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Abstract—In this paper, the problem of blind spatial signa-
ture estimation using the parallel factor (PARAFAC) analysis
model is addressed in application to wireless communications.
A time-varying user power loading in the uplink mode is pro-
posed to make the model identifiable and to enable application
of PARAFAC analysis. Then, identifiability issues are studied in
detail and closed-form expressions for the corresponding modified
Cramér—Rao bound (CRB) are obtained. Furthermore, two blind
spatial signature estimation algorithms are developed. The first
technique is based on the PARAFAC fitting trilinear alternating
least squares (TALS) regression procedure, whereas the second
one makes use of the joint approximate diagonalization algorithm.
These techniques do not require any knowledge of the propagation
channel and/or sensor array manifold and are applicable to a
more general class of scenarios than earlier approaches to blind
spatial signature estimation.

Index Terms—Blind spatial signature estimation, parallel factor
analysis, sensor array processing.

1. INTRODUCTION

HE USE of antenna arrays at base stations has recently

gained much interest due to their ability to combat fading,
increase system capacity and coverage, and mitigate inter-
ference [1]-[5]. In the uplink communication mode, signals
from different users can be separated at the base station an-
tenna array based on the knowledge of their spatial signatures
[5]-[8]. In particular, known spatial signatures can be used
for beamforming to separate each user of interest from the
other (interfering) users. However, user spatial signatures are
usually unknown at the base station and, therefore, have to be
estimated.

Manuscript received July 21, 2003; revised March 25, 2004. The work of
A. B. Gershman was supported by the Wolfgang Paul Award Program of the
Alexander von Humboldt Foundation, Germany; the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada; Communications and Informa-
tion Technology Ontario (CITO); and the Premier’s Research Excellence Award
Program of the Ministry of Energy, Science, and Technology (MEST) of On-
tario. The work of N. D. Sidiropoulos was supported by the Army Research
Laboratory through participation in the ARL Collaborative Technology Alliance
(ARL-CTA) for Communications and Networks under Cooperative Agreement
DADD19-01-2-0011. The associate editor coordinating the review of this man-
uscript and approving it for publication was Dr. Constantinos B. Papadias.

Y.Rong and S. A. Vorobyov are with the Department of Communication Sys-
tems, University of Duisburg-Essen, Duisburg, 47057 Germany.

A. B. Gershman is with the Department of Communication Systems, Univer-
sity of Duisburg-Essen, Duisburg, 47057 Germany, on leave from the Depart-
ment of Electrical and Computer Engineering, McMaster University, Hamilton,
ON, L8S 4K1 Canada.

N. D. Sidiropoulos is with the Department of Electronic and Computer Engi-
neering, Technical University of Crete, Chania 73100, Greece, and also with the
Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN 55455 USA.

Digital Object Identifier 10.1109/TSP.2005.845441

Traditional (nonblind) approaches to spatial signature esti-
mation make use of training sequences that are periodically
transmitted by each user and are known at the base station [6].
However, the use of training sequences reduces the information
transmission rate, and strict coordination of the training epochs
of several users in a multiuser setting requires tight synchroniza-
tion. As a result, blind spatial signature estimation techniques
have attracted significant attention in the literature [8]-[16].

There are several blind approaches to spatial signature es-
timation. The most common one is based on the parametric
modeling of spatial signatures using direction-of-arrival (DOA)
parameters [5], [8], [9]. For example, in [5], the coherently dis-
tributed source model is used to parameterize the spatial signa-
ture. Unfortunately, the source angular spread should be small
for the first-order Taylor series expansion used in [5] to be valid.
This is a limitation for mobile communications applications in
urban environments with low base station antenna mast heights,
where angular spreads up to 25° are typically encountered [17],
[18]. Furthermore, the approach of [5] requires precise array
calibration.

Two other DOA-based blind spatial signature estimation
methods are developed in [8] and [9]. In these papers, the
source spatial signature is modeled as a plane wave distorted
by unknown direction-independent gains and phases. The latter
assumption can be quite restrictive in wireless communica-
tions where spatial signatures may have an arbitrary form,
and therefore, such gains and phases should be modeled as
DOA-dependent quantities. As a result, the techniques of [8]
and [9] are applicable to a particular class of scenarios only.

Another popular approach to blind spatial signature estima-
tion makes use of the cyclostationary nature of communica-
tion signals [10], [11]. This approach does not make use of any
DOA-based model of spatial signatures, but it is applicable only
to users that all have different cyclic frequencies. The latter con-
dition implies that the users must have different carrier frequen-
cies [which is not the case for Space-Division Multiple Access
(SDMA)] and/or baud rates [11]. This can limit practical appli-
cations of the methods of [10] and [11].

One more well-developed approach to this problem employs
higher order statistics (cumulants) to estimate spatial signatures
in a blind way [12]-[16]. Cumulant-based methods are only ap-
plicable to non-Gaussian signals. Moreover, all such algorithms
are restricted by the requirement of a large number of snapshots.
This requirement is caused by a slow convergence of sample es-
timates of higher order cumulants.

The aforementioned restrictions of cumulant-based methods
have been a strong motivation for further attempts to develop

1053-587X/$20.00 © 2005 IEEE



1698

blind spatial signature estimators that are based on second-order
statistics only and do not require any DOA-related or cyclo-
stationarity assumptions. In [15], such a method was proposed
using joint approximate diagonalization of a set of spatial auto-
and cross-covariance matrices. This method requires an exis-
tence of a long-time coherence of the source signals to obtain
enough cross-covariance matrices at multiple lags for the joint
diagonalization process and to guarantee identifiability. In prac-
tical wireless communication systems, the signal time coher-
ence is severely limited, i.e., the correlation time of the received
signals typically does not largely exceed the sampling interval.
For example, communication signals sampled at the symbol
rate are uncorrelated,! and hence, higher lag correlations are all
zero. In such cases, multiple covariance matrices are unavail-
able, and the method of [15] is not applicable. Furthermore, [15]
offers limited identifiability—for example, it requires that the
matrix of spatial signatures be full column rank, and therefore,
the number of sources should be less or equal to the number of
antennas.

In this paper, we develop a new bandwidth-efficient approach
to blind spatial signature estimation using PARAFAC analysis
[20]-[23]. Our approach does not require any restrictive as-
sumptions on the array geometry and the propagation environ-
ment. Time-varying user power loading is exploited to obtain
multiple spatial zero-lag covariance matrices required for the
PARAFAC model.

Blind PARAFAC multisensor reception and spatial sig-
nature estimation have been considered earlier in [21] and
[23]. However, the approach of [21] is applicable to direct
sequence-code division multiple access (DS-CDMA) systems
only, as spreading is explicitly used as the third dimension of the
data array, whereas [23] requires multiple shifted but otherwise
identical subarrays and a DOA parameterization. Below, we
show that the proposed user power loading enables us to give
up the CDMA and multiple-invariance/DOA parameterization
assumptions and extend the blind approach to any type of
SDMA system employing multiple antennas at the receiver.

Blind source separation of nonstationary sources using mul-
tiple covariance matrices has also been considered in [24] but,
again, under limited identifiability conditions, stemming from
the usual ESPRIT-like solution. Our identifiability results are
considerably more general as they do not rely on this limited
viewpoint.

The rest of this paper is organized as follows. The signal
model is introduced in Section II. Section III formulates the
spatial signature estimation problem in terms of three-way anal-
ysis using time-varying user power loading. The identifiability
of this model is studied in Section IV. Two spatial signature es-
timators are presented in Section V: PARAFAC fitting based on
the trilinear alternating least squares (TALS) regression proce-
dure and a joint approximate diagonalization-based estimator. A
modified deterministic CRB for the problem at hand is derived
in Section VI. Simulation results are presented in Section VII.
Conclusions are drawn in Section VIII.

IChannel-coded signals, which include redundancy for error correction, are
in fact interleaved before transmission, with the goal of making the transmitted
signal approximately uncorrelated.
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II. DATA MODEL

Let an array of K sensors receive the signals from M nar-
rowband sources. We assume that the observation interval is
shorter than the coherence time of the channel (i.e., the sce-
nario is time-invariant), and the time dispersion introduced by
the multipath propagation is small in comparison with the re-
ciprocal of the bandwidth of the emitted signals [5]. Under such
assumptions, the K X 1 snapshot vector of antenna array outputs
can be written as [5]

y(n) = As(n) + v(n) (1)

where A = [ay, ..., ay;] € CK*M is the matrix of the user spa-
tial signatures, @, = [a1m,-..,axm|l € CE*!is the spa-
tial signature of the mth user, s(n) = [s1(n),...,sy(n)]T €
CMx1 is the vector of the equivalent baseband user waveforms,

tive spatially and temporally white Gaussian noise, and (-) de-
notes the transpose. Note that in contrast to direction finding
problems, the matrix A is unstructured. Assuming that there is
a block of N snapshots available, the model (1) can be written
as

Y=AS+V )

where Y = [y(1),...,y(N)] € C**¥ is the array data matrix,
S = [8(1),...,8(N)] € CM*N is the user waveform matrix,
and V = [v(1),...,v(N)] € CE*¥ is the sensor noise matrix.
A quasistatic channel is assumed throughout the paper. This as-
sumption means that the spatial signatures are block time-in-
variant (i.e., the elements of A remain constant over a block of
N snapshots).

Assuming that the user signals are uncorrelated with each
other and sensor noise, the array covariance matrix of the re-
ceived signals can be written as

R2E{y(n)y"(n)} = AQA" + oI 3)

where Q 2 E{s(n)s™ (n)} is the diagonal covariance matrix of
the signal waveforms, o2 is the sensor noise variance, I is the
identity matrix, and (-) denotes the Hermitian transpose.

The problem studied in this paper is the estimation of the
matrix A from noisy array observations Y.

III. PARAFAC MODEL

Before proceeding, we need to clarify that by identifiability,
we mean the uniqueness (up to inherently unresolvable source
permutation and scale ambiguities) of all user spatial signatures
given the exact covariance data. Identifiability in this sense is
impossible to achieve with only one known covariance matrix
(3) because the matrix A can be estimated from R only up to
an arbitrary unknown unitary matrix [22]. The approach we will
use to provide a unique user spatial signature estimation is based
on an artificial user power loading and PARAFAC model anal-
ysis. Therefore, next, we explain how this model is related to
our problem.

Let us divide uniformly the whole data block of N snapshots
into P subblocks so that each subblock contains Ny = [N/ P]
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snapshots, where |z denotes the largest integer less than z.
We fix the transmit power of each user within each subblock
while changing it artificially? between different subblocks. It
should be stressed that the proposed artificial time-varying user
power loading does not require precise synchronization among
the users, but the users should roughly know the boundaries of
epochs over which the powers are kept constant (this can be
achieved, for example, using the standard power control feed-
back channel). Therefore, a certain level of user coordination is
required from the transmitter side.> We stress that the proposed
user power loading can be easily implemented by overlaying a
small power variation on top of the usual power control, without
any other modifications to existing hardware or communication
system/network parameters. In addition, as it will be seen in the
sequel, the user powers need not vary much to enable blind iden-
tification. In particular, power variations that will be used are on
the order of 30%. Such power variations will not significantly
affect the bit error rate (BER), which is seriously affected only
when order-of-magnitude power variations are encountered.

If power control is fast enough (in the sense that there are
several power changes per channel coherence dwell), we can ex-
ploititas a sort of user power loading. However, power control is
usually much slower than the channel coherence time, because
its purpose is to combat long-term shadowing. For this reason,
in practice, it may not be possible to rely on the power control
variations, and we need to induce a faster (but much smaller in
magnitude) power variation on top of power control. This extra
power variation need not “follow the channel”, i.e., it can be
pseudo-random, and hence, the channel need not be measured
any faster than required for regular power control.

Using the proposed power loading, the received snapshots
within any pth subblock correspond to the following covariance
matrix:

R(p) = AQ(p)A" + o°I )

where Q(p) is the diagonal covariance matrix of the user wave-
forms in the pth subblock. Using all P subblocks, we will have
P different covariance matrices {R(1),...,R(P)}. Note that
these matrices differ from each other only because the signal
waveform covariance matrices Q(p) differ from one subblock
to another.

In practice, the noise power can be estimated and then
subtracted from the covariance matrix (4). Let us stack the
P matrices R(p) — 021, p = 1,..., P together to form a
three-way array R, which is natural to call the covariance
array. The (i, 1, p)th element of such an array can be written as

M
A
Titp = Rty = D @imVm(p)af Q)
m=1

2Note that the effect of time-varying user powers has been exploited in [24],
where an ESPRIT-type algorithm has been proposed for blind source separa-
tion of nonstationary sources. Similar ideas have been used in [15] and [25].
However, the authors of [15], [24], and [25] assume that the source powers vary
because of signal nonstationarity rather than artificial power loading.

3As it will be seen from our simulations, the methods proposed in the present
paper will work well, even in the case when there is no user coordination (i.e.,
in the unsynchronized user case).
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where vy, (p) E [Q(P)]m,m is the power of the mth user in the
pth subblock, and (-)* denotes the complex conjugate. Defining
the matrix P € RPXM a5

vi(1) vy (1)
P2 | : ©)
121 (P) Upng (P)
we can write the following relationship between Q(p) and P:
Q(p) = Dp{P} o

forallp = 1,...,P.In (7), D,{-} is the operator that makes
a diagonal matrix by selecting the pth row and putting it on the
main diagonal while putting zeros elsewhere.

Equation (5) implies that 7; ; ,, is a sum of rank-1 triple prod-
ucts. If M is sufficiently small,# (5) represents a low-rank de-
composition of R. Therefore, the problem of spatial signature
estimation can be reformulated as the problem of low-rank de-
composition of the three-way covariance array R.

IV. PARAFAC MODEL IDENTIFIABILITY

In this section, we study identifiability of the PARAFAC
model-based spatial signature estimation. Toward this end, we
discuss conditions under which the trilinear decomposition
of R is unique. Identifiability conditions on the number of
subblocks and the number of array sensors are derived.

We start with the definition of the Kruskal rank of a matrix
[20].

Definition: The Kruskal rank (or k-rank) of a matrix C' is k¢
if and only if every ke columns of C are linearly independent
and either C has k¢ columns or C contains a set of kg + 1
linearly dependent columns. Note that k-rank is always less than
or equal to the conventional matrix rank. It can be easily checked
that if C' is full column rank, then it is also full &k rank.

Using (7) and assuming that the noise term is subtracted from
the matrix R(p), we can rewrite (4) as

R(p) = AD,(P)A" ®)
forallp = 1,..., P. Let us introduce the matrix
[ AD,(P)A"
AD,(P)A"

P2

R,

| ADp(P)A"
[ ADy(P)
AD,(P)

| AD(P)
=(PoA)A" )

where © is the Khatri-Rao (column-wise Kronecker) matrix
product [23].

To establish identifiability, we have to obtain under which
conditions the decomposition (9) of the matrix R, via matrices
P and A is unique (up to the scaling and permutation ambi-
guities). In [20], the uniqueness of trilinear decomposition for

4Exact conditions for M are given in the next section.
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the case of real-valued arrays has been established. These re-
sults have been later extended to the complex-valued matrix case
[21]. In the context of our present application, which involves a
conjugate-symmetric PARAFAC model, the results of [20] and
[21] specialize to the following Theorem (see also [28] for a dis-
cussion of the corresponding real-symmetric model).

Theorem 1: Consider the set of matrices (8). If for M > 1

ka+kp+ka =2ka+kp>2M+2 (10)

then A and P are unique up to inherently unresolvable permu-
taiiog and scaling of columns, i.e., if there exists any other pair
{A, P} that satisfies (10), then this pair is related to the pair
{A, P} via

A= AIIA,, P = PIA, (11)
where II is a permutation matrix, and A; and A, are diagonal
scaling matrices satisfying

AATA, = 1. (12)

For M = 1, A and P are always unique, irrespective of (10). m

Note that the scaling ambiguity can be easily avoided by
taking one of the array sensors as a reference and normalizing
user spatial signatures with respect to it. The permutation
ambiguity is unremovable, but it is usually immaterial because
typically, the ordering of the estimated spatial signatures is
unimportant.

It is worth noting that condition (10) is sufficient for identi-
fiability and is necessary only if M = 2 or M = 3 but is not
necessary if M > 4 [27]. Furthermore, for M > 1, the condi-
tion kp > 2 becomes necessary [26]. In terms of the number of
subblocks, the latter condition requires that

P>2. (13)

The practical conclusion is that in the multiuser case, not
less than two covariance matrices must be collected to uniquely
identify A, which means that the users have to change their
powers at least once during the transmission. Similarly, it is nec-
essary that K > 1.

The following result gives sufficient conditions for the
number of sensors to guarantee almost sure identifiability.

Theorem 2: Suppose the following.

o The elements of A are drawn from distribution
P (CEM) which is assumed continuous with respect to
the Lebesgue measure in CK

* The elements of P are drawn from distribution P (R),
which is assumed continuous with respect to the Lebesgue
measure in RFM

Then, we have the following.
e Forl < M < P, the value of

M +2

K> (14)

is sufficient for almost sure identifiability.

SThe definition of almost sure identifiability in the context discussed is given
in [29].
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e For M > P and P > 2, the value of

2M+2-P

K > 15)

is sufficient for almost sure identifiability.

Proof: The assumptions of Theorem 2 mean that the fol-
lowing equalities hold almost surely [29]:

ka =rank{A} = min(K, M) (16)
kp =rank{P} = min(P, M). (17

Substituting (16) and (17) into (10), we have
2min(K, M) + min(P, M) > 2M + 2. (18)

The following cases should be considered:

1) K > M. In this case, k4 = M. Furthermore, as P > 2,
we have that kp > 2. Therefore, (18) is always satisfied.

2) K < M; M < P.Inthiscase, kg = K, kp = M, and
(18) becomes

2K + M > 2M + 2. (19)

This inequality is equivalent to (14).
3) K < M; M > P.Inthis case, kg = K, kp = P, and
(18) can be written as
2K+ P >2M + 2. (20)

This inequality is equivalent to (15).

V. ESTIMATORS

We will now develop two techniques for blind spatial signa-
ture estimation based on the PARAFAC model of Section III.

In practice, the exact covariance matrices R(p) are unavail-
able but can be estimated from the array snapshots y(n), n =

1,..., N. The sample covariance matrices are given by
) 1 pNs

n=(p—1)Ns+1

These matrices can be used to form a sample three-way covari-
ance array denoted as R.

If K > M, then the noise power o2 can be estimated as the
average of the smallest K — M eigenvalues of the matrix

P N
R= Y Rp) =Yy () @)
p=1 n=1

and the estimated noise component 521 can be subtracted from
subblocks of the sample covariance array R. In case K < M,
noise power can be estimated on system start-up before any
transmission begins.

To formulz:}te our techniques, we will need “slices” of the ma-
trices R and R along different dimensions [21]. Toward this end,
let us define the “slice” matrices as

R((;) é [ri,:,:] (23)
RV 20, ] 24)
RP 2(p . ] (25)
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where ¢, = 1,...,K;p =

Similarly
R 2. 26)
~ (D) .
o =[] 27)
-~ (p) .
R 2[i..,) (28)

wherei, [l =1,...,K;p=1,...,P;and 7;, 2 [E]”p

. . A
For the sake of convenience, let us introduce B = A and
rewrite (9) as

RV
Rr®
R,=| " |=(P0oAB. (29)
R
In the same way, let us define the matrices
A R(2)
R,=| " |=B"oPA" (30)
LR
A Rr®
R.2| ° |=(AcB")P" (31)
LR
and their sample estimates
R((z,l) Rl(,l) Ril)
Ra é R((f) . Rb é R[()?) RC é Ri?)
e ) e
(32)

Note that for the sake of algorithm simplicity, we will not exploit
the fact that our PARAFAC model is symmetric. For example,
the algorithm that follows in the next subsection treats A and
B as independent variables; symmetry will only be exploited in
the calculation of the final estimate of A.

A. TALS Estimator

The basic idea behind the TALS procedure for PARAFAC fit-
ting is to update each time a subset of parameters using LS re-
gression while keeping the previously obtained estimates of the
rest of parameters fixed. This alternating projections-type pro-
cedure is iterated for all subsets of parameters until convergence
is achieved [19], [21], [23], [30].

In application to our problem, the PARAFAC TALS proce-
dure can be formulated as follows.

» Step 1: Initialize P and A.
» Step 2: Find the estimate of B by solving the following
LS problem:

A

B = argngn HRa - (Po A)BHi (33)
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whose analytic solution is given by
B=(Po AR, (34)

where (-) denotes the matrix pseudoinverse. Set B = B.
+ Step 3: Find the estimate of A by solving the following

LS problem:
p 7 T ||
A= argngn ‘Rb — (B " oP)A HF (35)
whose analytic solution is given by
~ ~T T
A=R, ((BT © P)T) . (36)
Set A = A.
* Step 4: Find the estimate of P by solving the following
LS problem:
I I T\ pT||?
P:argngnHRc—(AQB )P HF (37)
whose analytic solution is given by
N AT T
P=R. ((A © BT)T) . (38)

Set P = P.

* Step 5: Repeat steps 2—4 until convergence is achieved,
and then compute the final estimate of A as A = (A +
B™)/2.

The complexity of the TALS algorithm is O(M?® + K?M P)
per iteration. It is worth noting that when M is small relative
to K and P, only a few iterations of this algorithm are usually
required to achieve convergence [23].

B. Joint Diagonalization-Based Estimator

Using the idea of [15], we can obtain the estimate of
A by means of a joint diagonalizer of the matrices R(p),
p=1,...,P.

The estimator can be formulated as the following sequence
of steps:

* Step 1: Calculate the eigendecomposition of R, and find
the estimate 62 of the noise power as the average of the
K — M smallest eigenvalues of this matrix.

¢ Step 2: Compute the whitening matrix as

1 N _1 H
W = [(Al 62 Eg . (s — 82) ng} (39)

where {\,;, M_ are the largest (signal-subspace) eigen-
values of R, and {g,,,}}_, are the corresponding eigen-
vectors.

¢ Step 3: Compute the prewhitened sample covariance ma-
trices as

Cp) =WRpW", p=1,..P (40)

* Step 4: Obtain a unitary matrix U as a joint diagonalizer
of the set of matrices {C(p)}]_;.
e Step 5: Estimate the matrix A as

A=w'U. 41)
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Several efficient joint diagonalization algorithms can be used
in Step 4; see [31] and [32]. For example, the complexity of the
ac-dc algorithm of [32] is O(K2M P + K?) per iteration.

It should be pointed out that the joint diagonalization-based
estimator requires stronger conditions in terms of the number of
sensors as compared to the TALS estimator. Indeed, K > M is
required for the joint diagonalization algorithms [15] and [32],
whereas this constraint is not needed for TALS.

Both the TALS and joint diagonalization algorithms can be
initialized randomly [23]. Alternatively, if power control is fast
enough (in the sense that there are several power changes per
channel coherence dwell), we can use the fact that the power
changes are known at the base station to initialize the matrix P
in TALS. However, as mentioned in Section III, power control
algorithms are usually much slower than the channel coherence
time because their purpose is to combat long-term shadowing.
For this reason, such an initialization of P may not be possible.

VI. MODIFIED CRAMER—RAO BOUND

In this section, we present a modified deterministic CRB on
estimating the user spatial signatures.® The model (1) for the nth
sample of the pth subblock can be rewritten as

y(p,n) = AQ? (p)a(n) +v(n), n=(p— 1N, +1...pn,

(42)
where
. A . .
3(n) = [81(n),..., sM(n)]T
1
=Q =(p)s(n)
is the vector of normalized signal waveforms, and the normal-
ization is done so that all waveforms have unit powers.

(43)
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our simulation results in the next section, the performance of
the proposed estimators is rather close to this optimistic CRB,
and therefore, this bound is relevant.

In addition, note that the parameter o is decoupled with other
parameters in the Fisher information matrix (FIM) [34]. There-
fore, without loss of generality, o2 can be excluded from the
vector of unknown parameters.

A delicate point regarding the CRB for model (42) is the in-
herent permutation and scaling ambiguities. To get around the
problem of scaling ambiguity, we assume that each spatial sig-
nature vector is normalized so that its first element is equal
to one (after such a normalization the first row of A becomes
[1,...,1]). To avoid the permutation ambiguity, we assume that
the first row of P is known and consists of distinct elements.
Then, the vector of the parameters of interest can be written as

a= [ag, e ,a%r(]T € RAE-DMx1 (46)
where
. . T .
Q. é [Re{ak}T, Im{ak}T] y aj é [akyl, ey akyj\/j]T.
(47)
The vector of nuisance parameters can be expressed as
¢=1[p(2),..,p(P)]" € RV (48)

where p(p) is the pth row of the matrix P.
Using (46) and (48), the vector of unknown parameters can
be written as

0 _ [aT7CT]T c R(Z(K—l)]\[—l—(P—l)]\J)Xl. (49)

Theorem 3: The (2(K—1)M +(P—1)M) x (2(K—1)M +
(P — 1) M) Fisher Information Matrix (FIM) is given by (50),
shown at the bottom of the page, where

Hence, the observations in the pth subblock satisfy the fol- Jovar, = =Japan
lowing model: 2 Re{TY} —Im{Y7T) 1)
y(p,n) ~ CN (u(p.n), o) (44) o2 [Im{Y"T} Re{YYT}
2 H
where | o) = ~5Re { (G(p)" G(p)} (52)
ulp,n) = AQ¥ (p)s(n), n = (p—1)No+1,...,pN.. (45) 2 N
| Jasw = =5 (In-1© F(p)) H(p) (53)
The unknown parameters of the model (42) are all entries of o
A, diagonal elements of Q(p) (p = 1,..., P), and the noise f1(1) Fau(1)
power 2. Note that to make the model (42) identifiable, we T = : e CPNXxM  (54)
assume that the signal waveforms are known. Therefore, we £1(P) Fu(P)
study a modified (optimistic) CRB. However, as follows from - by 1(p) ha at(p)
1,1 1,M
The deterministic CRB is a relevant bound in cases when the signal wave- G(p) = : e CENsxM (55)
forms are unknown deterministic or random with unknown statistics; see, e.g., . .
[33] and [34]. | hx,1(p) hivi(p)
- Jaz’az 0 -
: Jap2) Japp)
0 Jay.
FIM = e (50)
Jap2) J52)52) 0
o
- Jo5(P) 0 J5P) (p)
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Fig. 1. RMSEs versus NV for K = 10 and SNR = 10 dB. First example,
synchronized users.

Re {FH p } —Im {FH(p)} 6
Im{F'H } Re{FH( )}

F(p) = [f1(p), ..., fau(p)] € CVXM (57)
Hip) = [H, (). ..,ﬁ§<p>] (58)
7oy — [Re{Hi(p)}

Hk(p) = _Im {Hk(p)}:| 59)
Hy(p) = [hia(p), - b (p)] € CH - (60)
frn(P) = [V m(P)$m (p = 1)Ns + 1),
um(p)ém(pNs)}T e Cxt (61)
B () = | G (2= DNs + 1)
k, (p) 9 I/m(p)
) a’kamgm(pJVS) ! CN-x1 (62)
2 Vm(p)

and ® denotes the Kronecker product.
The (K — 1)M x (K — 1)M spatial signature-related block
of the CRB matrix is given in closed form as

P
CRB, o = [Ja,a - % 22 (IK—I ® F(p)) H(p)
=

-1 . g ~ Hl ™
[refe" )] B0 (10 F0)" | o
where the upper-left block of (50) can be expressed as
Jas.an 0
Ja,a = .
0 JO!K,OIK
_2; Re{Y7Y} —mm{Y?™1} 64)
T o2 BN mfrfr)  Re{YIY) |

Proof: See the Appendix.
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Fig. 2. RMSE:s versus the SNR for K = 10 and N = 1000. First example,
synchronized users.
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Fig. 3. BERs versus the SNR for ' = 10 and NV = 1000. First example,

synchronized users.

The obtained CRB expressions will be compared with the per-
formance of the TALS and joint diagonalization-based estima-
tors in the next section.

VII. SIMULATIONS

In this section, the performance of the developed blind spatial
signature estimators is compared with that of the ESPRIT-like
estimator of [8], the generalized array manifold (GAM) MUSIC
estimator of [5], and the derived modified deterministic CRB.

Although the proposed blind estimators are applicable to gen-
eral array geometries, the ESPRIT-like estimator is based on the
uniform linear array (ULA) assumption. Therefore, to compare
the estimators in a proper way, we assume a ULA of K omnidi-
rectional sensors spaced half a wavelength apart and M = 2
binary phase shift keying (BPSK) user signals impinging on
the array from the angles #; and 65 relative to the broadside,
where in each simulation run, #; and 65 are randomly uniformly
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Fig. 4. RMSEs versus NV for ' = 10 and SNR = 10 dB. First example,
unsynchronized users.
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Fig. 5. RMSEs versus the SNR for & = 10 and N = 1000. First example,
unsynchronized users.

drawn from the whole field of view [—90°, 90°]. Throughout the
simulations, the users are assumed to be synchronized (except
Figs. 4 and 5, where the case of unsynchronized users is con-
sidered), P = 10 subblocks are used in our techniques (except
Fig. 10, where P is varied), and the user powers are changed
between different subblocks uniforml