Tensor Decomposition
 Theory and Algorithms in the Era of Big Data

Nikos Sidiropoulos, UMN

EUSIPCO Inaugural Lecture, Sep. 2, 2014, Lisbon

Web, papers, software, credits

- Nikos Sidiropoulos, UMN http: //www.ece.umn.edu/~nikos/
- Signal and Tensor Analytics Research (STAR) group

```
https://sites.google.com/a/umn.edu/nikosgroup/home
```

- Collaborators
- Rasmus Bro, U. Copenhagen, http://www.models.kvl.dk/users/rasmus/
- Vangelis Papalexakis, CMU http://www.cs.cmu.edu/~epapalex/
- Christos Faloutsos, CMU http://www.cs.cmu.edu/~christos/
- Athanasios Liavas, TUC http://www.telecom.tuc.gr/~liavas/
- George Karypis, UMN http://glaros.dtc.umn.edu/gkhome/index.php
- Anastasios Kyrillidis, EPFL http://lions.epfl.ch/phdstudents/tasos
- Sponsor
- NSF-NIH/BIGDATA: Big Tensor Mining: Theory, Scalable Algorithms and Applications, Nikos Sidiropoulos, George Karypis (UMN), Christos Faloutsos, Tom Mitchell (CMU), NSF IIS-1247489/1247632.

What do these have in common?

- Machine learning - e.g., clustering and co-clustering, social network analysis
- Speech - separating unknown mixtures of speech signals in reverberant environments
- Audio - untangling audio sources in the spectrogram domain
- Communications, signal intelligence - unraveling CDMA mixtures, breaking codes
- Passive localization + radar (angles, range, Doppler, profiles)
- Chemometrics: Chemical signal separation, e.g., fluorescence, 'mathematical chromatography' (90's -)
- Psychometrics: Analysis of individual differences, preferences (70's -)

Matrices, rank decomposition

- A matrix (or two-way array) is a dataset \mathbf{X} indexed by two indices, (i, j)-th entry $\mathbf{X}(i, j)$.
- Simple matrix $\mathbf{S}(i, j)=\mathbf{a}(i) \mathbf{b}(j), \forall i, j$; separable, every row (column) proportional to every other row (column). Can write as $\mathbf{S}=\mathbf{a b}^{T}$.
- $\operatorname{rank}(\mathbf{X}):=$ smallest number of ‘simple’ (separable, rank-one) matrices needed to generate \mathbf{X} - a measure of complexity.

$$
\mathbf{X}(i, j)=\sum_{f=1}^{F} \mathbf{a}_{f}(i) \mathbf{b}_{f}(j) ; \text { or } \mathbf{X}=\sum_{f=1}^{F} \mathbf{a}_{f} \mathbf{b}_{f}^{T}=\mathbf{A} \mathbf{B}^{T} .
$$

- Turns out $\operatorname{rank}(\mathbf{X})=$ maximum number of linearly independent rows (or, columns) in \mathbf{X}.
- Rank decomposition for matrices is not unique (except for matrices of rank = 1), as \forall invertible \mathbf{M} :

$$
\mathbf{X}=\mathbf{A} \mathbf{B}^{T}=(\mathbf{A M})\left(\mathbf{M}^{-T} \mathbf{B}^{T}\right)=(\mathbf{A M})\left(\mathbf{B} \mathbf{M}^{-1}\right)^{T}=\tilde{\mathbf{A}} \tilde{\mathbf{B}}^{T} .
$$

Tensor? What is this?

- CS 'slang' for three-way array: dataset $\underline{\mathbf{X}}$ indexed by three indices, (i, j, k)-th entry $\mathbf{X}(i, j, k)$.
- In plain words: a 'shoebox'!
- For two vectors $\mathbf{a}(I \times 1)$ and $\mathbf{b}(J \times 1)$, $\mathbf{a} \circ \mathbf{b}$ is an $I \times J$ rank-one matrix with (i, j)-th element $\mathbf{a}(i) \mathbf{b}(j)$; i.e., $\mathbf{a} \circ \mathbf{b}=\mathbf{a b}^{T}$.
- For three vectors, $\mathbf{a}(I \times 1), \mathbf{b}(J \times 1), \mathbf{c}(K \times 1), \mathbf{a} \circ \mathbf{b} \circ \mathbf{c}$ is an $I \times J \times K$ rank-one three-way array with (i, j, k)-th element $\mathbf{a}(i) \mathbf{b}(j) \mathbf{c}(k)$.
- The rank of a three-way array $\underline{\mathbf{X}}$ is the smallest number of outer products needed to synthesize $\underline{\mathbf{X}}$.
- Example: NELL / Tom Mitchell @ CMU

Rank decomposition for tensors

- Tensor:

$$
\underline{\mathbf{X}}=\sum_{f=1}^{F} \mathbf{a}_{f} \circ \mathbf{b}_{f} \circ \mathbf{c}_{f}
$$

- Scalar:

$$
\begin{array}{ll}
\underline{\mathbf{X}}(i, j, k)=\sum_{f=1}^{F} a_{i, f} b_{j, f} c_{k, f}, & \forall i \in\{1, \cdots, I\} \\
& \forall j \in\{1, \cdots, J\} \\
& \forall k \in\{1, \cdots, K\}
\end{array}
$$

- Slabs:

$$
\mathbf{X}_{k}=\mathbf{A D}_{k}(\mathbf{C}) \mathbf{B}^{T}, k=1, \cdots, K
$$

- Matrix:

$$
\mathbf{X}^{(K J \times I)}=(\mathbf{B} \odot \mathbf{C}) \mathbf{A}^{T}
$$

- Tall vector:

$$
\mathbf{x}^{(K J I)}:=\operatorname{vec}\left(\mathbf{X}^{(K J \times I)}\right)=(\mathbf{A} \odot(\mathbf{B} \odot \mathbf{C})) \mathbf{1}_{F \times 1}=(\mathbf{A} \odot \mathbf{B} \odot \mathbf{C}) \mathbf{1}_{F \times 1}
$$

Tensors vs. Matrices

- Matrix rank always $\leq \min (I, J)$.
- $\operatorname{rank}(\operatorname{randn}(I, J))=\min (I, J)$ w.p. 1 .
- SVD is rank-revealing.
- SVD provides best rank-R approximation.

Whereas ...

- Tensor rank can be $>\max (I, J, K) ; \leq \min (I J, J K, I K)$ always.
- rank(randn $(2,2,2)) \in\{2,3\}$, both with positive probability.
- Finding tensor rank is NP-hard.
- Computing best rank-1 approximation to a tensor is NP-hard.
- Best rank-R approximation may not even exist.
- True for n-way arrays of any order $n \geq 3$ - matrices are the only exception!

Don't be turned off - there are many good things about tensors!

Tensor Singular Value Decomposition?

- For matrices, SVD is instrumental: rank-revealing, Eckart-Young
- So is there a tensor equivalent to the matrix SVD?
- Yes, ... and no! In fact there is no single tensor SVD.
- Two basic decompositions:
- CANonical DECOMPosition (CANDECOMP), also known as PARAllel FACtor (PARAFAC) analysis, or CANDECOMP-PARAFAC (CP) for short: non-orthogonal, unique under certain conditions.
- Tucker3, orthogonal without loss of generality, non-unique except for very special cases.
- Both are outer product decompositions, but with very different structural properties.
- Rule of thumb: use Tucker3 for subspace estimation and tensor approximation, e.g., compression applications; use PARAFAC for latent parameter estimation - recovering the 'hidden' rank-one factors.

Tucker3

- $I \times J \times K$ three-way array $\underline{\mathbf{X}}$
- A: $I \times L, \mathbf{B}: J \times M, \mathbf{C}: K \times N$ mode loading matrices
- G: $L \times M \times N$ Tucker3 core

Tucker3, continued

- Consider an $I \times J \times K$ three-way array $\underline{\mathbf{X}}$ comprising K matrix slabs $\left\{\mathbf{X}_{k}\right\}_{k=1}^{K}$, arranged into matrix $\mathbf{X}:=\left[\operatorname{vec}\left(\mathbf{X}_{1}\right), \cdots, \operatorname{vec}\left(\mathbf{X}_{K}\right)\right]$.
- The Tucker3 model can be written as

$$
\mathbf{X} \approx(\mathbf{B} \otimes \mathbf{A}) \mathbf{G} \mathbf{C}^{T}
$$

where \mathbf{G} is the Tucker3 core tensor $\underline{\mathbf{G}}$ recast in matrix form. The non-zero elements of the core tensor determine the interactions between columns of $\mathbf{A}, \mathbf{B}, \mathbf{C}$.

- The associated model-fitting problem is

$$
\min _{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{G}}\left\|\mathbf{X}-(\mathbf{B} \otimes \mathbf{A}) \mathbf{G} \mathbf{C}^{T}\right\|_{F}^{2},
$$

which is usually solved using an alternating least squares procedure.

- $\operatorname{vec}(\mathbf{X}) \approx(\mathbf{C} \otimes \mathbf{B} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{G})$.
- Highly non-unique - e.g., rotate C, counter-rotate G using unitary matrix.
- Subspaces can be recovered; Tucker3 is good for tensor approximation, not latent parameter estimation.

PARAFAC

- Low-rank tensor decomposition / approximation

$$
\underline{\mathbf{X}} \approx \sum_{f=1}^{F} \mathbf{a}_{f} \circ \mathbf{b}_{f} \circ \mathbf{c}_{f}
$$

- PARAFAC [Harshman '70-'72], CANDECOMP [Carroll \& Chang, '70], now CP; also cf. [Hitchcock, '27]
- Combining slabs and using Khatri-Rao product,

$$
\mathbf{X} \approx(\mathbf{B} \odot \mathbf{A}) \mathbf{C}^{T} \Longleftrightarrow \operatorname{vec}(\mathbf{X}) \approx(\mathbf{C} \odot \mathbf{B} \odot \mathbf{A}) \mathbf{1}
$$

Uniqueness

- Under certain conditions, PARAFAC is essentially unique, i.e., (A, B, C) can be identified from \mathbf{X} up to permutation and scaling of columns there's no rotational freedom; cf. [Kruskal '77, Sidiropoulos et al '00-'07, de Lathauwer '04-, Stegeman '06-, Chiantini, Ottaviani '11-, ...]
- $I \times J \times K$ tensor $\underline{\mathbf{X}}$ of rank F, vectorized as $I J K \times 1$ vector $\mathbf{x}=(\mathbf{A} \odot \mathbf{B} \odot \mathbf{C}) \mathbf{1}$, for some $\mathbf{A}(I \times F)$, $\mathbf{B}(J \times F)$, and $\mathbf{C}(K \times F)$ - a PARAFAC model of size $I \times J \times K$ and order F parameterized by (A, B, C).
- The Kruskal-rank of \mathbf{A}, denoted $k_{\mathbf{A}}$, is the maximum k such that any k columns of \mathbf{A} are linearly independent $\left(k_{\mathbf{A}} \leq r_{\mathbf{A}}:=\operatorname{rank}(\mathbf{A})\right)$.
$\operatorname{spark}(\mathbf{A})=k_{\mathbf{A}}+1$
- Given $\underline{\mathbf{X}}(\Leftrightarrow \mathbf{x})$, if $k_{\mathbf{A}}+k_{\mathbf{B}}+k_{\mathbf{C}} \geq 2 F+2$, then $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ are unique up to a common column permutation and scaling/counter-scaling (e.g., multiply first column of \mathbf{A} by 5 , divide first column of \mathbf{B} by 5 , outer product stays the same) - cf. [Kruskal, 1977]
- N-way case: $\sum_{n=1}^{N} k_{\mathbf{A}^{(n)}} \geq 2 F+(N-1)$ [Sidiropoulos \& Bro, 2000]

Alternating Least Squares (ALS)

- Based on matrix view:

$$
\mathbf{X}^{(K J \times I)}=(\mathbf{B} \odot \mathbf{C}) \mathbf{A}^{T}
$$

- Multilinear LS problem:

$$
\min _{\mathbf{A}, \mathbf{B}, \mathbf{C}}\left\|\mathbf{X}^{(K J \times I)}-(\mathbf{B} \odot \mathbf{C}) \mathbf{A}^{T}\right\|_{F}^{2}
$$

- NP-hard - even for a single component, i.e., vector a, b, c. See [Hillar and Lim, "Most tensor problems are NP-hard," 2013]
- But ... given interim estimates of B, C, can easily solve for conditional LS update of \mathbf{A} :

$$
\mathbf{A}_{C L S}=\left((\mathbf{B} \odot \mathbf{C})^{\dagger} \mathbf{X}^{(K J \times I)}\right)^{T}
$$

- Similarly for the CLS updates of B, C (symmetry); alternate until cost function converges (monotonically).

Other algorithms?

- Many! - first-order (gradient-based), second-order (Hessian-based) Gauss-Newton, line search, Levenberg-Marquardt, weighted least squares, majorization
- Algebraic initialization (matters)
- See Tomasi and Bro, 2006, for a good overview
- Second-order advantage when close to optimum, but can (and do) diverge
- First-order often prone to local minima, slow to converge
- Stochastic gradient descent (CS community) - simple, parallel, but very slow
- Difficult to incorporate additional constraints like sparsity, non-negativity, unimodality, etc.

ALS

- No parameters to tune!
- Easy to program, uses standard linear LS
- Monotone convergence of cost function
- Does not require any conditions beyond model identifiability
- Easy to incorporate additional constraints, due to multilinearity, e.g., replace linear LS with linear NNLS for NN
- Even non-convex (e.g., FA) constraints can be handled with column-wise updates (optimal scaling lemma)
- Cons: sequential algorithm, convergence can be slow
- Still workhorse after all these years

Outliers, sparse residuals

- Instead of LS,

$$
\min \left\|\mathbf{X}^{(K J \times I)}-(\mathbf{B} \odot \mathbf{C}) \mathbf{A}^{T}\right\|_{1}
$$

- Conditional update: LP
- Almost as good: coordinate-wise, using weighted median filtering (very cheap!) [Vorobyov, Rong, Sidiropoulos, Gershman, 2005]
- PARAFAC CRLB: [Liu \& Sidiropoulos, 2001] (Gaussian); [Vorobyov, Rong, Sidiropoulos, Gershman, 2005] (Laplacian, etc differ only in pdf-dependent scale factor).
- Alternating optimization algorithms approach the CRLB when the problem is well-determined (meaning: not barely identifiable).

Big (tensor) data

- Tensors can easily become really big! - size exponential in the number of dimensions ('ways', or 'modes').
- Datasets with millions of items per mode - e.g., NELL, social networks, marketing, Google.
- Cannot load in main memory; may reside in cloud storage.
- Sometimes very sparse - can store and process as (i,j,k,value) list, nonzero column indices for each row, runlength coding, etc.
- (Sparse) Tensor Toolbox for Matlab [Kolda et al].
- Avoids explicitly computing dense intermediate results.

Tensor partitioning?

- Parallel algorithms for matrix algebra use data partitioning
- Can we reuse some of these ideas?

- Low-hanging fruit?
- First considered in [Phan, Cichocki, Neurocomputing, 2011] identifiability issues, matching permutations and scalings?
- Later revisited in [Almeida, Kibangou, CAMSAP 2013, ICASSP 2014] no loss of optimality (as if working w/ full data), but inter-process communication overhead, additional identifiability conditions.

Tensor compression

- Commonly used compression method for 'moderate'-size tensors: fit orthogonal Tucker3 model, regress data onto fitted mode-bases.

- Implemented in n-way toolbox (Rasmus Bro) http: / /www.mathworks. com/matlabcentral/fileexchange/1088-the-n-way-toolbox
- Lossless if exact mode bases used [CANDELINC]; but Tucker3 fitting is itself cumbersome for big tensors (big matrix SVDs), cannot compress below mode ranks without introducing errors

Tensor compression

- Consider compressing $\mathbf{x}=\operatorname{vec}(\underline{\mathbf{X}})$ into $\mathbf{y}=\mathbf{S x}$, where \mathbf{S} is $d \times I J K$, $d \ll I J K$.
- In particular, consider a specially structured compression matrix $\mathbf{S}=\mathbf{U}^{T} \otimes \mathbf{V}^{T} \otimes \mathbf{W}^{T}$
- Corresponds to multiplying (every slab of) $\underline{\mathbf{X}}$ from the I-mode with \mathbf{U}^{T}, from the J-mode with \mathbf{V}^{T}, and from the K-mode with \mathbf{W}^{T}, where \mathbf{U} is $I \times L$, \mathbf{V} is $J \times M$, and \mathbf{W} is $K \times N$, with $L \leq I, M \leq J, N \leq K$ and $L M N<I J K$

Key

- Due to a property of the Kronecker product

$$
\begin{gathered}
\left(\mathbf{U}^{\top} \otimes \mathbf{V}^{\top} \otimes \mathbf{W}^{\top}\right)(\mathbf{A} \odot \mathbf{B} \odot \mathbf{C})= \\
\left(\left(\mathbf{U}^{\top} \mathbf{A}\right) \odot\left(\mathbf{V}^{\top} \mathbf{B}\right) \odot\left(\mathbf{W}^{\top} \mathbf{C}\right)\right),
\end{gathered}
$$

from which it follows that

$$
\mathbf{y}=\left(\left(\mathbf{U}^{T} \mathbf{A}\right) \odot\left(\mathbf{V}^{\top} \mathbf{B}\right) \odot\left(\mathbf{W}^{T} \mathbf{C}\right)\right) \mathbf{1}=(\tilde{\mathbf{A}} \odot \tilde{\mathbf{B}} \odot \tilde{\mathbf{C}}) \mathbf{1}
$$

i.e., the compressed data follow a PARAFAC model of size $L \times M \times N$ and order F parameterized by ($\tilde{\mathbf{A}}, \tilde{\mathbf{B}}, \tilde{\mathbf{C}})$, with $\tilde{\mathbf{A}}:=\mathbf{U}^{\top} \mathbf{A}, \tilde{\mathbf{B}}:=\mathbf{V}^{\top} \mathbf{B}$,
$\tilde{\mathbf{C}}:=\mathbf{W}^{\top} \mathbf{C}$.

Random multi-way compression can be better!

- Sidiropoulos \& Kyrillidis, IEEE SPL Oct. 2012
- Assume that the columns of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are sparse, and let $n_{a}\left(n_{b}, n_{c}\right)$ be an upper bound on the number of nonzero elements per column of \mathbf{A} (respectively B, C).
- Let the mode-compression matrices $\mathbf{U}(I \times L, L \leq I)$, $\mathbf{V}(J \times M, M \leq J)$, and $\mathbf{W}(K \times N, N \leq K)$ be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in $\mathbb{R}^{I L}, \mathbb{R}^{J M}$, and $\mathbb{R}^{K N}$, respectively.
- If

$$
\begin{gathered}
\min \left(L, k_{\mathbf{A}}\right)+\min \left(M, k_{\mathbf{B}}\right)+\min \left(N, k_{\mathbf{C}}\right) \geq 2 F+2, \quad \text { and } \\
L \geq 2 n_{a}, \quad M \geq 2 n_{b}, \quad N \geq 2 n_{c},
\end{gathered}
$$

then the original factor loadings $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are almost surely identifiable from the compressed data.

- Never have to see big data; significant computational complexity reduction as well.

Further compression - down to $O(\sqrt{F})$ in $2 / 3$ modes

- Sidiropoulos \& Kyrillidis, IEEE SPL Oct. 2012
- Assume that the columns of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are sparse, and let $n_{a}\left(n_{b}, n_{c}\right)$ be an upper bound on the number of nonzero elements per column of \mathbf{A} (respectively B, C).
- Let the mode-compression matrices $\mathbf{U}(I \times L, L \leq I)$, $\mathbf{V}(J \times M, M \leq J)$, and $\mathbf{W}(K \times N, N \leq K)$ be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in $\mathbb{R}^{L L}, \mathbb{R}^{J M}$, and $\mathbb{R}^{K N}$, respectively.
- If

$$
\begin{gathered}
r_{\mathbf{A}}=r_{\mathbf{B}}=r_{\mathbf{C}}=F \\
L(L-1) M(M-1) \geq 2 F(F-1), N \geq F, \quad \text { and } \\
L \geq 2 n_{a}, \quad M \geq 2 n_{b}, \quad N \geq 2 n_{c},
\end{gathered}
$$

then the original factor loadings $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are almost surely identifiable from the compressed data up to a common column permutation and scaling.

Latest on PARAFAC uniqueness

- Luca Chiantini and Giorgio Ottaviani, On Generic Identifiability of 3-Tensors of Small Rank, SIAM. J. Matrix Anal. \& Appl., 33(3), 1018-1037:
- Consider an $I \times J \times K$ tensor $\underline{\mathbf{X}}$ of rank F, and order the dimensions so that $I \leq J \leq K$
- Let i be maximal such that $2^{i} \leq I$, and likewise j maximal such that $2^{i} \leq J$
- If $F \leq 2^{i+j-2}$, then $\underline{\mathbf{X}}$ has a unique decomposition almost surely
- For I, J powers of 2 , the condition simplifies to $F \leq \frac{I J}{4}$
- More generally, condition implies:
- if $F \leq \frac{(1+1)(\mathrm{J}+1)}{16}$, then $\underline{\mathbf{X}}$ has a unique decomposition almost surely

Even further compression

- Assume that the columns of A, B, C are sparse, and let $n_{a}\left(n_{b}, n_{c}\right)$ be an upper bound on the number of nonzero elements per column of \mathbf{A} (respectively B, C).
- Let the mode-compression matrices $\mathbf{U}(I \times L, L \leq I)$, $\mathbf{V}(J \times M, M \leq J)$, and $\mathbf{W}(K \times N, N \leq K)$ be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in $\mathbb{R}^{L L}, \mathbb{R}^{J M}$, and $\mathbb{R}^{K N}$, respectively.
- Assume $L \leq M \leq N$, and L, M are powers of 2, for simplicity
- If

$$
\begin{gathered}
r_{\mathrm{A}}=r_{\mathrm{B}}=r_{\mathrm{C}}=F \\
L M \geq 4 F, \quad N \geq M \geq L, \quad \text { and } \\
L \geq 2 n_{a}, \quad M \geq 2 n_{b}, \quad N \geq 2 n_{c},
\end{gathered}
$$

then the original factor loadings $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are almost surely identifiable from the compressed data up to a common column permutation and scaling.

- Allows compression down to order of \sqrt{F} in all three modes

What if $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are not sparse?

- If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are sparse with respect to known bases, i.e., $\mathbf{A}=\mathbf{R A} \mathbf{A}, \mathbf{B}=\mathbf{S B}$, and $\mathbf{C}=\mathbf{T C}$, with $\mathbf{R}, \mathbf{S}, \mathbf{T}$ the respective sparsifying bases, and $\check{\mathbf{A}}, \check{\mathbf{B}}, \mathbf{C}$ sparse
- Then the previous results carry over under appropriate conditions, e.g., when $\mathbf{R}, \mathbf{S}, \mathbf{T}$ are non-singular.
- OK, but what if such bases cannot be found?

PARACOMP: PArallel RAndomly COMPressed Cubes

PARACOMP

- Assume $\tilde{\mathbf{A}}_{p}, \tilde{\mathbf{B}}_{p}, \tilde{\mathbf{C}}_{p}$ identifiable from $\underline{\mathbf{Y}}_{p}$ (up to perm \& scaling of cols)
- Upon factoring $\underline{\mathbf{Y}}_{p}$ into F rank-one components, we obtain

$$
\begin{equation*}
\tilde{\mathbf{A}}_{p}=\mathbf{U}_{p}^{T} \mathbf{A} \boldsymbol{\Pi}_{p} \boldsymbol{\Lambda}_{p} \tag{1}
\end{equation*}
$$

- Assume first 2 columns of each \mathbf{U}_{p} are common, let $\overline{\mathbf{U}}$ denote this common part, and $\overline{\mathbf{A}}_{p}:=$ first two rows of $\tilde{\mathbf{A}}_{p}$. Then

$$
\overline{\mathbf{A}}_{p}=\overline{\mathbf{U}}^{T} \mathbf{A} \boldsymbol{\Pi}_{p} \boldsymbol{\Lambda}_{p}
$$

- Dividing each column of $\overline{\mathbf{A}}_{p}$ by the element of maximum modulus in that column, denoting the resulting $2 \times F$ matrix $\hat{\mathbf{A}}_{p}$,

$$
\hat{\mathbf{A}}_{p}=\overline{\mathbf{U}}^{T} \mathbf{A} \boldsymbol{\wedge} \boldsymbol{\Pi}_{p} .
$$

- Λ does not affect the ratio of elements in each 2×1 column. If ratios are distinct, then permutations can be matched by sorting the ratios of the two coordinates of each 2×1 column of $\hat{\mathbf{A}}_{p}$.

PARACOMP

- In practice using a few more 'anchor' rows will improve perm-matching.
- When S anchor rows are used, the opt permutation matching cast as

$$
\min _{\boldsymbol{\Pi}}\left\|\hat{\mathbf{A}}_{1}-\hat{\mathbf{A}}_{p} \boldsymbol{\Pi}\right\|_{F}^{2}
$$

- Optimization over set of permutation matrices - hard?

$$
\begin{aligned}
&\left\|\hat{\mathbf{A}}_{1}-\hat{\mathbf{A}}_{\rho} \boldsymbol{\Pi}\right\|_{F}^{2}=\operatorname{Tr}\left(\left(\hat{\mathbf{A}}_{1}-\hat{\mathbf{A}}_{p} \boldsymbol{\Pi}\right)^{T}\left(\hat{\mathbf{A}}_{1}-\hat{\mathbf{A}}_{p} \boldsymbol{\Pi}\right)\right)= \\
&\left\|\hat{\mathbf{A}}_{1}\right\|_{F}^{2}+\left\|\hat{\mathbf{A}}_{p} \boldsymbol{\Pi}\right\|_{F}^{2}-2 \operatorname{Tr}\left(\hat{\mathbf{A}}_{1}^{T} \hat{\mathbf{A}}_{p} \boldsymbol{\Pi}\right)= \\
&\left\|\hat{\mathbf{A}}_{1}\right\|_{F}^{2}+\left\|\hat{\mathbf{A}}_{p}\right\|_{F}^{2}-2 \operatorname{Tr}\left(\hat{\mathbf{A}}_{1}^{T} \hat{\mathbf{A}}_{p} \boldsymbol{\Pi}\right) \\
& \Longleftrightarrow \max _{\boldsymbol{\Pi}} \operatorname{Tr}\left(\hat{\mathbf{A}}_{1}^{T} \hat{\mathbf{A}}_{\rho} \boldsymbol{\Pi}\right)
\end{aligned}
$$

- Linear Assignment Problem (LAP), efficient soln via Hungarian Algorithm.

PARACOMP

- After perm-matching, back to (1) and permute columns $\rightarrow \breve{\mathbf{A}}_{p}$ satisfying

$$
\breve{\mathbf{A}}_{p}=\mathbf{U}_{p}^{T} \mathbf{A} \boldsymbol{\Pi} \boldsymbol{\Lambda}_{p} .
$$

- Remains to get rid of $\boldsymbol{\Lambda}_{p}$. For this, we can again resort to the first two common rows, and divide each column of $\breve{\mathbf{A}}_{p}$ with its top element \rightarrow

$$
\check{\mathbf{A}}_{p}=\mathbf{U}_{p}^{T} \mathbf{A} \Pi \mathbf{\Lambda} .
$$

For recovery of \mathbf{A} up to perm-scaling of cols, we then require that

$$
\left[\begin{array}{c}
\check{\mathbf{A}}_{1} \tag{2}\\
\vdots \\
\check{\mathbf{A}}_{P}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{U}_{1}^{T} \\
\vdots \\
\mathbf{U}_{P}^{T}
\end{array}\right] \mathbf{A \Pi \Lambda}
$$

be full column rank.

PARACOMP

- If compression ratios in different modes are similar, makes sense to use longest mode for anchoring; if this is the last mode, then

$$
P \geq \max \left(\frac{I}{L}, \frac{J}{M}, \frac{K-2}{N-2}\right)
$$

- Theorem: Assume that $F \leq I \leq J \leq K$, and $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are full column rank (F). Further assume that $L_{p}=L, M_{p}=M, N_{p}=N, \forall p \in\{1, \cdots, P\}$, $L \leq M \leq N,(L+1)(M+1) \geq 16 F$, random $\left\{\mathbf{U}_{p}\right\}_{p=1}^{P},\left\{\mathbf{V}_{p}\right\}_{p=1}^{P}$, each \mathbf{W}_{p} contains two common anchor columns, otherwise random $\left\{\mathbf{W}_{p}\right\}_{p=1}^{P}$.
- Then $\left(\tilde{\mathbf{A}}_{p}, \tilde{\mathbf{B}}_{p}, \tilde{\mathbf{C}}_{p}\right)$ unique up to column permutation and scaling.
- If, in addition, $P \geq \max \left(\frac{1}{L}, \frac{J}{M}, \frac{K-2}{N-2}\right)$, then (A,B,C) are almost surely identifiable from $\left\{\left(\tilde{\mathbf{A}}_{p}, \tilde{\mathbf{B}}_{p}, \tilde{\mathbf{C}}_{p}\right)\right\}_{p=1}^{P}$ up to a common column permutation and scaling.

PARACOMP - Significance

- Indicative of a family of results that can be derived.
- Theorem shows that fully parallel computation of the big tensor decomposition is possible - first result that guarantees ID of the big tensor decomposition from the small tensor decompositions, without stringent additional constraints.
- Corollary: If $\frac{K-2}{N-2}=\max \left(\frac{1}{L}, \frac{J}{M}, \frac{K-2}{N-2}\right)$, then the memory / storage and computational complexity savings afforded by PARACOMP relative to brute-force computation are of order $\frac{\mathrm{IJ}}{\mathrm{F}}$.
- Note on complexity of solving master join equation: after removing redundant rows, system matrix in (2) will have approximately orthogonal columns for large $I \rightarrow$ left pseudo-inverse \approx its transpose, complexity $I^{2} F$.

Color of compressed noise

- $\underline{\mathbf{Y}}=\underline{\mathbf{X}}+\underline{\mathbf{Z}}$, where $\underline{\mathbf{Z}}$: zero-mean additive white noise.
- $\mathbf{y}=\mathbf{x}+\mathbf{z}$, with $\mathbf{y}:=\operatorname{vec}(\underline{\mathbf{Y}}), \mathbf{x}:=\operatorname{vec}(\underline{\mathbf{X}}), \mathbf{z}:=\operatorname{vec}(\underline{\mathbf{Z}})$.
- Multi-way compression $\rightarrow \underline{\mathbf{Y}}_{c}$

$$
\begin{gathered}
\mathbf{y}_{c}:=\operatorname{vec}\left(\underline{\mathbf{Y}}_{c}\right)=\left(\mathbf{U}^{T} \otimes \mathbf{V}^{T} \otimes \mathbf{W}^{T}\right) \mathbf{y}= \\
\left(\mathbf{U}^{T} \otimes \mathbf{V}^{T} \otimes \mathbf{W}^{T}\right) \mathbf{x}+\left(\mathbf{U}^{T} \otimes \mathbf{V}^{T} \otimes \mathbf{W}^{T}\right) \mathbf{z}
\end{gathered}
$$

- Let $\mathbf{z}_{c}:=\left(\mathbf{U}^{T} \otimes \mathbf{V}^{T} \otimes \mathbf{W}^{T}\right) \mathbf{z}$. Clearly, $E\left[\mathbf{z}_{c}\right]=0$; it can be shown that

$$
E\left[\mathbf{z}_{c} \mathbf{z}_{c}^{T}\right]=\sigma^{2}\left(\left(\mathbf{U}^{\top} \mathbf{U}\right) \otimes\left(\mathbf{V}^{\top} \mathbf{V}\right) \otimes\left(\mathbf{W}^{\top} \mathbf{W}\right)\right)
$$

- \Rightarrow If $\mathbf{U}, \mathbf{V}, \mathbf{W}$ are orthonormal, then noise in the compressed domain is white.

'Universal' LS

- $E\left[\mathbf{z}_{c}\right]=0$, and

$$
E\left[\mathbf{z}_{c} \mathbf{z}_{c}^{T}\right]=\sigma^{2}\left(\left(\mathbf{U}^{\top} \mathbf{U}\right) \otimes\left(\mathbf{V}^{\top} \mathbf{V}\right) \otimes\left(\mathbf{w}^{\top} \mathbf{w}\right)\right)
$$

- For large I and U drawn from a zero-mean unit-variance uncorrelated distribution, $\mathbf{U}^{T} \mathbf{U} \approx \mathbf{I}$ by the law of large numbers.
- Furthermore, even if \mathbf{z} is not Gaussian, \mathbf{z}_{c} will be approximately Gaussian for large IJK, by the Central Limit Theorem.
- Follows that least-squares fitting is approximately optimal in the compressed domain, even if it is not so in the uncompressed domain. Compression thus makes least-squares fitting 'universal'!

Component energy \approx preserved after compression

- Consider randomly compressing a rank-one tensor $\underline{\mathbf{X}}=\mathbf{a} \circ \mathbf{b} \circ \mathbf{c}$, written in vectorized form as $\mathbf{x}=\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c}$.
- The compressed tensor is $\underline{\tilde{\mathbf{X}}}$, in vectorized form

$$
\tilde{\mathbf{x}}=\left(\mathbf{U}^{T} \otimes \mathbf{V}^{T} \otimes \mathbf{W}^{T}\right)(\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c})=\left(\mathbf{U}^{T} \mathbf{a}\right) \otimes\left(\mathbf{V}^{T} \mathbf{b}\right) \otimes\left(\mathbf{W}^{T} \mathbf{c}\right)
$$

- Can be shown that, for moderate L, M, N and beyond, Frobenious norm of compressed rank-one tensor approximately proportional to Frobenious norm of the uncompressed rank-one tensor component of original tensor.
- In other words: compression approximately preserves component energy \Rightarrow order.
- \Rightarrow Low-rank least-squares approximation of the compressed tensor \leftrightarrows low-rank least-squares approximation of the big tensor, approximately.
- \Rightarrow Can match component permutations across replicas by sorting component energies.

PARACOMP: Numerical results

- Nominal setup:
- $I=J=K=500 ; F=5 ; \mathbf{A}, \mathbf{B}, \mathbf{C} \sim \operatorname{randn}(500,5)$;
- $L=M=N=50$ (each replica $=0.1 \%$ of big tensor);
- $P=12$ replicas (overall cloud storage $=1.2 \%$ of big tensor).
- $S=3$ (vs. $S_{\min }=2$) anchor rows.
- \uparrow Satisfy identifiability without much 'slack'.
- + WGN std $\sigma=0.01$.
- COMFAC www. ece. umn.edu/~nikos used for all factorizations, big and small

PARACOMP: MSE as a function of $L=M=N$

- Fix $P=12$, vary $L=M=N$.

PARACOMP: MSE as a function of P

- Fix $L=M=N=50$, vary P.

PARACOMP: MSE vs AWGN variance σ^{2}

- Fix $L=M=N=50, P=12$, vary σ^{2}.

Missing elements

- Recommender systems, NELL, many other datasets: over 90% of the values are missing!
- PARACOMP to the rescue: fortuitous fringe benefit of 'compression' (rather: taking linear combinations)!
- Let \mathcal{T} denote the set of all elements, and Ψ the set of available elements.
- Consider one element of the compressed tensor, as it would have been computed had all elements been available; and as it can be computed from the available elements (notice normalization - important!):

$$
\begin{aligned}
Y_{\nu}(I, m, n) & =\frac{1}{|\mathcal{T}|} \sum_{(i, j, k) \in \mathcal{T}} \mathbf{u}_{/}(i) \mathbf{v}_{m}(j) \mathbf{w}_{n}(k) \underline{\mathbf{X}}(i, j, k) \\
\widetilde{Y}_{\nu}(I, m, n) & =\frac{1}{E[|\Psi|]} \sum_{(i, j, k) \in \Psi} \mathbf{u}_{/}(i) \mathbf{v}_{m}(j) \mathbf{w}_{n}(k) \underline{\mathbf{X}}(i, j, k)
\end{aligned}
$$

Missing elements

- Theorem: [Marcos \& Sidiropoulos, IEEE ISCCSP 2014] Assume a Bernoulli i.i.d. miss model, with parameter $\rho=\operatorname{Prob}[(i, j, k) \in \Psi]$, and let $\underline{\mathbf{X}}(i, j, k)=\sum_{f=1}^{F} \mathbf{a}_{f}(i) \mathbf{b}_{f}(j) \mathbf{c}_{f}(k)$, where the elements of $\mathbf{a}_{f}, \mathbf{b}_{f}$ and \mathbf{c}_{f} are all i.i.d. random variables drawn from $\mathbf{a}_{f}(i) \sim \mathcal{P}_{a}\left(\mu_{a}, \sigma_{a}\right)$, $\mathbf{b}_{f}(j) \sim \mathcal{P}_{b}\left(\mu_{b}, \sigma_{b}\right)$, and $\mathbf{c}_{f}(k) \sim \mathcal{P}_{c}\left(\mu_{c}, \sigma_{c}\right)$, with $p_{a}:=\mu_{a}^{2}+\sigma_{a}^{2}$, $p_{b}:=\mu_{b}^{2}+\sigma_{b}^{2}, p_{c}:=\mu_{c}^{2}+\sigma_{c}^{2}$, and $F^{\prime}:=(F-1)$. Then, for $\mu_{a}, \mu_{b}, \mu_{c}$ all $\neq 0$,

$$
\frac{E\left[\left\|\mathcal{E}_{\nu}\right\|_{F}^{2}\right]}{E\left[\left\|Y_{\nu}\right\|_{F}^{2}\right]} \leq \frac{(1-\rho)}{\rho|\mathcal{T}|}\left(1+\frac{\sigma_{U}^{2}}{\mu_{u}^{2}}\right)\left(1+\frac{\sigma_{V}^{2}}{\mu_{V}^{2}}\right)\left(1+\frac{\sigma_{W}^{2}}{\mu_{W}^{2}}\right)\left(\frac{F^{\prime}}{F}+\frac{p_{a} p_{b} p_{c}}{F \mu_{a}^{2} \mu_{b}^{2} \mu_{c}^{2}}\right)
$$

- Additional results in paper.

Missing elements

Figure : SNR of compressed tensor for different sizes of rank-one $\underline{\mathbf{X}}$

Missing elements

Figure : SNR of recovered loadings for different sizes of rank-one $\underline{\mathbf{X}}$

Missing elements

- Three-way (emission, excitation, sample) fluorescence spectroscopy
data slab

randn-based imputation

Figure : Measured and imputed data; recovered latent spectra

- Works even with systematically missing data!

Constrained Tensor Factorization \& High-Performance Computing

- Constraints (e.g., non-negativity, sparsity) slow down things, cumbersome conditional updates, cannot take advantage of HPC infrastructure.
- New! A.P. Liavas and N.D. Sidiropoulos, "Parallel Algorithms for Constrained Tensor Factorization via the Alternating Direction Method of Multipliers," IEEE Trans. on Signal Processing, submitted.
- Key advantages:
(1) Much smaller complexity/iteration: avoids solving constrained optimization problems, uses simple projections instead.
(2) Competitive with state-of-art for 'small' data problems (n-way toolbox / non-negative PARAFAC-ALS), especially for small ranks.
(3) Naturally amenable to parallel implementation on HPC (e.g., mesh) architectures for big tensor decomposition.
(4) Can more-or-less easily incorporate many other types of constraints.

