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APPROXIMATION BOUNDS FOR QUADRATIC OPTIMIZATION
WITH HOMOGENEOUS QUADRATIC CONSTRAINTS∗
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Abstract. We consider the NP-hard problem of finding a minimum norm vector in n-dimensional
real or complex Euclidean space, subject to m concave homogeneous quadratic constraints. We show
that a semidefinite programming (SDP) relaxation for this nonconvex quadratically constrained
quadratic program (QP) provides an O(m2) approximation in the real case and an O(m) approxi-
mation in the complex case. Moreover, we show that these bounds are tight up to a constant factor.
When the Hessian of each constraint function is of rank 1 (namely, outer products of some given
so-called steering vectors) and the phase spread of the entries of these steering vectors are bounded
away from π/2, we establish a certain “constant factor” approximation (depending on the phase
spread but independent of m and n) for both the SDP relaxation and a convex QP restriction of the
original NP-hard problem. Finally, we consider a related problem of finding a maximum norm vector
subject to m convex homogeneous quadratic constraints. We show that an SDP relaxation for this
nonconvex QP provides an O(1/ ln(m)) approximation, which is analogous to a result of Nemirovski
et al. [Math. Program., 86 (1999), pp. 463–473] for the real case.
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1. Introduction. Consider the quadratic optimization problem with concave
homogeneous quadratic constraints:

υ
qp := min ‖z‖2

subject to (s.t.)
∑
�∈Ii

|hH
� z|2 ≥ 1, i = 1, . . . ,m,

z ∈ F
n,

(1)

where F is either R or C, ‖ · ‖ denotes the Euclidean norm in F
n, m ≥ 1, each h�

is a given vector in F
n, and I1, . . . , Im are nonempty, mutually disjoint index sets

satisfying I1 ∪ · · · ∪ Im = {1, . . . ,M}. Throughout, the superscript H will denote
the complex Hermitian transpose, i.e., for z = x + iy, where x, y ∈ R

n and i2 = −1,
zH = xT − iyT . Geometrically, problem (1) corresponds to finding a least norm vector
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in a region defined by the intersection of the exteriors of m cocentered ellipsoids. If
the vectors h1, . . . , hM are linearly independent, then M equals the sum of the ranks
of the matrices defining these m ellipsoids. Notice that the problem (1) is easily solved
for the case of n = 1, so we assume n ≥ 2.

We assume that
∑

�∈Ii
‖h�‖ �= 0 for all i, which is clearly a necessary condition for

(1) to be feasible. This is also a sufficient condition (since
⋃m

i=1{z |
∑

�∈Ii
|hH

� z|2 = 0}
is a finite union of proper subspaces of F

n, so its complement is nonempty and any
point in its complement can be scaled to be feasible for (1)). Thus, problem (1)
always has an optimal solution (not unique) since its objective function is coercive
and continuous, and its feasible set is nonempty and closed. Notice, however, that
the feasible set of (1) is typically nonconvex and disconnected, with an exponential
number of connected components exhibiting little symmetry. This is in contrast to
the quadratic problems with convex feasible set but nonconvex objective function
considered in [13, 14, 22]. Furthermore, unlike the class of quadratic problems studied
in [1, 7, 8, 15, 16, 21, 23, 24, 25, 26], the constraint functions in (1) do not depend on
z2
1 , . . . , z

2
n only.

Our interest in the nonconvex quadratic program (QP) (1) is motivated by the
transmit beamforming problem for multicasting applications [20] and by the wireless
sensor network localization problem [6]. In the transmit beamforming problem, a
transmitter utilizes an array of n transmitting antennas to broadcast information
within its service area to m radio receivers, with receiver i ∈ {1, . . . ,m} equipped
with |Ii| receiving antennas. Let h�, � ∈ Ii, denote the n× 1 complex steering vector
modeling propagation loss and phase shift from the transmitting antennas to the
�th receiving antenna of receiver i. Assuming that each receiver performs spatially
matched filtering/maximum ratio combining, which is the optimal combining strategy
under standard mild assumptions, then the constraint∑

�∈Ii

|hH
� z|2 ≥ 1

models the requirement that the total received signal power at receiver i must be
above a given threshold (normalized to 1). This constraint is also equivalent to a
signal-to-noise ratio (SNR) condition commonly used in data communication. Thus,
to minimize the total transmit power subject to individual SNR requirements (one at
each receiver), we are led to the QP (1). In the special case where each radio receiver
is equipped with a single receiving antenna, the problem reduces to [20]

min ‖z‖2

s.t. |hH
� z|2 ≥ 1, � = 1, . . . ,m,

z ∈ F
n.

(2)

This problem is a special case of (1), whereby each ellipsoid lies in F
n and the corre-

sponding matrix has rank 1.
In this paper, we first show that the nonconvex QP (2) is NP-hard in either the real

or the complex case, which further implies the NP-hardness of the general problem
(1). Then, we consider a semidefinite programming (SDP) relaxation of (1) and a
convex QP restriction of (2) and study their worst-case performance. In particular,
let υsdp, υcqp, and υqp denote the optimal values of the SDP relaxation, the convex QP
restriction, and the original QP (1), respectively. We establish a performance ratio of
υqp/υsdp = O(m2) for the SDP relaxation in the real case, and we give an example
showing that this bound is tight up to a constant factor. Similarly, we establish a
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performance ratio of υqp/υsdp = O(m) in the complex case, and we give an example
showing the tightness of this bound. We further show that in the case when the
phase spread of the entries of h1, . . . , hM is bounded away from π/2, the performance
ratios υqp/υsdp and υcqp/υqp for the SDP relaxation and the convex QP restriction,
respectively, are independent of m and n.

In recent years, there have been extensive studies of the performance of SDP re-
laxations for nonconvex QP. However, to our knowledge, this is the first performance
analysis of SDP relaxation for QP with concave quadratic constraints. Our proof tech-
niques also extend to a maximization version of the QP (1) with convex homogeneous
quadratic constraints. In particular, we give a simple proof of a result analogous to
one of Nemirovski et al. [14] (also see [13, Theorem 4.7]) for the real case, namely, the
SDP relaxation for this nonconvex QP has a performance ratio of O(1/ ln(m)).

2. NP-hardness. In this section, we show that the nonconvex QP (1) is NP-
hard in general. First, we notice that, by a linear transformation if necessary, the
problem

minimize zHQz
s.t. |z�| ≥ 1, � = 1, . . . , n,

z ∈ F
n,

(3)

is a special case of (1), where Q ∈ F
n×n is a Hermitian positive definite matrix (i.e.,

Q � 0), and z� denotes the �th component of z. Hence, it suffices to establish the NP-
hardness of (3). To this end, we consider a reduction from the NP-complete partition
problem: Given positive integers a1, a2, . . . , aN , decide whether there exists a subset
I of {1, . . . , N} satisfying

∑
�∈I

a� =
1

2

N∑
�=1

a�.(4)

Our reductions differ for the real and complex cases. As will be seen, the NP-hardness
proof in the complex case1 is more intricate than in the real case.

2.1. The real case. We consider the real case of F = R. Let n := N and

a := (a1, . . . , aN )T ,

Q := aaT + In � 0,

where In denotes the n× n identity matrix.
We show that a subset I satisfying (4) exists if and only if the optimization

problem (3) has a minimum value of n. Since

zTQz = |aT z|2 +

n∑
�=1

|z�|2 ≥ n whenever |z�| ≥ 1 ∀ �, z ∈ R
n,

we see that (3) has a minimum value of n if and only if there exists a z ∈ R
n satisfying

aT z = 0, |z�| = 1 ∀ �.

The above condition is equivalent to the existence of a subset I satisfying (4), with
the correspondence I = {� | z� = 1}. This completes the proof.

1This NP-hardness proof was first presented in an appendix of [20] and is included here for
completeness; also see [26, Proposition 3.5] for a related proof.
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2.2. The complex case. We consider the complex case of F = C. Let n :=
2N + 1 and

a := (a1, . . . , aN )T ,

A :=

(
IN IN −eN
aT 0TN − 1

2a
T eN

)
,

Q := ATA + In � 0,

where eN denotes the N -dimensional vector of ones, 0N denotes the N -dimensional
vector of zeros, and In and IN are identity matrices of sizes n × n and N × N ,
respectively.

We show that a subset I satisfying (4) exists if and only if the optimization
problem (3) has a minimum value of n. Since

zHQz = ‖Az‖2 +

n∑
�=1

|z�|2 ≥ n whenever |z�| ≥ 1 ∀ �, z ∈ C
n,

we see that (3) has a minimum value of n if and only if there exists a z ∈ C
n satisfying

Az = 0, |z�| = 1 ∀ �.

Expanding Az = 0 gives the following set of linear equations:

0 = z� + zN+� − zn, � = 1, . . . , N,(5)

0 =
N∑
�=1

a�z� −
1

2

(
N∑
�=1

a�

)
zn.(6)

For � = 1, . . . , 2N , since |z�| = |zn| = 1 so that z�/zn = eiθ� for some θ� ∈ [0, 2π), we
can rewrite (5) as

cos θ� + cos θN+� = 1,
sin θ� + sin θN+� = 0,

� = 1, . . . , N.

These equations imply that θ� ∈ {−π/3, π/3} for all � �= n. In fact, these equations
further imply that cos θ� = cos θN+� = 1/2 for � = 1, . . . , N , so that

Re

(
N∑
�=1

a�
z�
zn

− 1

2

(
N∑
�=1

a�

))
= 0.

Therefore, (6) is satisfied if and only if

Im

(
N∑
�=1

a�
z�
zn

− 1

2

(
N∑
�=1

a�

))
= Im

(
N∑
�=1

a�
z�
zn

)
= 0,

which is further equivalent to the existence of a subset I satisfying (4), with the
correspondence I = {� | θ� = π/3}. This completes the proof.
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3. Performance analysis of SDP relaxation. In this section, we study the
performance of an SDP relaxation of (2). Let

Hi :=
∑
�∈Ii

h�h
H
� , i = 1, . . . ,m.

The well-known SDP relaxation of (1) [11, 19] is

υ
sdp

:= min Tr(Z)

s.t. Tr(HiZ) ≥ 1, i = 1, . . . ,m,

Z 	 0, Z ∈ F
n×n is Hermitian.

(7)

An optimal solution of the SDP relaxation (7) can be computed efficiently using, say,
interior-point methods; see [18] and references therein.

Clearly υ
sdp

≤ υ
qp

. We are interested in upper bounds for the relaxation perfor-
mance of the form

υ
qp

≤ Cυ
sdp

,

where C ≥ 1. Since we assume Hi �= 0 for all i, it is easily checked that (7) has an
optimal solution, which we denote by Z∗.

3.1. General steering vectors: The real case. We consider the real case of
F = R. Upon obtaining an optimal solution Z∗ of (7), we construct a feasible solution
of (1) using the following randomization procedure:

1. Generate a random vector ξ ∈ R
n from the real-valued normal distribution

N(0, Z∗).

2. Let z∗(ξ) = ξ/min1≤i≤m

√
ξTHiξ.

We will use z∗(ξ) to analyze the performance of the SDP relaxation. Similar proce-
dures have been used for related problems [1, 3, 4, 5, 14]. First, we need to develop
two lemmas. The first lemma estimates the left-tail of the distribution of a convex
quadratic form of a Gaussian random vector.

Lemma 1. Let H ∈ R
n×n, Z ∈ R

n×n be two symmetric positive semidefinite
matrices (i.e., H 	 0, Z 	 0). Suppose ξ ∈ R

n is a random vector generated from the
real-valued normal distribution N(0, Z). Then, for any γ > 0,

Prob
(
ξTHξ < γE(ξTHξ)

)
≤ max

{
√
γ,

2(r̄ − 1)γ

π − 2

}
,(8)

where r̄ := min{rank(H), rank(Z)}.
Proof. Since the covariance matrix Z 	 0 has rank r := rank(Z), we can write

Z = UUT , for some U ∈ R
n×r satisfying UTZU = Ir. Let ξ̄ := QTUT ξ ∈ R

r, where
Q ∈ R

r×r is an orthogonal matrix corresponding to the eigen-decomposition of the
matrix

UTHU = QΛQT

for some diagonal matrix Λ = diag{λ1, λ2, . . . , λr} with λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0.
Since UTHU has rank at most r̄, we have λi = 0 for all i > r̄. It is readily checked
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that ξ̄ has the normal distribution N(0, Ir). Moreover, ξ is statistically identical to
UQξ̄, so that ξTHξ is statistically identical to

ξ̄TQTUTHUQξ̄ = ξ̄TΛξ̄ =

r̄∑
i=1

λi|ξ̄i|2.

Then we have

Prob
(
ξTHξ < γE(ξTHξ)

)
= Prob

(
r̄∑

i=1

λi|ξ̄i|2 < γE

(
r̄∑

i=1

λi|ξ̄i|2
))

= Prob

(
r̄∑

i=1

λi|ξ̄i|2 < γ

r̄∑
i=1

λi

)
.

If λ1 = 0, then this probability is zero, which proves (8). Thus, we will assume that
λ1 > 0. Let λ̄i := λi/(λ1 + · · · + λr̄) for i = 1, . . . , r̄. Clearly, we have

λ̄1 + · · · + λ̄r̄ = 1, λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄r̄ ≥ 0.

We consider two cases. First, suppose λ̄1 ≥ α, where 0 < α < 1. Then, we can
bound the above probability as follows:

Prob
(
ξTHξ < γE(ξTHξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 < γ

)

≤ Prob
(
λ̄1|ξ̄1|2 < γ

)
≤ Prob

(
|ξ̄1|2 < γ/α

)
(9)

≤
√

2γ

πα
,

where the last step is due to the fact that ξ̄1 is a real-valued zero mean Gaussian
random variable with unit variance.

In the second case, we have λ̄1 < α, so that

λ̄2 + · · · + λ̄r̄ = 1 − λ̄1 > 1 − α.

This further implies (r̄ − 1)λ̄2 ≥ λ̄2 + · · · + λ̄r̄ > 1 − α. Hence

λ̄1 ≥ λ̄2 >
1 − α

r̄ − 1
.

Using this bound, we obtain the following probability estimate:

Prob
(
ξTHξ < γE(ξTHξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 < γ

)

≤ Prob
(
λ̄1|ξ̄1|2 < γ, λ̄2|ξ̄2|2 < γ

)
= Prob

(
λ̄1|ξ̄1|2 < γ

)
· Prob

(
λ̄2|ξ̄2|2 < γ

)
(10)

≤
√

2γ

πλ̄1
·
√

2γ

πλ̄2

≤ 2(r̄ − 1)γ

π(1 − α)
.
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Combining the estimates for the above two cases and setting α = 2/π, we immediately
obtain the desired bound (8).

Lemma 2. Let F = R. Let Z∗ 	 0 be a feasible solution of (7) and let z∗(ξ) be
generated by the randomization procedure described earlier. Then, with probability 1,
z∗(ξ) is well defined and feasible for (1). Moreover, for every γ > 0 and μ > 0,

Prob

(
min

1≤i≤m
ξTHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)
≥ 1 −m · max

{
√
γ,

2(r − 1)γ

π − 2

}
− 1

μ
,

(11)

where r := rank(Z∗).
Proof. Since Z∗ 	 0 is feasible for (7), it follows that Tr(HiZ

∗) ≥ 1 for all
i = 1, . . . ,m. Since E(ξTHiξ) = Tr(HiZ

∗) ≥ 1 and the density of ξTHiξ is absolutely
continuous, the probability of ξTHiξ = 0 is zero, implying that z∗(ξ) is well defined
with probability 1. The feasibility of z∗(ξ) is easily verified.

To prove (11), we first note that E(ξξT ) = Z∗. Thus, for any γ > 0 and μ > 0,

Prob

(
min

1≤i≤m
ξTHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)
= Prob

(
ξTHiξ ≥ γ ∀ i = 1, . . . ,m and ‖ξ‖2 ≤ μTr(Z∗)

)
≥ Prob

(
ξTHiξ ≥ γTr(HiZ

∗) ∀ i = 1, . . . ,m and ‖ξ‖2 ≤ μTr(Z∗)
)

= Prob
(
ξTHiξ ≥ γE(ξTHiξ) ∀ i = 1, . . . ,m and ‖ξ‖2 ≤ μE(‖ξ‖2)

)
= 1 − Prob

(
ξTHiξ < γE(ξTHiξ) for some i or ‖ξ‖2 > μE(‖ξ‖2)

)
≥ 1 −

m∑
i=1

Prob
(
ξTHiξ < γE(ξTHiξ)

)
− Prob

(
‖ξ‖2 > μE(‖ξ‖2)

)

> 1 −m · max

{
√
γ,

2(r − 1)γ

π − 2

}
− 1

μ
,

where the last step uses Lemma 1 as well as Markov’s inequality:

Prob
(
‖ξ‖2 > μE(‖ξ‖2)

)
≤ 1

μ
.

This completes the proof.
We now use Lemma 2 to bound the performance of the SDP relaxation.
Theorem 1. Let F = R. For the QP (1) and its SDP relaxation (7), we have

υqp = υsdp if m ≤ 2, and otherwise

υqp ≤ 27m2

π
υsdp.

Proof. By applying a suitable rank reduction procedure if necessary, we can
assume that the rank r of the optimal SDP solution Z∗ satisfies r(r + 1)/2 ≤ m; see,
e.g., [17]. Thus r <

√
2m. If m ≤ 2, then r = 1, implying that Z∗ = z∗(z∗)T for

some z∗ ∈ R
n, and it is readily seen that z∗ is an optimal solution of (1), so that

υqp = υsdp. Otherwise, we apply the randomization procedure to Z∗. We also choose

μ = 3, γ =
π

4m2

(
1 − 1

μ

)2

=
π

9m2
.
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Then, it is easily verified using r <
√

2m that

√
γ ≥ 2(r − 1)γ

π − 2
∀ m = 1, 2, . . . .

Plugging these choices of γ and μ into (11), we see that there is a positive probability
(independent of problem size) of at least

1 −m
√
γ − 1

μ
= 1 −

√
π

3
− 1

3
= 0.0758 . . .

that ξ generated by the randomization procedure satisfies

min
1≤i≤m

ξTHiξ ≥ π

9m2
and ‖ξ‖2 ≤ 3 Tr(Z∗).

Let ξ be any vector satisfying these two conditions.2 Then, z∗(ξ) is feasible for (1),
so that

υqp ≤ ‖z∗(ξ)‖2 =
‖ξ‖2

mini ξTHiξ
≤ 3 Tr(Z∗)

(π/9m2)
=

27m2

π
υsdp,

where the last equality uses Tr(Z∗) = υsdp.
In the above proof, other choices of μ can also be used, but the resulting bound

seems not as sharp. Theorem 1 suggests that the worst-case performance of the SDP
relaxation deteriorates quadratically with the number of quadratic constraints. Below
we give an example demonstrating that this bound is in fact tight up to a constant
factor.

Example 1. For any m ≥ 2 and n ≥ 2, consider a special instance of (2),
corresponding to (1) with |Ii| = 1 (i.e., each Hi has rank 1), whereby

h� =

(
cos

(
�π

m

)
, sin

(
�π

m

)
, 0, . . . , 0

)T

, � = 1, . . . ,m.

Let z∗ = (z∗1 , . . . , z
∗
n)T ∈ R

n be an optimal solution of (2) corresponding to the above
choice of steering vectors h�. We can write

(z∗1 , z
∗
2) = ρ(cos θ, sin θ) for some θ ∈ [0, 2π).

Since {�π/m, � = 1, . . . ,m} is uniformly spaced on [0, π), there must exist an integer
� such that

either

∣∣∣∣θ − �π

m
− π

2

∣∣∣∣ ≤ π

2m
or

∣∣∣∣θ − �π

m
+

π

2

∣∣∣∣ ≤ π

2m
.

For simplicity, we assume the first case. (The second case can be treated similarly.)
Since the last (n− 2) entries of h� are zero, it is readily checked that

|hT
� z

∗| = ρ

∣∣∣∣cos

(
θ − �π

m

)∣∣∣∣ = ρ

∣∣∣∣sin
(
θ − �π

m
− π

2

)∣∣∣∣ ≤ ρ
∣∣∣sin( π

2m

)∣∣∣ ≤ ρπ

2m
.

2The probability that no such ξ is generated after N independent trials is at most (1−0.0758..)N ,
which for N = 100 equals 0.000375.. Thus, such ξ requires relatively few trials to generate.
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Since z∗ satisfies the constraint |hT
� z

∗| ≥ 1, it follows that

‖z∗‖ ≥ ρ ≥ 2m|hT
� z

∗|
π

≥ 2m

π
,

implying

υqp = ‖z∗‖2 ≥ 4m2

π2
.

On the other hand, the positive semidefinite matrix

Z∗ = diag{1, 1, 0, . . . , 0}

is feasible for the SDP relaxation (7), and it has an objective value of Tr(Z∗) = 2.
Thus, for this instance, we have

υqp ≥ 2m2

π2
υsdp.

The preceding example and Theorem 1 show that the SDP relaxation (7) can
be weak if the number of quadratic constraints is large, especially when the steering
vectors h� are in a certain sense “uniformly distributed” in space.

3.2. General steering vectors: The complex case. We consider the complex
case of F = C. We will show that the performance ratio of the SDP relaxation (7)
improves to O(m) in the complex case (as opposed to O(m2) in the real case). Similar
to the real case, upon obtaining an optimal solution Z∗ of (7), we construct a feasible
solution of (1) using the following randomization procedure:

1. Generate a random vector ξ ∈ C
n from the complex-valued normal distri-

bution Nc(0, Z
∗) [2, 26].

2. Let z∗(ξ) = ξ/min1≤i≤m

√
ξHHiξ.

Most of the ensuing performance analysis is similar to that of the real case. In
particular, we will also need the following two lemmas analogous to Lemmas 1 and 2.

Lemma 3. Let H ∈ C
n×n, Z ∈ C

n×n be two Hermitian positive semidefinite
matrices (i.e., H 	 0, Z 	 0). Suppose ξ ∈ C

n is a random vector generated from the
complex-valued normal distribution Nc(0, Z). Then, for any γ > 0,

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ max

{
4

3
γ, 16(r̄ − 1)2γ2

}
,(12)

where r̄ := min{rank(H), rank(Z)}.
Proof. We follow the same notations and proof as for Lemma 1, except for two

blanket changes:

matrix transpose → Hermitian transpose,
orthogonal matrix → unitary matrix.

Also, ξ̄ has the complex-valued normal distribution Nc(0, Ir). With these changes, we
consider the same two cases: λ̄1 ≥ α and λ̄1 < α, where 0 < α < 1. In the first case,
we have similar to (9) that

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 < γ/α

)
.(13)
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Recall that the density function of a complex-valued circular normal random variable
u ∼ Nc(0, σ

2), where σ is the standard deviation, is

1

πσ2
e−

|u|2

σ2 ∀ u ∈ C.

In polar coordinates, the density function can be written as

f(ρ, θ) =
ρ

πσ2
e−

ρ2

σ2 ∀ ρ ∈ [0,+∞), θ ∈ [0, 2π).

In fact, a complex-valued normal distribution can be viewed as a joint distribution
of its modulus and its argument, with the following particular properties: (1) the
modulus and argument are independently distributed; (2) the argument is uniformly
distributed over [0, 2π); (3) the modulus follows a Weibull distribution with density

f(ρ) =

{
2ρ
σ2 e

− ρ2

σ2 if ρ ≥ 0;
0 if ρ < 0,

and distribution function

Prob {|u| ≤ t} = 1 − e−
t2

σ2 .(14)

Since ξ̄1 ∼ Nc(0, 1), substituting this into (13) yields

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 < γ/α

)
≤ 1 − e−γ/α ≤ γ/α,

where the last inequality uses the convexity of the exponential function.
In the second case of λ̄1 < α, we have similar to (10) that

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
λ̄1|ξ̄1|2 < γ

)
· Prob

(
λ̄2|ξ̄2|2 < γ

)
= (1 − e−γ/λ̄1)(1 − e−γ/λ̄2)

≤ γ2

λ̄1λ̄2

≤ (r̄ − 1)2γ2

(1 − α)2
,

where the last step uses the fact that λ̄1 ≥ λ̄2 ≥ (1 − α)/(r̄ − 1). Combining the
estimates for the above two cases and setting α = 3/4, we immediately obtain the
desired bound (12).

Lemma 4. Let F = C. Let Z∗ 	 0 be a feasible solution of (7) and let z∗(ξ) be
generated by the randomization procedure described earlier. Then, with probability 1,
z∗(ξ) is well defined and feasible for (1). Moreover, for every γ > 0 and μ > 0,

Prob

(
min

1≤i≤m
ξHHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)
≥ 1 −m · max

{
4

3
γ, 16(r − 1)2γ2

}
− 1

μ
,

where r := rank(Z∗).
Proof. The proof is mostly the same as that for the real case (see Lemma 2). In

particular, for any γ > 0 and μ > 0, we still have

Prob

(
min

1≤i≤m
ξHHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)

≥ 1 −
m∑
i=1

Prob
(
ξHHiξ < γE(ξHHiξ)

)
− Prob

(
‖ξ‖2 > μE(‖ξ‖2)

)
.
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Therefore, we can invoke Lemma 3 to obtain

Prob

(
min

1≤i≤m
ξHHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)

≥ 1 −m · max

{
4

3
γ, 16(r − 1)2γ2

}
− Prob

(
‖ξ‖2 > μE(‖ξ‖2)

)
≥ 1 −m · max

{
4

3
γ, 16(r − 1)2γ2

}
− 1

μ
,

which completes the proof.
Theorem 2. Let F = C. For the QP (1) and its SDP relaxation (7), we have

vsdp = vqp if m ≤ 3 and otherwise

vqp ≤ 8m · vsdp.

Proof. By applying a suitable rank reduction procedure if necessary, we can
assume that the rank r of the optimal SDP solution Z∗ satisfies r = 1 if m ≤ 3 and
r ≤

√
m if m ≥ 4; see [9, section 5]. Thus, if m ≤ 3, then Z∗ = z∗(z∗)H for some

z∗ ∈ C
n and it is readily seen that z∗ is an optimal solution of (1), so that vsdp = vqp.

Otherwise, we apply the randomization procedure to Z∗. By choosing μ = 2 and
γ = 1

4m , it is easily verified using r ≤
√
m that

4

3
γ ≥ 16(r − 1)2γ2 ∀ m = 1, 2, . . . .

Therefore, it follows from Lemma 4 that

Prob

{
min

1≤i≤m
ξHHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

}
≥ 1 −m

4

3
γ − 1

μ
=

1

6
.

Then, similar to the proof of Theorem 1, we obtain that with probability of at least
1/6, z∗(ξ) is a feasible solution of (1) and vqp ≤ ‖z∗(ξ)‖2 ≤ 8m · vsdp.3

The proof of Theorem 2 shows that by repeating the randomization procedure,
the probability of generating a feasible solution with a performance ratio no more than
8m approaches 1 exponentially fast (independent of problem size). Alternatively, a
derandomization technique from theoretical computer science can perhaps convert the
above randomization procedure into a polynomial-time deterministic algorithm [12];
also see [14].

Theorem 2 shows that the worst-case performance of SDP relaxation deteriorates
linearly with the number of quadratic constraints. This contrasts with the quadratic
rate of deterioration in the real case (see Theorem 1). Thus, the SDP relaxation can
yield better performance in the complex case. This is in the same spirit as the recent
results in [26] which showed that the quality of SDP relaxation improves by a constant
factor for certain quadratic maximization problems when the space is changed from
R

n to C
n. Below we give an example demonstrating that this approximation bound

is tight up to a constant factor.
Example 2. For any m ≥ 2 and n ≥ 2, let K = �

√
m� (so K ≥ 2). Consider a

special instance of (2), corresponding to (1) with |Ii| = 1 (i.e., each Hi has rank 1),

3The probability that no such ξ is generated after N independent trials is at most (5/6)N , which
for N = 30 equals 0.00421.. Thus, such ξ requires relatively few trials to generate.
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whereby

h� =

(
cos

jπ

K
, sin

jπ

K
e

i2kπ
K , 0, . . . , 0

)T

with � = jK −K + k, j, k = 1, . . . ,K.

Hence there are K2 complex rank-1 constraints. Let z∗ = (z∗1 , . . . , z
∗
n)T ∈ C

n be an
optimal solution of (2) corresponding to the above choice of �

√
m�2 steering vectors

h�. By a phase rotation if necessary, we can without loss of generality assume that z∗1
is real and write

(z∗1 , z
∗
2) = ρ(cos θ, sin θeiψ) for some θ, ψ ∈ [0, 2π).

Since {2kπ/K, k = 1, . . . ,K} and {jπ/K, j = 1, . . . ,K} are uniformly spaced in
[0, 2π) and [0, π), respectively, there must exist integers j and k such that∣∣∣∣ψ − 2kπ

K

∣∣∣∣ ≤ π

K
and either

∣∣∣∣θ − jπ

K
− π

2

∣∣∣∣ ≤ π

2K
or

∣∣∣∣θ − jπ

K
+

π

2

∣∣∣∣ ≤ π

2K
.

Without loss of generality, we assume∣∣∣∣θ − jπ

K
− π

2

∣∣∣∣ ≤ π

2K
.

Since the last (n−2) entries of each h� are zero, it is readily seen that for � = jK−K+k,

∣∣Re(hH
� z∗)

∣∣ = ρ

∣∣∣∣cos θ cos
jπ

K
+ sin θ sin

jπ

K
cos

(
ψ − 2kπ

K

)∣∣∣∣
= ρ

∣∣∣∣cos

(
θ − jπ

K

)
+ sin θ sin

jπ

K

(
cos

(
ψ − 2kπ

K

)
− 1

)∣∣∣∣
= ρ

∣∣∣∣sin
(
θ − jπ

K
− π

2

)
− 2 sin θ sin

jπ

K
sin2

(
Kψ − 2kπ

2K

)∣∣∣∣
≤ ρ

∣∣∣sin π

2K

∣∣∣ + 2ρ sin2 π

2K

≤ ρπ

2K
+

ρπ2

2K2
.

In addition, we have

∣∣Im(hH
� z∗)

∣∣ = ρ

∣∣∣∣sin θ sin
jπ

K
sin

(
ψ − 2kπ

K

)∣∣∣∣
≤ ρ

∣∣∣∣sin
(
ψ − 2kπ

K

)∣∣∣∣
≤ ρ

∣∣∣∣ψ − 2kπ

K

∣∣∣∣ ≤ ρπ

K
.

Combining the above two bounds, we obtain

∣∣hH
� z∗

∣∣ ≤ ∣∣Re(hH
� z∗)

∣∣ +
∣∣Im(hH

� z∗)
∣∣ ≤ 3ρπ

2K
+

ρπ2

2K2
.

Since z∗ satisfies the constraint |hH
� z∗| ≥ 1, it follows that

‖z∗‖ ≥ ρ ≥ 2K2|hH
� z∗|

π(3K + π)
≥ 2K2

π(3K + π)
,
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implying

υqp = ‖z∗‖2 ≥ 4K4

π2(3K + π)2
=

4�
√
m�4

π2(3�
√
m� + π)2

.

On the other hand, the positive semidefinite matrix

Z∗ = diag{1, 1, 0, . . . , 0}

is feasible for the SDP relaxation (7), and it has an objective value of Tr(Z∗) = 2.
Thus, for this instance, we have

υqp ≥ 2�
√
m�4

π2(3�
√
m� + π)2

υsdp ≥ 2m

π2(3 + π/2)2
υsdp.

The preceding example and Theorem 2 show that the SDP relaxation (7) can
be weak if the number of quadratic constraints is large, especially when the steering
vectors h� are in a certain sense uniformly distributed in space. In the next subsection,
we will tighten the approximation bound in Theorem 2 by considering special cases
where the steering vectors are not too spread out in space.

3.3. Specially configured steering vectors: The complex case. We con-
sider the complex case of F = C. Let Z∗ be any optimal solution of (7). Since Z∗ is
feasible for (7), Z∗ �= 0. Then

Z∗ =

r∑
k=1

wkw
H
k(15)

for some nonzero wk ∈ C
n, where r := rank(Z∗) ≥ 1. By decomposing wk = uk + vk,

with uk ∈ span{h1, . . . , hM} and vk ∈ span{h1, . . . , hM}⊥, it is easily checked that
Z̃ :=

∑r
k=1 uku

H
k is feasible for (7) and

〈I, Z∗〉 =

r∑
k=1

‖uk + vk‖2 =

r∑
k=1

(‖uk‖2 + ‖vk‖2) = 〈I, Z̃〉 +

r∑
k=1

‖vk‖2.

This implies vk = 0 for all k, so that

wk ∈ span{h1, . . . , hM}.(16)

Below we show that the SDP relaxation (7) provides a constant factor approxi-
mation to the QP (1) when the phase spread of the entries of h� is bounded away
from π/2.

Theorem 3. Suppose that

h� =

p∑
i=1

βi�gi ∀ � = 1, . . . ,M(17)

for some p ≥ 1, βi� ∈ C, and gi ∈ C
n such that ‖gi‖ = 1 and gHi gj = 0 for all i �= j.

Then the following results hold:
(a) If Re(βH

i� βj�) > 0 whenever βH
i� βj� �= 0, then υ

qp
≤ Cυ

sdp
, where

C := max
i,j,� | βH

i�βj� �=0

(
1 +

|Im(βH
i� βj�)|2

|Re(βH
i� βj�)|2

)1/2

.(18)
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(b) If βi� = |βi�|eiφi� , where

φi� ∈ [φ̄� − φ, φ̄� + φ] ∀ i, � for some 0 ≤ φ <
π

4
and some φ̄� ∈ R,(19)

then Re(βH
i� βj�) > 0 whenever βH

i� βj� �= 0, and C given by (18) satisfies

C ≤ 1

cos(2φ)
.(20)

Proof. (a) By (16), we have wk =
∑p

i=1 αkigi for some αki ∈ C. This together
with (15) yields

〈I, Z∗〉 =

r∑
k=1

‖wk‖2 =

r∑
k=1

∥∥∥∥∥
p∑

i=1

αkigi

∥∥∥∥∥
2

=

r∑
k=1

p∑
i=1

|αki|2 =

p∑
i=1

λ2
i ,

where the third equality uses the orthonormal properties of g1, . . . , gp, and the last

equality uses λi :=
(∑r

k=1 |αki|2
)1/2

= ‖(αki)
r
k=1‖.

Let z∗ :=
∑p

i=1 λigi. Then, the orthonormal properties of g1, . . . , gp yield

‖z∗‖2 =

∥∥∥∥∥
p∑

i=1

λigi

∥∥∥∥∥
2

=

p∑
i=1

λ2
i = 〈I, Z∗〉 = υ

sdp
.(21)

Moreover, for each � ∈ {1, . . . ,M}, we obtain from (15) that

〈h�h
H
� , Z∗〉 =

r∑
k=1

〈h�h
H
� , wkw

H
k 〉 =

r∑
k=1

|hH
� wk|2

=

r∑
k=1

∣∣∣∣∣
p∑

i=1

αkih
H
� gi

∣∣∣∣∣
2

=

r∑
k=1

∣∣∣∣∣
p∑

i=1

αkiβi�

∣∣∣∣∣
2

= Re

⎛
⎝ r∑

k=1

p∑
i=1

p∑
j=1

αH
kiαkjβ

H
i� βj�

⎞
⎠ = Re

⎛
⎝ p∑

i=1

p∑
j=1

βH
i� βj�

r∑
k=1

αH
kiαkj

⎞
⎠

=

p∑
i=1

p∑
j=1

Re

(
βH
i� βj�

r∑
k=1

αH
kiαkj

)

≤
p∑

i=1

p∑
j=1

∣∣βH
i� βj�

∣∣ ∣∣∣∣∣
r∑

k=1

αH
kiαkj

∣∣∣∣∣ ≤
p∑

i=1

p∑
j=1

∣∣βH
i� βj�

∣∣ ‖(αki)
r
k=1‖‖(αkj)

r
k=1‖

=

p∑
i=1

p∑
j=1

∣∣βH
i� βj�

∣∣λiλj ,
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where the fourth equality uses (17) and the orthonormal properties of g1, . . . , gp; the
last inequality is due to the Cauchy–Schwarz inequality. Then, it follows that

〈h�h
H
� , Z∗〉 ≤

p∑
i=1

p∑
j=1

(
|Re(βH

i� βj�)|2 + |Im(βH
i� βj�)|2

)1/2
λiλj

=

p∑
i=1

p∑
j=1

∣∣Re(βH
i� βj�)

∣∣ (1 +
|Im(βH

i� βj�)|2
|Re(βH

i� βj�)|2

)1/2

λiλj

≤
p∑

i=1

p∑
j=1

∣∣Re(βH
i� βj�)

∣∣Cλiλj

=

p∑
i=1

p∑
j=1

Re(βH
i� βj�)Cλiλj ,

where the summation in the second step is taken over i, j with βH
i� βj� �= 0, the third

step is due to (18), and the last step is due to the assumption that Re(βH
i� βj�) > 0

whenever βH
i� βj� �= 0. Also, we have from (17) and the orthonormal properties of

g1, . . . , gp that

|hH
� z∗|2 =

∥∥∥∥∥
p∑

i=1

λih
H
� gi

∥∥∥∥∥
2

=

∥∥∥∥∥
p∑

i=1

λiβi�

∥∥∥∥∥
2

=

p∑
i=1

p∑
j=1

λiλjRe(βH
i� βj�).

Comparing the above two displayed equations, we see that

〈h�h
H
� , Z∗〉 ≤ C|hH

� z∗|2, � = 1, . . . ,M.

Since Z∗ is feasible for (7), this shows that
√
Cz∗ is feasible for (1), which further

implies

υqp ≤
∥∥∥√Cz∗

∥∥∥2

= C‖z∗‖2 = Cυsdp.

This proves the desired result.
(b) The condition (19) implies that |φi� − φj�| ≤ 2φ < π/2. In other words, the

phase angle spread of the entries of each β� = (β1�, β2�, . . . , βn�)
T is no more than 2φ.

This further implies that

cos(φi� − φj�) ≥ cos(2φ) ∀ i, j, �.(22)

We have

βH
i� βj� = |βi�|e−iφi� |βj�|eiφj�

= |βi�||βj�|ei(φj�−φi�)

= |βi�||βj�|(cos(φj� − φi�) + i sin(φj� − φi�)).

Since |φi�−φj�| < π/2 so that cos(φj�−φi�) > 0, we see that Re(βH
i� βj�) > 0 whenever

βH
i� βj� �= 0. Then

(
1 +

|Im(βH
i� βj�)|2

|Re(βH
i� βj�)|2

)1/2

≤
(
1 + tan2(φj� − φi�)

)1/2
=

1

cos(φj� − φi�)
≤ 1

cos(2φ)
,
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where the last step uses (22). Using this in (18) completes the proof.
In Theorem 3(b), we can more generally consider βi� of the form βi� = ωi�e

iφi�(1+
iθi�), where ωi� ≥ 0, αi� satisfies (19), and

|θj� − θi�| ≤ σ|1 + θi�θj�| ∀ i, j, � for some σ ≥ 0 with tan(2φ)σ < 1.(23)

Then the proof of Theorem 3(b) can be extended to show the following upper bound
on C given by (18):

C ≤ 1

cos(2φ)
·

√
1 + σ2

1 − tan(2φ)σ
.(24)

However, this generalization is superficial as we can also derive (24) from (20) by
rewriting βi� as

βi� = |βi�|eiφ̃i� with φ̃i� = φi� + tan−1(θi�).

Then, applying (20) yields C ≥ cos(2φ̃), where φ̃ = maxi,j,� |φ̃i� − φ̃j�|/2. Using

trigonometric identity, it can be shown that cos(2φ̃) equals the right-hand side of (24)
with σ = max{i,j,� | θi�θj� �=−1} |θj� − θi�|/|1 + θi�θj�|.

Notice that Theorem 3(b) implies that if φ = 0, then the SDP relaxation (7) is
tight for the quadratically constrained QP (1) with F = C. Such is the case when all
components of h�, � = 1, . . . ,M , are real and nonnegative.

4. A convex QP restriction. In this subsection, we consider a convex quadratic
programming restriction of (2) in the complex case of F = C and analyze its approx-
imation bound. Let us write h� (the channel steering vector) as

h� = (. . . , |hj�|eiφj� , . . . )Tj=1,...,n.

For any φ̄j ∈ [0, 2π), j = 1, . . . , n, and any φ ∈ (0, π/2), define the four corresponding
index subsets

J1
� := {j | φj� ∈ [φ̄j − φ, φ̄j + φ]},

J2
� := {j | φj� ∈ [φ̄j − φ + π/2, φ̄j + φ + π/2]},

J3
� := {j | φj� ∈ [φ̄j − φ + π, φ̄j + φ + π]},

J4
� := {j | φj� ∈ [φ̄j − φ + 3π/2, φ̄j + φ + 3π/2]}

for � = 1, . . . ,M . The above four subsets are pairwise disjoint if and only if φ < π/4
and are collectively exhaustive if and only if φ ≥ π/4. Choose an index subset J with
the property that

for each �, at least one of J1
� , J2

� , J3
� , J4

� contains J.

Of course, J = ∅ is always allowable, but we should choose J maximally since our
approximation bound will depend on the ratio n/|J | (see Theorem 4). Partition the
constraint set index {1, . . . ,M} into four subsets K1,K2,K3,K4 such that
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J ⊆ Jk
� ∀ � ∈ Kk, k = 1, 2, 3, 4.

Consider the following convex QP restriction of (2) corresponding to K1, K2, K3,
K4:

υ
cqp

:= min ‖z‖2

s.t. Re(hH
� z) ≥ 1 ∀ � ∈ K1,

−Im(hH
� z) ≥ 1 ∀ � ∈ K2,

−Re(hH
� z) ≥ 1 ∀ � ∈ K3,

Im(hH
� z) ≥ 1 ∀ � ∈ K4.

(25)

The above problem is a restriction of (2) because for any z ∈ C,

|z| ≥ max{|Re(z)|, |Im(z)|}
= max{Re(z), Im(z),−Re(z),−Im(z)}.

If J �= ∅ and (. . . , hj�, . . . )j∈J �= 0 for � = 1, . . . ,M , then (25) is feasible and
hence has an optimal solution. Since (25) is a restriction of (2), υ

qp ≤ υcqp . We have
the following approximation bound.

Theorem 4. Suppose that J �= ∅ and (25) is feasible. Then

υcqp ≤ υqp

N

cos2 φ
max

k=1,...,N

(
max
j∈Ĵk

η̄j
η
πk(j)

)2

,

where N := �n/|J |�, η̄j := max� |hj�|, ηj := min�|hj� �=0 |hj�|, Ĵ1, . . . , ĴN , is any par-

tition of {1, . . . , n} satisfying |Ĵk| ≤ |J | for k = 1, . . . , N and πk is any injective
mapping from Ĵk to J .

Proof. By making the substitution

z
new

j ← zje
iφ̄j ,

we can without loss of generality assume that φ̄j = 0 for all j and �.
Let z∗ denote an optimal solution of (2) and write

z∗ = (. . . , rje
iβj , . . . )Tj=1,...,n

with rj ≥ 0. Then, for any �, we have from |hj�| ≤ η̄j for all j that

1 ≤ |hH
� z∗| ≤ r :=

n∑
j=1

rj η̄j .

Also, we have

υqp = ‖z∗‖2 =

n∑
j=1

r2
j .

Define

Rk :=

⎛
⎝∑

j∈Ĵk

r2
j

⎞
⎠

1/2

, Sk :=
∑
j∈Ĵk

rj η̄j .
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Then

1 ≤ r =
N∑

k=1

Sk, υ
qp

=

N∑
k=1

R2
k.

Without loss of generality, assume that R1/S1 = mink Rk/Sk. Then, using the fact
that

min
k

|xk|
|yk|

≤
√
N

‖x‖2

‖y‖1

for any x, y ∈ R
N with y �= 0,4 we see from the above relations that

R1

S1
≤ R1

S1
r

≤
√
N

√
υqp

r
r

=
√
N
√
υ

qp
.

Since |Ĵ1| ≤ |J |, there is an injective mapping π from Ĵ1 to J . Let ω := minj∈Ĵ1
η
π(j)

/η̄j .

Define the vector z̄ ∈ C
n by

z̄j :=

{
rπ−1(j)/(S1ω cosφ) if j ∈ π(Ĵ1);

0 else.

Then,

‖z̄‖2 =
R2

1

S2
1ω

2 cos2 φ
≤

Nυ
qp

ω2 cos2 φ
.

Moreover, for each � ∈ K1, since π(Ĵ1) ⊆ J ⊆ J1
� , we have

Re
(
hH
� z̄

)
= Re

⎛
⎝ ∑

j∈π(Ĵ1)

hH
j�z̄j

⎞
⎠

=
1

S1ω cosφ
Re

⎛
⎝ ∑

j∈π(Ĵ1)

rπ−1(j)|hj�|e−iφj�

⎞
⎠

=
1

S1ω cosφ

∑
j∈π(Ĵ1)

rπ−1(j)|hj�| cosφj�

≥ 1

S1ω cosφ

∑
j∈π(Ĵ1)

rπ−1(j)ηj cosφ

=
1

S1ω

∑
j∈Ĵ1

rj η̄j
η
π(j)

η̄j

≥ 1

S1ω

∑
j∈Ĵ1

rj η̄j · min
j∈Ĵ1

η
π(j)

η̄j

= 1,

4Proof. Suppose the contrary, so that for some x, y ∈ RN with y �= 0, we have |xk|/|yk| >√
N‖x‖2/‖y‖1 for all k. Then, multiplying both sides by |yk| and summing over k yields ‖x‖1 >√
N‖x‖2, contradicting properties of 1- and 2-norms.
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where the first inequality uses |hj�| ≥ η
j

and φj� ∈ [−φ, φ] for j ∈ J1
� . Since z̄j = 0

for j �∈ J1
� , this shows that z̄ satisfies the first set of constraints in (25). A similar

reasoning shows that z̄ satisfies the remaining three sets of constraints in (25).
Notice that the z̄ constructed in the proof of Theorem 4 is feasible for the further

restriction of (25) whereby zj = 0 for all j �∈ J . This further restricted problem has
the same (worst-case) approximation bound specified in Theorem 4.

Let us compare the two approximation bounds in Theorems 3 and 4. First, the
required assumptions are different. On the one hand, the bound in Theorem 3 does not
depend on |hj�|, while the bound in Theorem 4 does. On the other hand, Theorem 3
requires that the bounded angular spread

|φj� − φi�| ≤ 2φ ∀ j, �(26)

for some φ < π/4, while Theorem 4 allows φ < π/2 and requires only the condition
(26) for all 1 ≤ � ≤ M and j ∈ J , where J is a preselected index set. Thus,
the bounded angular spread condition required in Theorem 3 corresponds exactly
to |J | = n. Thus, the assumptions required in the two theorems do not imply one
another. Second, the two performance ratios are also different. Naturally, the final
performance ratio in Theorem 4 depends on the choice of J through the ratio |J |/n, so
a large J is preferred. In the event that the assumptions of both theorems are satisfied
and let us assume for simplicity that η̄j = η

j
for all j, then |J | = n and φ < π/4, in

which case Theorem 4 gives a performance ratio of 1/ cos2 φ while Theorem 3 gives
1/ cos(2φ). Since cos(2φ) = cos2 φ − sin2 φ ≤ cos2 φ, we have 1/ cos(2φ) ≥ 1/ cos2 φ,
showing that Theorem 4 gives a tighter approximation bound. However, this does
not mean Theorem 4 is stronger than Theorem 3 since the two theorems hold under
different assumptions in general.

We can specialize Theorem 4 to a typical situation in transmit beamforming.
Consider a uniform linear transmit antenna array consisting of n elements, and let us
assume that the M receivers are in a sector area from the far field and the propagation
is line-of-sight. By reciprocity, each steering vector h� will be Vandermonde with
generator e−i2π d

λ sin θ� (see, e.g., [10]), where d is the interantenna spacing, λ is the
wavelength, and θ� is the angle of arrival of the �th receiving antenna. In a sector of
approximately 60 degrees about the array broadside, we will have |θ�| ≤ π/3. Suppose
that d/λ = 1/2. Then the steering vector corresponding to the �th receiving antenna
will have the form

h� = (. . . , e−i(j−1)π sin θ� , . . . )Tj=1,...,n.

In this case, we have that φj� = (j − 1)π sin θ� and |hj�| = 1 for all j and �. We can
take, e.g.,

φ̄j = 0, φ = j̄πmax
�

| sin θ�|, J = {1, . . . , j̄ + 1},

where j̄ := �1/max� | sin θ�|�. Thus, the assumptions of Theorem 4 are satisfied.
Moreover, since |θ�| ≤ π/3 for all �, it follows that |J | = j̄ + 1 ≥ 2. If n is not large,
say, n ≤ 8, then Theorem 4 gives a performance ratio of n/(|J | cos2 φ) ≤ 16.

More generally, if we can choose the partition Ĵ1, . . . , ĴN and the mapping πk in
Theorem 4 such that
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(. . . , η̄j , . . . )j∈Ĵk
= (. . . , η

πk(j)
, . . . )j∈J ∀ k,

then the performance ratio in Theorem 4 simplifies to N/ cos2 φ. In particular, this
holds when |hj�| = η > 0 for all j and � or when J = {1, . . . , n} (so that N =
1) and |hj�| is independent of � for all j, and, more generally, when the channel
coefficients periodically repeat their magnitudes. In general, we should choose the
partition Ĵ1, . . . , ĴN and the mapping πk to make the performance ratio in Theorem
4 small. For example, if J = Ĵ1 = {1, 2} and η̄1 = 100, η̄2 = 10, η

1
= 1, η

2
= 10, then

π1(1) = 2, π1(2) = 1 is the better choice.

5. Homogeneous QP in maximization form. Let us now consider the fol-
lowing complex norm maximization problem with convex homogeneous quadratic con-
straints:

υ
qp

:= max ‖z‖2

s.t.
∑
�∈Ii

|hH
� z|2 ≤ 1, i = 1, . . . ,m,

z ∈ C
n,

(27)

where h� ∈ C
n.

To motivate this problem, consider the problem of designing an intercept beam-
former5 capable of suppressing signals impinging on the receiving antenna array from
irrelevant or hostile emitters, e.g., jammers, whose steering vectors (spatial signatures,
or “footprints”) have been previously estimated, while achieving as high gain as pos-
sible for all other transmissions. The jammer suppression capability is captured in the
constraints of (27), and |Ii| > 1 covers the case where a jammer employs more than
one transmit antenna. The maximization of the objective ‖z‖2 can be motivated as
follows. In intercept applications, the steering vector of the emitter of interest, h, is
a priori unknown and is naturally modeled as random. A pertinent optimization ob-
jective is then the average beamformer output power, measured by E[|hHz|2]. Under
the assumption that the entries of h are uncorrelated and have equal average power,
it follows that E[|hHz|2] is proportional to ‖z‖2, which is often referred to as the
beamformer’s white noise gain.

Similar to (1), we let

Hi :=

m∑
�∈Ii

h�h
H
�

and consider the natural SDP relaxation of (27):

υ
sdp

:= max Tr(Z)
s.t. Tr(HiZ) ≤ 1, i = 1, . . . ,m,

Z 	 0, Z is complex and Hermitian.
(28)

We are interested in lower bounds for the relaxation performance of the form

υ
qp ≥ C υ

sdp
,

where 0 < C ≤ 1. It is easily checked that (28) has an optimal solution.
Let Z∗ be an optimal solution of (28). We will analyze the performance of the

SDP relaxation using the following randomization procedure:

5Note that here we are talking about a receive beamformer, as opposed to our earlier motivating
discussion of transmit beamformer design.
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1. Generate a random vector ξ ∈ C
n from the complex-valued normal distri-

bution Nc(0, Z
∗).

2. Let z∗(ξ) = ξ/max1≤i≤m

√
ξHHiξ.

First, we need the following lemma analogous to Lemmas 1 and 3.
Lemma 5. Let H ∈ C

n×n, Z ∈ C
n×n be two Hermitian positive semidefinite

matrices (i.e., H 	 0, Z 	 0). Suppose ξ ∈ C
n is a random vector generated from the

complex-valued normal distribution Nc(0, Z). Then, for any γ > 0,

Prob
(
ξHHξ > γE(ξHHξ)

)
≤ r̄ e−γ ,(29)

where r̄ := min{rank(H), rank(Z)}.
Proof. If H = 0, then (29) is trivially true. Suppose H �= 0. Then, as in the proof

of Lemma 1, we have

Prob
(
ξHHξ > γE(ξHHξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 > γ

)
,

where λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄r̄ ≥ 0 satisfy λ̄1 + · · · + λ̄r̄ = 1 and each ξ̄i ∈ C has the
complex-valued normal distribution Nc(0, 1). Then

Prob
(
ξHHξ > γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 > γ or |ξ̄2|2 > γ or · · · or |ξ̄r̄|2 > γ

)
≤

r̄∑
i=1

Prob
(
|ξ̄i|2 > γ

)
= r̄ e−γ ,

where the last step uses (14).
Theorem 5. For the complex QP (27) and its SDP relaxation (28), we have

vsdp = vqp if m ≤ 3 and otherwise

vqp ≥ 1

4 ln(100K)
vsdp,

where K :=
∑m

i=1 min{rank(Hi),
√
m}.

Proof. By applying a suitable rank reduction procedure if necessary, we can
assume that the rank r of the optimal SDP solution Z∗ satisfies r = 1 if m ≤ 3 and
r ≤

√
m if m ≥ 4; see [9, section 5]. Thus, if m ≤ 3, then Z∗ = z∗(z∗)H for some

z∗ ∈ C
n and it is readily seen that z∗ is an optimal solution of (27), so that vsdp = vqp.

Otherwise, we apply the randomization procedure to Z∗. By using Lemma 5, we have,
for any γ > 0 and μ > 0,

Prob

(
max

1≤i≤m
ξHHiξ ≤ γ, ‖ξ‖2 ≥ μTr(Z∗)

)

≥ 1 −
m∑
i=1

Prob
(
ξHHiξ > γE(ξHHiξ)

)
− Prob

(
‖ξ‖2 < μTr(Z∗)

)
≥ 1 −Ke−γ − Prob

(
‖ξ‖2 < μTr(Z∗)

)
,(30)

where the last step uses r ≤
√
m.
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Let

ηj :=

{
|ξj |2/Z∗

jj if Z∗
jj > 0;

0 if Z∗
jj = 0,

j = 1, . . . , n.

For simplicity, let us assume that Z∗
jj > 0 for all j = 1, . . . , n. Since ξj ∼ Nc(0, Z

∗
jj),

as we discussed in subsection 3.2, |ξj | follows a Weibull distribution with variance Z∗
jj

(see (14)), and therefore

Prob (ηj ≤ t) = 1 − e−t ∀ t ∈ [0,∞).

Hence,

E(ηj) =

∫ ∞

0

te−tdt = 1, E(η2
j ) =

∫ ∞

0

t2e−tdt = 2, Var(ηj) = 1.

Moreover,

E(|ηj − E(ηj)|) =

∫ 1

0

(1 − t)e−tdt +

∫ ∞

1

(t− 1)e−tdt =
2

e
.

Let us denote λj = Z∗
jj/Tr(Z∗), j = 1, . . . , n, and η :=

∑n
j=1 λjηj . We have E(η) = 1

and

E(|η − E(η)|) = E

⎛
⎝
∣∣∣∣∣∣

n∑
j=1

λj(ηj − E(ηj))

∣∣∣∣∣∣
⎞
⎠ ≤

n∑
j=1

λjE(|ηj − E(ηj)|) =
2

e
.

Since, by Markov’s inequality,

Prob (|η − E(η)| > α) ≤ E(|η − E(η)|)
α

≤ 2

αe
∀ α > 0,

we have

Prob
(
‖ξ‖2 < μTr(Z∗)

)
= Prob (η < μ)

≤ Prob (|η − E(η)| > 1 − μ)

≤ 2

e(1 − μ)
∀μ ∈ (0, 1).

Substituting the above inequality into (30), we obtain

Prob

(
max

1≤i≤m
ξHHiξ ≤ γ, ‖ξ‖2 ≥ μTr(Z∗)

)
> 1 − Ke−γ − 2

e(1 − μ)
∀ μ ∈ (0, 1).

Setting μ = 1/4 and γ = ln(100K) yields a positive right-hand side of 0.00898.., which
then proves the desired bound.

The above proof technique also applies to the real case, i.e., h� ∈ R
n and z ∈ R

n.
The main difference is that ξ ∼ N(0, Z∗), so that |ξ̄i|2 in the proof of Lemma 5 and ηj
in the proof of Theorem 5 both follow a χ2 distribution with one degree of freedom.
Then

Prob
(
|ξ̄i|2 > γ

)
=

∫ ∞

√
γ

e−t2/2

√
2π

dt ≤
∫ ∞

√
γ

e−γt/2

√
2π

dt =

√
2

πγ
e−γ/2 ∀ γ > 0,
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E(ηj) = 1, and

E|ηj − E(ηj)| =

∫ ∞

0

e−t/2

√
2πt

|t− 1|dt

=
1√
2π

∫ 1

0

e−t/2

√
t

dt− 1√
2π

∫ 1

0

√
te−t/2dt

+
1√
2π

∫ ∞

1

√
te−t/2dt− 1√

2π

∫ ∞

1

e−t/2

√
t

dt

=
4√
2πe

< 0.968,

where in the last step we used integration by parts on the first and the fourth terms.
This yields the analogous bound that for any γ ≥ 1 and μ ∈ (0, 1),

Prob

(
max

1≤i≤m
ξTHiξ ≤ γ, ‖ξ‖2 ≥ μTr(Z∗)

)
> 1 −K

√
2

πγ
e−γ/2 − 0.968

1 − μ

> 1 −Ke−γ/2 − 0.968

1 − μ
,

where K :=
∑m

i=1 min{rank(Hi),
√

2m}. Setting μ = 0.01 and γ = 2 ln(50K) yields a
positive right-hand side of 0.0022... This in turn shows that vsdp = vqp if m ≤ 2 (see
the proof of Theorem 1) and otherwise

vqp ≥ 1

200 ln(50K)
vsdp.

We note that, in the real case, a sharper bound of

vqp ≥ 1

2 ln(2mμ)
vsdp,

where μ := min{m,maxi rank(Hi)}, was shown by Nemirovski et al. [14] (also see
[13, Theorem 4.7]), although the above proof seems simpler. Also, an example in [14]
shows that the O(1/ lnm) bound is tight (up to a constant factor) in the worst case.
This example readily extends to the complex case by identifying C

n with R
2n and

observing that |hH
� z| ≥ |Re(h�)

TRe(z) + Im(h�)
T Im(z)| for any h�, z ∈ C

n. Thus, in
the complex case, the O(1/ lnm) bound is also tight (up to a constant factor).

6. Discussion. In this paper, we have analyzed the worst-case performance of
SDP relaxation and convex restriction for a class of NP-hard quadratic optimization
problems with homogeneous quadratic constraints. Our analysis is motivated by im-
portant emerging applications in transmit beamforming for physical layer multicasting
and sensor localization in wireless sensor networks. Our generalization (1) of the basic
problem in [20] is useful, for it shows that the same convex approximation approaches
and bounds hold in the case where each multicast receiver is equipped with multiple
antennas. This scenario is becoming more pertinent with the emergence of small and
cheap multiantenna mobile terminals. Furthermore, our consideration of the related
homogeneous QP maximization problem has direct application to the design of jam-
resilient intercept beamformers. In addition to these timely topics, more traditional
signal processing design problems can be cast in the same mathematical framework;
see [20] for further discussions.
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Fig. 1. Upper bound on
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sdp

for m = 8, n = 4, 300 realizations of real Gaussian i.i.d. steering

vector entries, solution constrained to be real.

While theoretical worst-case analysis is very useful, empirical analysis of the ra-
tio

υqp

υ
sdp

through simulations with randomly generated steering vectors {h�} is often

equally important. In the context of transmit beamforming for multicasting [20] for
the case |Ii| = 1 for all i (single receiving antenna per subscriber node), simulations
have provided the following insights:

• For moderate values of m, n (e.g., m = 24, n = 8), and independent and iden-
tically distributed (i.i.d.) complex-valued circular Gaussian (i.i.d. Rayleigh)
entries of the steering vectors {h�}, the average value of

υqp

υ
sdp

is under 3—much

lower than the worst-case value predicted by our analysis.
• In all generated instances where all steering vectors have positive real and

imaginary parts, the ratio
υqp

υ
sdp

equals one (with error below 10−8). This is

better than what our worst-case analysis predicts for limited phase spread
(see Theorem 3).

• In experiments with measured VDSL channel data, for which the steering
vectors follow a correlated log-normal distribution,

υqp

υ
sdp

= 1 in over 50% of

instances.
• Our analysis shows that the worst-case performance ratio

υqp

υ
sdp

is smaller in

the complex case than in the real case (O(m) versus O(m2)). Moreover, this
remains true with high probability when υ

qp is replaced by its upper bound

υ
ubqp

:= min
k=1,...,N

‖z∗(ξk)‖2,

where ξ1, . . . , ξN are generated by N independent trials of the randomization
procedure (see subsections 3.1 and 3.2) and N is taken sufficiently large. In
our simulation, we used N = 30nm. Figure 1 shows our simulation results
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Fig. 2. Histogram of the outcomes in Figure 1.

for the real Gaussian case.6 It plots
υ
ubqp

υ
sdp

for 300 independent realizations of

i.i.d. real-valued Gaussian steering vector entries for m = 8, n = 4. Figure 2
plots the corresponding histogram. Figures 3 and 4 show the corresponding
results for i.i.d. complex-valued circular Gaussian steering vector entries.7

Both the mean and the maximum of the upper bound
υ
ubqp

υ
sdp

are lower in the

complex case. The simulations indicate that SDP approximation is better in
the complex case not only in the worst case but also on average.

The above empirical (worst-case and average-case) analysis complements our the-
oretical worst-case analysis of the performance of SDP relaxation for the class of
problems considered herein.

Finally, we remark that our worst-case analysis of SDP performance is based on
the assumption that the homogeneous quadratic constraints are concave (see (1)).
Can we extend this analysis to general homogeneous quadratic constraints? The
following example in R

2 suggests that this is not possible.
Example 3. For any L > 0, consider the quadratic optimization problem with

homogeneous quadratic constraints:

min ‖z‖2

s.t. z2
2 ≥ 1, z2

1 − Lz1z2 ≥ 1, z2
1 + Lz1z2 ≥ 1,

z ∈ R
2.

(31)

The last two constraints imply z2
1 ≥ L|z1||z2| + 1 which, together with the first con-

straint z2
2 ≥ 1, yield z2

1 ≥ L|z1| + 1 or, equivalently, |z1| ≥ (L +
√
L2 + 4)/2. So the

optimal value of (31) is at least 1 + (L +
√
L2 + 4)2/4 (and in fact is equal to this).

6Here the SDP solution is constrained to be real-valued, and real Gaussian randomization is
used.

7Here the SDP solutions are complex-valued, and complex Gaussian randomization is used.
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The natural SDP relaxation of (31) is

min Z11 + Z22

s.t. Z22 ≥ 1, Z11 − LZ12 ≥ 1, Z11 + LZ12 ≥ 1,
Z 	 0.
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Clearly, Z = I2 is a feasible solution (and, in fact, an optimal solution) of this SDP,
with an objective value of 2. Therefore, the SDP performance ratio for this example
is at least 1/2 + (L +

√
L2 + 4)2/8, which can be arbitrarily large.
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