mode-compression matrices U (I × L,L ≤ I), V (J ×M,M ≤ J),
and W (K × N,N ≤ K ) be randomly drawn from an absolutely continuous
distribution with respect to the Lebesgue measure in RIL, RJM , and RKN ,
respectively.
If

min(L, kA) + min(M, kB) + min(N, kC) ≥ 2F + 2, and

L ≥ 2na, M ≥ 2nb, N ≥ 2nc ,

then the original factor loadings A,B,C are almost surely identifiable from
the compressed data.
Never have to see big data; significant computational complexity
reduction as well.
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Further compression - down to O(
√

F ) in 2/3 modes

Sidiropoulos & Kyrillidis, IEEE SPL Oct. 2012
Assume that the columns of A,B,C are sparse, and let na (nb, nc) be an
upper bound on the number of nonzero elements per column of A
(respectively B, C).
Let the mode-compression matrices U (I × L,L ≤ I), V (J ×M,M ≤ J),
and W (K × N,N ≤ K ) be randomly drawn from an absolutely continuous
distribution with respect to the Lebesgue measure in RIL, RJM , and RKN ,
respectively.
If

rA = rB = rC = F

L(L− 1)M(M − 1) ≥ 2F (F − 1), N ≥ F , and

L ≥ 2na, M ≥ 2nb, N ≥ 2nc ,

then the original factor loadings A,B,C are almost surely identifiable from
the compressed data up to a common column permutation and scaling.
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Latest on PARAFAC uniqueness

Luca Chiantini and Giorgio Ottaviani, On Generic Identifiability of
3-Tensors of Small Rank, SIAM. J. Matrix Anal. & Appl., 33(3),
1018–1037:
Consider an I × J × K tensor X of rank F , and order the dimensions so
that I ≤ J ≤ K
Let i be maximal such that 2i ≤ I, and likewise j maximal such that 2i ≤ J
If F ≤ 2i+j−2, then X has a unique decomposition almost surely
For I, J powers of 2, the condition simplifies to F ≤ IJ

4
More generally, condition implies:

if F ≤ (I+1)(J+1)
16 , then X has a unique decomposition almost surely
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Even further compression

Assume that the columns of A,B,C are sparse, and let na (nb, nc) be an
upper bound on the number of nonzero elements per column of A
(respectively B, C).
Let the mode-compression matrices U (I × L,L ≤ I), V (J ×M,M ≤ J),
and W (K × N,N ≤ K ) be randomly drawn from an absolutely continuous
distribution with respect to the Lebesgue measure in RIL, RJM , and RKN ,
respectively.
Assume L ≤ M ≤ N, and L,M are powers of 2, for simplicity
If

rA = rB = rC = F

LM ≥ 4F , N ≥ M ≥ L, and

L ≥ 2na, M ≥ 2nb, N ≥ 2nc ,

then the original factor loadings A,B,C are almost surely identifiable from
the compressed data up to a common column permutation and scaling.
Allows compression down to order of

√
F in all three modes

Nikos Sidiropoulos Tensor Decomposition in the Era of Big Data EUSIPCO 2014, Lisbon 25 / 45



What if A,B,C are not sparse?

If A,B,C are sparse with respect to known bases, i.e., A = RǍ, B = SB̌,
and C = TČ, with R,S,T the respective sparsifying bases, and Ǎ, B̌, Č
sparse
Then the previous results carry over under appropriate conditions, e.g.,
when R,S,T are non-singular.
OK, but what if such bases cannot be found?
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PARACOMP: PArallel RAndomly COMPressed Cubes

I

J

K

X_

(U2,V2,W2)

…

M1

L1

N1
Y_ 1

M2

L2

N2
Y_ 2

MP

LP

NP
Y_ P

…

(A2,B2,C2)~   ~   ~

…

(A,B,C)
join 
(LS)  

fork 

I
Lp

Mp

I

J

J

K
Np

Lp

K

Mp

X

Np
Y

_
_

Up
T

V
p
T

Wp
T

p
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PARACOMP

Assume Ãp, B̃p, C̃p identifiable from Yp (up to perm & scaling of cols)
Upon factoring Yp into F rank-one components, we obtain

Ãp = UT
p AΠpΛp. (1)

Assume first 2 columns of each Up are common, let Ū denote this
common part, and Āp := first two rows of Ãp. Then

Āp = ŪT AΠpΛp.

Dividing each column of Āp by the element of maximum modulus in that
column, denoting the resulting 2× F matrix Âp,

Âp = ŪT AΛΠp.

Λ does not affect the ratio of elements in each 2× 1 column. If ratios are
distinct, then permutations can be matched by sorting the ratios of the
two coordinates of each 2× 1 column of Âp.
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PARACOMP

In practice using a few more ‘anchor’ rows will improve perm-matching.
When S anchor rows are used, the opt permutation matching cast as

min
Π
||Â1 − ÂpΠ||2F ,

Optimization over set of permutation matrices - hard?

||Â1 − ÂpΠ||2F = Tr
(

(Â1 − ÂpΠ)T (Â1 − ÂpΠ)
)

=

||Â1||2F + ||ÂpΠ||2F − 2Tr(ÂT
1 ÂpΠ) =

||Â1||2F + ||Âp||2F − 2Tr(ÂT
1 ÂpΠ).

⇐⇒ max
Π

Tr(ÂT
1 ÂpΠ),

Linear Assignment Problem (LAP), efficient soln via Hungarian Algorithm.
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PARACOMP

After perm-matching, back to (1) and permute columns→ Ăp satisfying

Ăp = UT
p AΠΛp.

Remains to get rid of Λp. For this, we can again resort to the first two
common rows, and divide each column of Ăp with its top element→

Ǎp = UT
p AΠΛ.

For recovery of A up to perm-scaling of cols, we then require that Ǎ1
...

ǍP

 =

 UT
1
...

UT
P

AΠΛ (2)

be full column rank.
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PARACOMP

If compression ratios in different modes are similar, makes sense to use
longest mode for anchoring; if this is the last mode, then

P ≥ max
(

I
L
,

J
M
,

K − 2
N − 2

)
Theorem: Assume that F ≤ I ≤ J ≤ K , and A, B, C are full column rank
(F ). Further assume that Lp = L, Mp = M, Np = N, ∀p ∈ {1, · · · ,P},
L ≤ M ≤ N, (L + 1)(M + 1) ≥ 16F , random {Up}P

p=1, {Vp}P
p=1, each Wp

contains two common anchor columns, otherwise random {Wp}P
p=1.

Then
(

Ãp, B̃p, C̃p

)
unique up to column permutation and scaling.

If, in addition, P ≥ max
(

I
L ,

J
M ,

K−2
N−2

)
, then (A,B,C) are almost surely

identifiable from
{(

Ãp, B̃p, C̃p

)}P

p=1
up to a common column permutation

and scaling.
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PARACOMP - Significance

Indicative of a family of results that can be derived.
Theorem shows that fully parallel computation of the big tensor
decomposition is possible – first result that guarantees ID of the big
tensor decomposition from the small tensor decompositions, without
stringent additional constraints.

Corollary: If K−2
N−2 = max

(
I
L ,

J
M ,

K−2
N−2

)
, then the memory / storage and

computational complexity savings afforded by PARACOMP relative to
brute-force computation are of order IJ

F .
Note on complexity of solving master join equation: after removing
redundant rows, system matrix in (2) will have approximately orthogonal
columns for large I → left pseudo-inverse ≈ its transpose, complexity I2F .
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Color of compressed noise

Y = X + Z, where Z: zero-mean additive white noise.
y = x + z, with y := vec (Y), x := vec (X), z := vec (Z).
Multi-way compression→ Yc

yc := vec (Yc) =
(

UT ⊗ VT ⊗WT
)

y =(
UT ⊗ VT ⊗WT

)
x +

(
UT ⊗ VT ⊗WT

)
z.

Let zc :=
(
UT ⊗ VT ⊗WT

)
z. Clearly, E [zc ] = 0; it can be shown that

E
[
zczT

c

]
= σ2

((
UT U

)
⊗
(

VT V
)
⊗
(

WT W
))

.

⇒ If U, V, W are orthonormal, then noise in the compressed domain is
white.
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‘Universal’ LS

E [zc ] = 0, and

E
[
zczT

c

]
= σ2

((
UT U

)
⊗
(

VT V
)
⊗
(

WT W
))

.

For large I and U drawn from a zero-mean unit-variance uncorrelated
distribution, UT U ≈ I by the law of large numbers.
Furthermore, even if z is not Gaussian, zc will be approximately Gaussian
for large IJK , by the Central Limit Theorem.
Follows that least-squares fitting is approximately optimal in the
compressed domain, even if it is not so in the uncompressed domain.
Compression thus makes least-squares fitting ‘universal’!
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Component energy ≈ preserved after compression

Consider randomly compressing a rank-one tensor X = a ◦ b ◦ c, written
in vectorized form as x = a⊗ b⊗ c.
The compressed tensor is X̃, in vectorized form

x̃ =
(

UT ⊗ VT ⊗WT
)

(a⊗ b⊗ c) = (UT a)⊗ (VT b)⊗ (WT c).

Can be shown that, for moderate L,M,N and beyond, Frobenious norm
of compressed rank-one tensor approximately proportional to Frobenious
norm of the uncompressed rank-one tensor component of original tensor.
In other words: compression approximately preserves component energy
⇒ order.
⇒ Low-rank least-squares approximation of the compressed tensor �
low-rank least-squares approximation of the big tensor, approximately.
⇒ Can match component permutations across replicas by sorting
component energies.
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PARACOMP: Numerical results

Nominal setup:
I = J = K = 500; F = 5; A, B, C ∼ randn(500,5);
L = M = N = 50 (each replica = 0.1% of big tensor);
P = 12 replicas (overall cloud storage = 1.2% of big tensor).
S = 3 (vs. Smin = 2) anchor rows.
↑ Satisfy identifiability without much ‘slack’.
+ WGN std σ = 0.01.
COMFAC www.ece.umn.edu/˜nikos used for all factorizations, big and
small
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PARACOMP: MSE as a function of L = M = N

Fix P = 12, vary L = M = N.
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32% of full data
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(P=12 processors,
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PARACOMP: MSE as a function of P

Fix L = M = N = 50, vary P.
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w/ 0.1% each

1.2% of the full data
in P=12 processors 
w/ 0.1% each
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PARACOMP: MSE vs AWGN variance σ2

Fix L = M = N = 50, P = 12, vary σ2.
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Missing elements

Recommender systems, NELL, many other datasets: over 90% of the
values are missing!
PARACOMP to the rescue: fortuitous fringe benefit of ‘compression’
(rather: taking linear combinations)!
Let T denote the set of all elements, and Ψ the set of available elements.
Consider one element of the compressed tensor, as it would have been
computed had all elements been available; and as it can be computed
from the available elements (notice normalization - important!):

Yν(l ,m,n) =
1
|T |

∑
(i,j,k)∈T

ul (i)vm(j)wn(k)X(i , j , k)

Ỹν(l ,m,n) =
1

E [|Ψ|]
∑

(i,j,k)∈Ψ

ul (i)vm(j)wn(k)X(i , j , k)

Nikos Sidiropoulos Tensor Decomposition in the Era of Big Data EUSIPCO 2014, Lisbon 40 / 45



Missing elements

Theorem: [Marcos & Sidiropoulos, IEEE ISCCSP 2014] Assume a
Bernoulli i.i.d. miss model, with parameter ρ = Prob[(i , j , k) ∈ Ψ], and let
X(i , j , k) =

∑F
f =1 af (i)bf (j)cf (k), where the elements of af , bf and cf are

all i.i.d. random variables drawn from af (i) ∼ Pa(µa, σa),
bf (j) ∼ Pb(µb, σb), and cf (k) ∼ Pc(µc , σc), with pa := µ2

a + σ2
a ,

pb := µ2
b + σ2

b , pc := µ2
c + σ2

c , and F ′ := (F − 1). Then, for µa, µb, µc all
6= 0,

E [‖Eν‖2
F ]

E [‖Yν‖2
F ]
≤ (1− ρ)

ρ|T |
(1 +

σ2
U

µ2
u

)(1 +
σ2

V
µ2

v
)(1 +

σ2
W
µ2

w
)(

F ′

F
+

papbpc

Fµ2
aµ

2
bµ

2
c

)

Additional results in paper.

Nikos Sidiropoulos Tensor Decomposition in the Era of Big Data EUSIPCO 2014, Lisbon 41 / 45



Missing elements
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Figure : SNR of compressed tensor for different sizes of rank-one X
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Missing elements
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Figure : SNR of recovered loadings for different sizes of rank-one X
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Missing elements

Three-way (emission, excitation, sample) fluorescence spectroscopy
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Figure : Measured and imputed data; recovered latent spectra

Works even with systematically missing data!
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Constrained Tensor Factorization & High-Performance
Computing

Constraints (e.g., non-negativity, sparsity) slow down things, cumbersome
conditional updates, cannot take advantage of HPC infrastructure.
New! A.P. Liavas and N.D. Sidiropoulos, “Parallel Algorithms for
Constrained Tensor Factorization via the Alternating Direction Method of
Multipliers,” IEEE Trans. on Signal Processing, submitted.
Key advantages:

1 Much smaller complexity/iteration: avoids solving constrained optimization
problems, uses simple projections instead.

2 Competitive with state-of-art for ‘small’ data problems (n-way toolbox /
non-negative PARAFAC-ALS), especially for small ranks.

3 Naturally amenable to parallel implementation on HPC (e.g., mesh)
architectures for big tensor decomposition.

4 Can more-or-less easily incorporate many other types of constraints.
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