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Power Spectra Separation via Structured
Matrix Factorization
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Abstract—Power spectra separation aims at extracting the indi-
vidual power spectra of multiple emitters from the received mix-
tures. Traditional spectrum sensing for dynamic spectrum sharing
is mostly concerned with detecting or estimating the aggregate
spectrum. Spectra separation can be considered as a further step
towards full awareness of the radio frequency (RF) environment,
which may enable judicious routing, scheduling and beamforming
with more effective interference avoidance. In other applications
such as geoscience, astronomy, and chemometrics, separating the
spectra of the objects/analytes from the sensed mixtures is also of
great interest. Our prior work tackled this problem from a tensor
decomposition point of view, but this requires delicate and careful
receiver setups, and the algorithms are computationally heavy and
difficult to decentralize. In this work, we propose to solve the power
spectra separation problem using a structured matrix factorization
model, where the columns of one of the two factor matrices live in
the unit simplex. The salient features of this new framework are
that 1) the receivers can be far simpler in terms of hardware, 2) an
algebraically very simple algorithm can be employed for the cen-
tralized case, 3) and that effective decentralized algorithms can be
devised under this framework. Numerical simulations and a labo-
ratory experiment using real software-defined radios are presented
to demonstrate the effectiveness of the proposed algorithms.

Index Terms—Spectrum estimation, spectra separation, nonneg-
ative matrix factorization, sparse optimization, cognitive radio.

I. INTRODUCTION

S PECTRUM sensing plays an essential role in many
applications. In wireless communications, spectrum

sensing enables effective interference avoidance and features
high-efficiency transmit design. In radio astronomy, spectrum
sensing and estimation are employed to observe celestial targets
of interest. The techniques of estimating spectrum are also
instrumental in geoscience and analytical chemistry, where the
spectra of certain objects/analytes are of interest.

There is rich literature on spectrum sensing, particularly in the
context of cognitive radio. The approaches range from per-bin
detection-based methods [2], to sub-Nyquist wideband sensing
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Fig. 1. Motivating examples of spectra separation. (a) Spectra separation of
celestial target and radio frequency interference. (b) Cognitive radio user (CRU)
transmitting at the band of primary user (PU1) with beamforming towards the
direction of PU2 will not interfere either of the PUs.

[3], cooperative sensing [4], [5], power spectrum-based com-
pressive sensing [6], and distributed power spectrum sensing
from coarsely quantized measurements [7]–[10]. Power spec-
trum sensing (as opposed to Fourier spectrum sensing) makes
much sense for wireless communication applications like dy-
namic spectrum sharing, when the objective is not to demodulate
the signal of interest, but rather to estimate spectral occupancy.
Another very important application of power spectrum sensing
is radio astronomy, where the power spectrum of some celestial
target is of interest and is usually sensed by radio telescopes.

Despite recent interest in power spectrum sensing, the blind
power spectra separation problem had not been considered until
our preliminary work in [11], [12]. The power spectra separation
problem comes from a practical concern: In realistic scenarios
where multiple emitter co-exist in the same band, the received
signals at the receivers are mixtures. Apparently, extracting the
individual power spectrum of each emitter from the received
mixtures is of greater interest than merely sensing the aggregate
power spectrum. In fact, knowing the individual emitted spec-
tra enables a number of applications. For example, intelligent
beamforming and judicious routing for wireless communica-
tion systems will be possible, if the spectral occupancy and
the location of each active wireless user are known to the in-
coming users. Spectra separation is also much relevant to radio
astronomy since it can help eliminate radio frequency inter-
ferences (RFIs). Some motivating examples are illustrated in
Fig. 1. On the other hand, power spectra separation is by nature
a very challenging signal processing problem, since the emitters
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Fig. 2. An illustration with two power spectra that satisfy (A1).

(e.g., wireless transmitters and celestial sources) are in general
not cooperating with the receivers. To tackle the spectra sepa-
ration problem under such a ‘blind’ setting, theoretical aspects
such as identifiability and practical concerns like efficient and
decentralized algorithms need to be carefully considered.

Our prior work [11], [12] made the first attempt towards this
direction. There, receivers that carry aligned sensor arrays were
employed to perform cooperative power spectra separation. By
a careful formulation, the power spectra separation problem was
posed as a parallel factor analysis (PARAFAC) problem [13]
in the temporal correlation domain. Identifiability of the power
spectra was guaranteed under this framework, and tensor decom-
position algorithms can be applied. There are, however, some
difficulties left. First, the problem setups in [11], [12] are some-
what restricted: All the receivers are required to have a multiple-
antenna array, and these arrays have to be aligned to satisfy some
geometrical specifications. Second, while the PARAFAC formu-
lation guarantees the identifiability of the power spectra under
mild conditions, the PARAFAC decomposition problem itself is
hard to solve. Third, the formulated PARAFAC problem is dif-
ficult to decentralize, while decentralized algorithms are indeed
desired in many cases, e.g., when long-distance communication
between receivers is prohibitive, no fusion center is available,
or only limited data sharing is allowed.

Contributions: Our endeavor in this work is driven by the
above concerns. The first contribution of this paper lies in for-
mulating the spectra separation problem as a structured matrix
factorization (SMF) problem where the columns of the data ma-
trix lie in a convex hull. The new formulation only involves asyn-
chronous single-antenna receivers, and no geometrical align-
ment among the receivers is required. Under this formulation,
different scenarios and solutions are considered. First, by mak-
ing use of a local sparsity property in the frequency domain,
which is naturally satisfied when the spectra of emitters are
centered at different carriers, an algebraically simple algorithm
is employed to solve the spectra separation problem in closed
form. We also show that the proposed SMF framework can deal
with the critical situation where the local sparsity condition is
violated; the technique is based on the volume-minimization
(VolMin) criterion [14]. Second, to deal with the case where
the number of emitters exceeds that of the receivers, an alter-
native formulation is proposed, where the closed-form solution
and VolMin can still be applied—the price paid is that receiver
synchronization is required.

The second major contribution of this work is decentralized
algorithms for power spectra separation. This line of develop-
ment starts from a sparse optimization-based interpretation to
the SMF problem under local sparsity [15]–[18]. The next step
is to adopt a convex relaxation approach and decentralize the
resulting problem by a careful design of an alternating direc-
tion method of multipliers (ADMM) algorithm [19]. Also, an
iteratively reweighted strategy which can be easily incorporated
into the decentralized algorithm is proposed to enhance the per-
formance in practice. Simulations and a laboratory experiment
are presented to showcase the effectiveness of the proposed
algorithms.

A conference version of this work appeared in [1], which dis-
cussed the local sparsity-based centralized algorithms. In this
journal version, we additionally include the discussion on cases
where local sparsity does not hold, the sparse optimization-
based formulation and its identifiability, the decentralized al-
gorithms, extensive simulations, and a real experiment using
software-defined radios.

Notation: T ,H and ∗ denote transpose, Hermitian trans-
pose and conjugate, respectively; † and −1 denotes the Moore–
Penrose pseudoinverse and matrix inverse, respectively; ⊗ and
� represent the Kronecker product and the Khatri-Rao prod-
uct, respectively; rank( · ) is the matrix rank; Xm,:([X]m,:)
and X :,n ([X]:,n ) represent the m-th row and the n-th col-
umn of matrix X , respectively; ‖ x ‖p and ‖ X ‖F denote
the vector p-(quasi-)norm (p > 0) and the matrix Frobenius
norm, respectively; ‖ X ‖row−0 denotes a row-wise zero-norm
which counts the number of non-zero rows of X;‖ X ‖p

q ,p =
∑m

i=1 ‖ Xm,: ‖p
q for q ≥ 1 and 0 < p ≤ 1 represents the �q/�p

mixed (quasi-)norm; vec(X) denotes the operator that concate-
nates the columns of X = [x1 , . . . ,xn ] such that vec(X) =
[xT

1 , . . . ,xT
n ]T ; unvec(x) denotes the inverse operator of

vec( · ); Diag(x1 , . . . , xn ) denotes a diagonal matrix with
x1 , . . . , xn as its diagonal elements; ek denotes the kth column
of the identity matrix; P⊥

X denotes projector to the orthogo-
nal complement of the range space of X; (x)+ = max(x,0)
denotes thresholding operator; Tr(X) denotes the trace of X,
conv{x1 , . . . ,xn} denotes the convex hull of x1 , . . . ,xn .

II. MATRIX FACTORIZATION-BASED POWER SPECTRA

SEPARATION

A. Signal Model

We consider the following received signal model at each
sensor:

yn (t) =
K∑

k=1

an,kxk (t) + vn (t) , t = 0, 1, . . . , (1)

where xk (t) ∈ C denotes the transmitted signal of source k,
which is assumed to be wide-sense stationary (WSS), an,k ∈ C
is the channel response from source k to sensor n, vn (t) denotes
the noise at sensor n, which is assumed to be i.i.d. zero-mean
circularly symmetric Gaussian with variance σ2

n , and N and K
denote the number of sensors and sources, respectively. Assume
that the sources are mutually uncorrelated, and that K is known
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or has been previously acquired. Our objective is to estimate the
power spectra of the sources.

In this work, we focus on the model in (1) and assume no
multipath effects. Two specific scenarios where the model in
(1) is valid are i) when airborne sensors are employed for re-
connaissance, search and rescue, or target detection and spectral
signature identification; and ii) when the target sources are celes-
tial objects and the sensors are radio telescopes. More generally,
if the source signals are narrowband relative to the carrier fre-
quency (e.g., bandwidth smaller than 20 MHz on a 2.4 GHz
carrier), frequency-selective multipath effects are usually neg-
ligible. For wideband sources, one can employ long-term cor-
relation averaging, which under certain conditions can mitigate
the effects of different frequency-selective multipath from sen-
sor to sensor—see Appendix A of [7] for detailed conditions
and derivations. Finally, subband processing can be used to en-
sure that multipath effects are tolerable within each subband.
Each subband can be separately analyzed, and the results can
be combined at the end.

B. Proposed Approach

To formulate the problem, we start by computing the auto-
correlations of the received signal at each sensor; i.e., sensor n
locally computes

cn (�) = E {yn (t) y∗
n (t − �)} , n = 1, . . . , N,

where � ∈ Z denotes the index of the time lag. From the signal
model in (1), and under the assumption that the sources are
uncorrelated, it can be readily shown that

cn (�) =
K∑

k=1

an,ka∗
n,kE {xk (t)x∗

k (t − �)}

+ E {vn (t) v∗
n (t − �)}

=
K∑

k=1

|an,k |2rk (�) + σ2
nδ(�), (2)

where rk (�) = E{xk (t)x∗
k (t − �)} represents the temporal

auto-correlation of source k at time lag �, E{vn (t)v∗
n (t −

�)} = σ2
nδ(�) is obtained by assuming that the noise is i.i.d.

Gaussian distributed, and δ(�) denotes the Kronecker delta func-
tion. Taking the Discrete Fourier Transform (DFT) of cn (�) for
n = 1, . . . , N , we obtain

Cn (ω) =
∞∑

�=−∞
cn (�) e−jω� =

K∑

k=1

|an,k |2Sk (ω) + σ2
n ,

where Sk (ω) denotes the power spectral density (PSD) of
source k at frequency ω. We discretize Cn (ω) by letting
Gn (f) = Cn ( 2π (f−1)

F ) =
∑K

k=1 |an,k |2Sk ( 2π (f−1)
F ) + σ2

n for
f = 1, . . . , F , and construct a matrix G ∈ RN ×F such that
Gn,f = Gn (f). In matrix form, we have

G = BS + η1T , (3)

where B ∈ RN ×K is such that Bn,k = |an,k |2 , S ∈ RK×F ,

Sk,: = [Sk (0), . . . , Sk ( 2π (F −1)
F )] is the discretized power

spectrum of source k, η = [σ2
1 , . . . , σ2

N ]T , and 1 denotes an
all-one vector with proper length.

There are many ways to estimate σ2
n for n = 1, . . . , N

[12], [13]. After obtaining estimates of the noise variances,

i.e., η̂ = [σ̂1
2 , . . . , σ̂N

2 ]
T

, we can remove η from G in (3) via
subtraction. Let G̃ := G − η̂1T . Then, the following noise-free
model can be (approximately) obtained,

G̃ = BS. (4)

Since both B and S are nonnegative, estimating S from G̃ can
be treated as a nonnegative matrix factorization (NMF) problem,
which recently found diverse applications in machine learning
and signal processing. Hence, one possible way of estimating
S is to apply some existing algorithms that tackle the following
optimization criterion for NMF:

S = arg min
B≥0,S≥0

∥
∥
∥G̃ − BS

∥
∥
∥

2

F
. (5)

However, as mentioned in [12], [20], the difficulty is that NMF
does not necessarily lead to a unique solution, which means that
the identifiability of S is not guaranteed; plus, the optimization
problem in (5) is hard to solve. To ensure uniqueness, it is
sometimes more convenient to explore some other structures of
one or both of B and S [14], [21], [22], rather than relying on
nonnegativity alone. To explain, we first assume that the matrix
B has full column rank, i.e., rank(B) = K. We also consider
the following condition:
(A1) For each k ∈ {1, . . . , K}, there exists a frequency
index fk ∈ {1, 2, . . . , F} such that Sk ( 2π (fk −1)

F ) > 0 and

Sj �=k ( 2π (fk −1)
F ) = 0.

(A1) means that each source dominates at least one particu-
lar frequency, which is common in wireless communication—
different carrier frequencies are allocated to different transmit-
ters to avoid mutual interference. Notice that (A1) is identical
to the so-called separability, local dominance, and pure-pixel
assumption in NMF [22], blind source separation (nBSS)1 [21]
and hyperspectral unmixing [15], respectively. In this work,
we refer to the matrix factorization task under (A1) as struc-
tured matrix factorization (SMF), to distinguish from general
NMF. Given that (A1) holds, the task of matrix factorization
amounts to finding the index set Λ = {f1 , . . . , fK }, since the
factor B (with column permutation and scaling ambiguities) can
be simply ‘read out’ from the corresponding columns of G̃, i.e.,
B̂ = G̃:,Λ ; and S can then be estimated up to row permutation
and scaling ambiguities by solving

Ŝ = arg min
S≥0

‖ G̃ − B̂S ‖2
F . (6)

We should mention that, to make the formulated factorization
model work, we do not necessarily need (A1). Approaches that
can deal with the situation where (A1) is violated will also be
briefly introduced later—see Remarks 2 and 4.

Many algorithms have been proposed to identify Λ; see, e.g.,
[21], for a review. In this paper, we propose to employ the

1The subtle difference between nBSS and NMF is that nBSS only requires S
to be nonnegative, while imposing no nonnegativity constraint on B.
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Fig. 3. Geometry of Ḡ = B̄S̄. The shaded region is conv{b̄1 , b̄2 , b̄3}.

so-called successive projection algorithm (SPA) [22], [23],
which consists of closed-form solutions for identifying
f1 , . . . , fK . To describe the process, let us first normalize
the columns of G̃; i.e., we let Ḡ:,f = G̃:,f /‖ G̃:,f ‖1 for
f ∈ F , whereF = {f | ‖ G̃:,f ‖1 > 0, f ∈ {1, . . . , F}}, and let
Ḡ:,f = G̃:,f otherwise. By this normalization, we see

Ḡ:,f =
K∑

k=1

B̄:,k S̄k,f , (7)

where B̄:,k = B:,k /‖ B:,k ‖1 and S̄k,f = Sk,f ‖
B:,k‖1/‖

∑K
k=1 Sk,f B:,k ‖1 . Then, we have a signal

model in the following compact form:

Ḡ = B̄S̄, (8)

in which, by invoking the nonnegativity of B̄, one can easily
show that [22]

1T S̄ = 1, S̄ ≥ 0. (9)

Under (9) and rank(B) = K, all the columns of Ḡ:,f live in the
convex hull conv{b̄1 , . . . , b̄K }, and the columns corresponding
to f1 , . . . , fK in (A1) are the vertices of this convex hull—the
problem can also be viewed as a vertex-index picking problem;
see Fig. 3 for an illustration. SPA picks out f1 , . . . , fK using
the following simple steps:

f̂k = arg max
f∈{1,...,F }

∥
∥
∥P⊥

B̂1 :k −1
Ḡ:,f

∥
∥
∥

2

2
, k = 1, . . . , K,

(10)
where B̂1:k−1 = [Ḡ:,f̂1

, . . . , Ḡ:,f̂k −1
] and B̂1:0 = I; the readers

are referred to [21], [22] for the derivation.
Remark 1: The proposed SPA-based solution to power spec-

tra separation has several attractive features. First, the formu-
lation in (4) does not require synchronization between the sen-
sors, which spares much effort and saves considerable com-
munication overhead. The reason is that cn (�)(cf. (2)) is auto-
correlation of a stationary signal which is only related to the time
lag, i.e., �, rather than any specific time shift. Second, SPA itself
is very efficient. This desired feature makes SPA particularly
suitable to be used in real-time applications such as wireless
communications. Also, it has been proved that SPA is robust to
modeling errors and noise [22], which means that even when
(A1) is violated to some extent, e.g., when source k does not
exactly occupy fk by itself but merely dominates the others at
fk , the proposed approach can still work.

Remark 2: In more challenging cases where (A1) is grossly
violated, it is still possible to recover B̄ from Ḡ(and thus S)

Fig. 4. Intuition of VolMin. The illustration is on the hyperplane where
conv{b̄1 , b̄2 , b̄3} lies in.

by leveraging the volume-minimization (VolMin)-based ma-
trix factorization criterion. VolMin finds B̄ via finding the
minimum-volume convex hull that encloses all the columns of
Ḡ. The VolMin criterion is as follows:

(
B̄, S̄

)
= arg min

Q∈RM ×K ,Θ∈RK ×F
det

(
QT Q

)

s.t. Ḡ = QΘ, 1T Θ = 1T ,Θ ≥ 0, (11)

where Q = [q1 , . . . , qK ], the cost function measures the vol-
ume of the sought convex hull, and the constraints mean
that the columns of Ḡ are enclosed by the convex hull
conv{q1 , . . . , qK }. The intuition of VolMin is illustrated in
Fig. 4 using a K = 3 case, where we see that the en-
closing convex hull with minimum volume coincides with
conv{b̄1 , b̄2 , b̄3}. Recently, we have shown that (11) is a
sound criterion that guarantees identifiability of B̄ with-
out (A1), provided that the Ḡ:,f ’s are sufficiently spread in
conv{b̄1 , . . . , b̄K }[14]. Nevertheless, VolMin algorithms (e.g.,
those in [24], [25]) in general do not have closed-form solu-
tion as SPA does, so there is a trade-off between robustness to
modeling assumptions and implementation simplicity.

Remark 3: In many applications, estimating the locations of
the sources is also of interest. This is seriously compounded by
superposition, so spectra separation is instrumental for localiza-
tion as well. Specifically, under (A1), if fk has been identified,
the sensors can localize source k within a narrow bandwith cen-
tered at frequency fk , where interference from other sources
is weak, using various received signal strength (RSS)-based
algorithms, e.g., [26] or [27]–[29].

C. The Under-Determined Case

Applying SPA requires that rank(B) = K, which implicitly
assumes that the number of sensors is larger than or equal to that
of sources. In practice, however, there are cases where such an
assumption does not hold. Under such circumstances, there exist
other algorithms that can potentially identify Λ, e.g., the succes-
sive nonnegative projection algorithm (SNPA) [30] which is an
advanced version of SPA with more complicated updates. Nev-
ertheless, we can still apply the simple plain SPA to resolve the
power spectra of the sources, if the sensors are synchronized. To
explain, we construct y(t) = [y1(t), . . . , yN (t)]T by collecting
the received signals of the sensors at time t. Let

D (�) = E
{
y (t) yH (t − �)

}
, (12)
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denote the temporal cross-correlation matrix of the received sig-
nals at time lag �. Using y(t) = Ax(t) + v(t), where x(t) =
[x1(t), . . . , xK (t)]T and v(t) = [v1(t), . . . , vN (t)]T , and the
assumption that the noise is spatially and temporally white,
we have

D (�) = AR (�) AH + Ξδ (�) , (13)

where δ(�) denotes the Kronecker delta, R(�) = Diag(r(�)),
r(�) = [r1(�), . . . , rK (�)]T , Ξ = Diag(η), and η is defined as
before.

The signal model in (13) has been extensively used in the
context of blind source separation (BSS) [31] for estimating the
mixing system A via the joint diagonalization technique, with
the ultimate goal of separating the sources, e.g., by (pseudo-
)inverting A to estimate x(t) as x̂(t) = A†y(t). Our interest
here lies in sensing the spectra of the sources instead. To this
end, we define

z (�) = vec (D (�)) = (A∗ � A) r (�) + δ (�) g,

where g = (I � I)η, and A∗ � A = [a∗
1 ⊗ a1 , . . . ,a

∗
K ⊗

aK ]. It can be seen that the Fourier Transform of zi(�), i.e.,
the ith element of z(�), is

Zi (ω) =
∞∑

�=−∞
zi (�) e−jw� =

K∑

k=1

[A∗ � A]i,kSk (ω) + gi,

where i = 1, . . . , N 2 , and Sk (ω) =
∑∞

�=−∞ rk (�)e−jw� is the
power spectrum of source k at frequency ω. Hence, by letting
Wi(f) = Zi(

2π (f−1)
F ) for f = 1, . . . , F and W i,f = Wi(f),

we come up with

W = (A∗ � A) S + g1T . (14)

The noise term g can be estimated and canceled. Consequently,
we obtain the following signal model,

W̃ = (A∗ � A) S. (15)

We still wish to apply SPA to the signal model in (15) to resolve
the power spectra of the sources. The difficulty is that A∗ � A
is not nonnegative and the normalization step in the last section
is no longer applicable. Here, a slightly different normalization
can be employed, following the insight of the method in [14].
To see the procedure, let us denote

unvec
(
W̃ :,f

)
= ADiag (S:,f ) AH .

Then, for f such that Tr(unvec(W̃ :,f )) > 0, we construct

W̄ :,f =
W̃ :,f

Tr
(

unvec
(
W̃ :,f

)) = HŠ:,f , (16)

where H = [h1 , . . . ,hK ], hk = a∗
k ⊗ak

‖ak ‖2
2

, and Šk,f =
‖ak ‖2

2 Sk , f
∑ K

k = 1 Sk , f ‖ak ‖2
2

. We see that, by this construction, 1T Š = 1T

and Š ≥ 0 are satisfied. To apply SPA, we now only require
that rank(H) = K, which can be satisfied under mild condi-
tions. For example, if the entries of A are drawn from some
continuous distribution, rank(H) = K is fulfilled almost

surely if K ≤ N 2[32]—this implies the ability of resolving K
power spectra using only O(

√
K) sensors.

Remark 4: When (A1) is violated, the VolMin approach dis-
cussed in Remark 2 can be employed in place of SPA to (16)

to recover S. Moreover, using the matrices {unvec(W̃ :,f )}
F

f =1 ,
a low-rank tensor factorization-based formulation can also be
considered:

min
A,S

F∑

f =1

∥
∥
∥unvec

(
W̃ :,f

)
− ADiag (S:,f ) AH

∥
∥
∥

2

F
. (17)

Problem (17) is known as the least squares optimization crite-
rion for parallel factor analysis (PARAFAC) with an additional
symmetry constraint. Under the framework of PARAFAC, the
factors (i.e., A and S) are also identifiable when N < K[13].
Another merit of using (17) is that the identifiability of S
holds under even milder conditions compared to that ensure the
identifiability of VolMin. However, the trade-off is that solving
Problem (17) is difficult, which is even more cumbersome than
dealing with VolMin in practice.

We summarize the SPA algorithm on the signal models in
both (8) and (16) in Algorithm 1. It should be noted that for
the under-determined case, an extra synchronization stage is re-
quired for applying SPA, which is a price to pay for dealing
with this challenging scenario. Also notice that in this section,
we implicitly assumed that there is a fusion center that col-
lects and processes the data received by the sensors. Hence, we
call Algorithm 1 the centralized algorithm. In the next section,
decentralized algorithms will be proposed.

III. DECENTRALIZED POWER SPECTRA SEPARATION

In many cases, decentralized algorithms are desired. For ex-
ample, sometimes there is no fusion center. Moreover, long-
distance communication is sometimes expensive or prohibitive
and thus the sensors can only exchange information with their
neighbors. Decentralized algorithms are also needed for enhanc-
ing network robustness against sensor failure, and for security
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considerations such as data sharing restrictions. In this section,
we propose decentralized power spectra separation algorithms
that only require each sensor to communicate with its one-hop
neighbors.

A. A Sparse Optimization Criterion

Our idea is to utilize the signal model in (8) again. Notice
that G̃n,: is received and stored at sensor n, and ‖ G̃:,f ‖1 =
∑N

n=1 G̃n,f can be easily obtained at each sensor by some
existing distributed aggregation algorithms, e.g., the gossip al-
gorithm [33] and the first order algorithm for unconstrained
consensus [34]. Hence, the normalized data Ḡn,: can be ob-
tained at each sensor without any centralized process. Beginning
from this point, we consider a recently proposed formulation in
[15], [16], [35] for estimating Λ:

min
C∈RF ×F

‖ C ‖row−0

s.t. Ḡ = ḠC

1T C = 1T ,C ≥ 0. (18)

The intuition behind the above formulation is to use a row-sparse
C to select some columns of Ḡ as a basis which should enclose
all the data points within its convex hull. To see the reason why
Problem (18) helps identify Λ, let us consider an illustrative
case where Λ = {1, 2, . . . ,K}. Given that (A1) holds and that
rank(B) = K, Problem (18) has the optimal solution C� =

[S̄T
,0T ]

T
[15]. Notice that the constraints in Problem (18) are

all satisfied by C� and it is impossible to find another feasible C
with fewer nonzero rows, which validate the optimality of C� .
Such a structure of the optimal solution leads to identification
of Λ, which can be found by simply inspecting the non-zero
rows of C� . In more general cases where Λ = {f1 , . . . , fK },
we have [15]

C� = ΠT

[
S̄
0

]

, (19)

where Π is a permutation matrix such that S̄Π = [I, S̄
′], and

Λ can also be known by inspecting the nonzero rows of C� .
To see how we decentralize the problem, we consider the

mixed-norm relaxation (see [16]), where ‖ C ‖row−0 is replaced
by ‖ C ‖q ,1 for q > 1:

min
C∈RF ×F

‖ C ‖q ,1

s.t. Ḡ = ḠC

1T C = 1T ,C ≥ 0. (20)

Curiously, although such a relaxation technique is widely
adopted in many applications, particularly in remote sensing
[36], [37], there has been no formal proof regarding its identifi-
ability of Λ, to our best knowledge.2 Here, as a side contribution,
we fill this gap by providing the following theorem:

Theorem 1: Let Copt denote the optimal solution to Problem
(20). Assume that Ḡ has no repeated columns and rank(B) =

2In [16], a statement was made regarding the identifiability, but the proof was
not provided.

K. Then, under the model in (8) and (A1), Copt = C� holds
for q > 1, where C� is as defined in (19).

The proof of Theorem 1 can be found in Appendix A,
which verifies the soundness of employing Problem (20) as an
optimization surrogate.

B. ADMM-Based Decentralization

In practice, to deal with noise and modeling error, and to
derive a decentralized algorithm, we are interested in dealing
with the following LASSO-type variant of Problem (20) [16]:

min
C∈RF ×F

λ‖ C ‖q ,1 +
1
2

∥
∥Ḡ − ḠC

∥
∥2

F

s.t. 1T C = 1T ,C ≥ 0. (21)

By relaxing Ḡ = ḠC, the above problem is considered more
robust to noise and modeling errors; also see some theoretical
evidence in [18] for the q = ∞ case. We wish that every sensor
finds a local solution of C and achieves ‘local consensus’ with
its one-hop neighbors, so that the overall consensus can be
eventually achieved. To this end, let us first denote Nn as the
index set of the one-hop neighbors of sensor n. Then, taking
into consideration that Ḡn,: is the (normalized) data at sensor
n, we come up with the following formulation:

min
{Γn

r },{Cn }

1
2

N∑

n=1

∥
∥Ḡn,: − Ḡn,:C

n
∥
∥2

2 +
N∑

n=1

λ

N |Nn |
‖ Γn

r ‖q ,1

s.t. 1T Cn = 1T ,

Cn = Γn
r ,Cr = Γn

r , r ∈ Nn

Γn
r ≥ 0. (22)

Instead of optimizing with respect to a global variable C, Prob-
lem (22) aims at finding Cn at sensor n, and a local consensus
variable Γn

r with its neighbors (sensor r for r ∈ Nn ). As pointed
out in [19], [38], if there always exists a single or multi-hop path
that links any two sensors, such a reformulated local consensus
problem in (22) and the original problem in (21) are equivalent.
To solve Problem (22), we propose the following alternating
direction method of multipliers (ADMM)-based algorithm [19],
whose updates can be seen in

Γn
r := arg min

Γn
r ≥0

λ

N |Nn |
‖ Γn

r ‖q ,1

+
ρ

2
‖Cn − Γn

r + Un
r ‖2

F

+
ρ

2
‖Cr − Γn

r + V r
n‖2

F (23a)

Cn := arg min
1T Cn =1T

1
2

∥
∥Ḡn,: − Ḡn,:C

n
∥
∥2

2

+
ρ

2

∑

r∈Nn

‖Cn − Γn
r + Un

r ‖2
F

+
ρ

2

∑

r∈Nn

‖Cn − Γr
n + V n

r ‖2
F (23b)

Un
r := Cn − Γn

r + Un
r , (23c)

V r
n := Cr − Γn

r + V r
n . (23d)
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There, Un
r is the dual variable associated with the equality

constraint Cn = Γn
r , and V r

n with Cr = Γn
r . In the process

described in (23), Γn
r , Cn and Un

r are calculated at sensor n,
and V r

n is calculated at neighbors of sensor n. Each sensor needs
to gather information from its neighbors for computing (23a)
and (23b). Then, the calculated Γn

r is passed to its neighbors to
compute (23d). Therefore, the algorithm can be carried out in a
sensor network where only one-hop communication is available.

Notice that the subproblems (23a) and (23b) admit simple so-
lutions. Subproblem (23b) is an equality-constrained quadratic
program, and the optimal Cn can be obtained by solving the
following optimality conditions of Problem (23b):

[
2|Nn |ρI +

(
Ḡn,:

)T
Ḡn,:, 1

1T , 0

] [
Cn

ν

]

=
[ (

Ḡn,:
)T

Ḡn,: + ρ (Γn
r − Un

r + Γr
n − V n

r )
1T

]

. (24)

Problem (23a) is a constrained proximal operator. To solve it,
we only need to consider the problems w.r.t. each row of Γn

r ,
i.e., for f ∈ {1, . . . , F},

min
Γn

f , :≥0

ρ

2

∥
∥
∥
∥

Cn
f,: + [Un

r ]f ,: + Cr
f ,: + [V r

n ]f ,:

2
− [Γn

r ]f ,:

∥
∥
∥
∥

2

2

+
λ

2N |Nn |

∥
∥
∥[Γn

r ]f ,:

∥
∥
∥

q
. (25)

Problem (25) can be converted into the following form [39]:

min
[Γn

r ]f , :

1
2

∥
∥
∥
∥

(
Cn

f,: + [Un
r ]f ,: + Cr

f ,: + [V r
n ]f ,:

2

)

+
− [Γn

r ]f ,:

∥
∥
∥
∥

2

2

+
λ

2ρN |Nn |

∥
∥
∥[Γn

r ]f ,:

∥
∥
∥

q
. (26)

For the q = 2 case, we have

[Γn
r ]f ,: :=

⎧
⎨

⎩

0,
∥
∥βn

f

∥
∥

2 < λ
2N |Nn |ρ(

1 −
λ

2 N |Nn |ρ

‖βn
f ‖2

)

βn
f , otherwise

(27)

where βn
f = (Cn

f , : +[Un
r ]f , : +Cr

f , : +[V r
n ]f , :

2 )+ ; for q = ∞, the
proximal operator can also be solved via computing projec-
tion onto an �1-norm ball [40], [41], whose complexity order
can be as small as O(F ) [42].

Following the proposed ADMM algorithm, if there always
exists a single or multi-hop path that links any two sensors, the
solution of the decentralized algorithm converges to the solution
of Problem (21) [19], [38]. After obtaining Cn at each sensor, an
estimated index set, i.e., Λ̂n , is known at each sensor. The next
step is to estimate the power spectra in a decentralized manner by
solving the nonnegative least squares problem (6). Problem (6)
can be solved following the same decentralizing strategy as we
described for Problem (22), so that a local estimate Ŝ

n
can

be obtained at sensor n; the detailed algorithm is relegated to
Appendix B.

C. Reweighting for Performance Enhancement

To enhance the row-sparsity, a commonly used trick is to
solve a series of convex relaxation problems with a reweighting
scheme. Specifically, in our context, instead of solving Problem
(22) once, we repeatedly solve its weighted version with the
objective function

1
2

N∑

n=1

∥
∥Ḡn,: − Ḡn,:C

n
∥
∥2

F
+

N∑

n=1

λ

N |Nn |
‖ ΣnΓn

r ‖q ,1 (28)

for several times, where Σn ∈ RF ×F is a diagonal matrix. No-
tice that such a change does not affect the ADMM updates,
except that (26) is replaced by the following:

min
[Γn

r ]f , :

1
2

∥
∥
∥
∥

(
Cn

f,: + [Un
r ]f ,: + Cr

f ,: + [V r
n ]f ,:

2

)

+
− [Γn

r ]f ,:

∥
∥
∥
∥

2

2

+
λ

2N |Nn |ρ
‖ Σn

f,f [Γn
r ]f ,: ‖q

(29)

Solving the above reweighted version is equally easy to solving
Problem (26); for example, when q = 2, the only change is to
replace λ in (27) by λΣn

f,f . A good way of choosing Σn is to

set Σn
f,f = p‖ Cn

f,: ‖p−1
q

for f = 1, . . . , F , where 0 < p < 1.
Under such a choice of Σn , the iteratively reweighted algo-
rithm can be interpreted as a successive convex approximation
algorithm for solving Problem (21) with ‖ C ‖q ,1 replaced by
‖ C ‖p

q ,p , and the latter is provably a better approximation to
‖ C ‖row−0[18]. In our experience, only three to five itera-
tions of reweighting gives much better solution than solving
Problem (22) only once.

Remark 5: A side benefit of using formulation in (18) and
its mixed-norm optimization surrogates is that the number of
sources, i.e., K, is not necessarily needed. In other words, K can
be inferred by the number of rows with nonzero (or, practically,
significant) norms. A practical way for sensor n to estimate K is
to set up a threshold α, and count the number of rows that admit
norms larger than α; i.e., one can let the number of sources
estimated at sensor n, denoted by K̂n , to be K̂n = |Λ̂n | where
Λ̂n = {f | ‖ Cn

f,:‖q > α}.
To conclude this section, we summarize the decentralized

algorithm in Algorithm 2, where one can clearly see the message
exchange protocol.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to validate the
proposed algorithms. In the simulations, the band of inter-
est consists of B subchannels (B > K), which are indexed
by {1, . . . , B}. Subchannel i for i = 1, . . . ,K is assigned to
emitter i so that (A1) is fulfilled. In addition, each transmit-
ter randomly picks J other subchannels from K + 1 to B.
In each occupied subchannel, the corresponding source signal
is generated by filtering i.i.d. zero-mean circularly symmetric
Gaussian signals by a sinc-shape filter with a random scaling.
The channel matrix A is also randomly generated following
the zero-mean and unit-variance circularly symmetric Gaussian
distribution. For the noise at each sensor, we also generate it
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following vn (t) ∼ CN (0, σ2). The signal-to-noise ratio is de-
fined as SNR = E{‖ Ax(t)‖2

2}/Nσ2 , In all the simulations,
unless specified, B = 8 subbands and T = 106 samples are
used, and the band of interest is discretized into F = 64 fre-
quency bins. The noise variance σ2

n for n = 1, . . . , N is esti-
mated and canceled following the same way that was proposed
in [12]. All the simulations are carried out using Matlab codes
on a desktop computer with i7 2.7 GHz CPU and 16 GB RAM.

A. Centralized Cases

Fig. 5 shows an illustrative example, where the results of
applying SPA to the formulation in (8) and the Khatri-Rao
structured formulation in (16) are presented; the results of the
NMF algorithm, namely, accelerated hierarchical alternating
least squares (HALS) [43], that aims at solving (5) are also
presented. We assume that the sensors are synchronized so that
SPA can be legitimately applied to (16). The shapes of the
power spectral densities (PSDs) are fixed for better visual illus-
tration, but the channels and noise are randomly generated at
each of the 100 trials. In this simulation, we set SNR = 10 dB,
(N,K) = (5, 2) and J = 4. We see that applying SPA to both
(8) and (16) can successfully separate the individual power spec-
tra. Particularly, using the Khatri-Rao structured formulation in
(16) gives visually better results in this case, which we be-
lieve is because the structure of A � A∗ brings more degrees
of freedom—A � A∗ is virtually an N 2 × K matrix while B

Fig. 5. The separated power spectra of two source by the algorithms. SNR =
10 dB; (N, K ) = (5, 2).

Fig. 6. The source localization result. SNR = 10 dB; (N, K ) = (5, 2).

is an N × K matrix. In Fig. 5, we also notice that HALS fails
in many trials even when the underlying spectra are separable
via SPA, i.e., when (A1) is satisfied. This verifies that NMF
without considering additional structure is not promising in this
application.

Fig. 6 follows Remark 3, where we present the results of
source localization using a RSS-based localization algorithm at
the dominant frequencies identified by SPA. The results of 100
trials are shown in this figure. We assume a free-space propa-
gation model within a 60 m × 50 m region, and the localization
algorithm that we employ here is a suboptimal yet simple least
squares (LS)-based algorithm [27]. Notice that more sophisti-
cated (but computationally more expensive) algorithms such as
the semidefinite relaxation (SDR)-based approach [29] can also
be adopted to improve the performance for more critical situ-
ations, e.g., lower SNR cases. One can see that the estimated
locations of the sources are reasonably accurate in this scenario,
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TABLE I
THE MSES (DB) AND RUNTIMES (SEC.) OF THE ALGORITHMS

UNDER VARIOUS SNRS

TABLE II
THE MSES (DB) AND RUNTIMES (SEC.) OF THE ALGORITHMS

UNDER VARIOUS F ’S

TABLE III
THE MSES (DB) AND RUNTIMES (SEC.) OF THE ALGORITHMS

UNDER VARIOUS T ’S

and using the dominant frequencies given by SPA to (16) slightly
outperforms using that of SPA to (8), which is consistent with
the last example.

In Table I, the mean squared errors (MSEs) of the estimated
power spectra of a Monte Carlo simulation is presented; the
MSE is defined by

MSE = min
π∈Π

1
K

K∑

k=1

∥
∥
∥
∥
∥

Sk,:

‖ Sk,:‖2
− Ŝπk ,:

‖ Ŝπk ,:‖2

∥
∥
∥
∥
∥

2

2

,

where Π is the set of all permutations of {1, 2, . . . ,K}; and Sk,:

and Ŝk,: are the true power spectrum of source k and the cor-
responding estimate, respectively. The corresponding runtimes
are also presented. Here, we set (N,K) = (5, 3) and J = 3,

TABLE IV
THE MSES (DB) AND RUNTIMES (SEC.) OF THE ALGORITHMS

UNDER VARIOUS K ’S

TABLE V
THE MSES (DB) AND RUNTIMES (SEC.) OF THE ALGORITHMS

OF AN UNDER-DETERMINED CASE

Fig. 7. A case where (A1) does not hold.

and the results are obtained by averaging 100 trials. In this sim-
ulation, we test the performance of the algorithms with both
synchronous and asynchronous sensors. We see that, with syn-
chronization, SPA applied to (16) yields the most favorable
MSE performance, and SPA applied to (8) also gives reasonable
estimates. However, if the sensors are not synchronized, SPA
applied to (16) fails as expected, while the performance of SPA
applied to (8) is not affected. In terms of runtime, we see that
SPA applied to (8) outperforms the other two algorithms.

Table V presents the MSE and runtime performance of
the algorithms with (N,K) = (3, 6) and synchronous sensors;
the other settings follow the previous simulation. Notice that
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Fig. 8. The geometry of the simulated case in Fig. 7.

under such circumstances, SPA cannot be applied to (8). We
use the PARAFAC algorithm (cf. Remark 4), namely, trilinear
alternating least squares (TALS) [13], as benchmark. TALS is
stopped when the number of iterations reaches 1000 or the rel-
ative change of its cost function is smaller than 10−9 . We see
that SPA applied to (16) gives good estimation accuracy of the
desired power spectra, and the speed is quite appealing, which
is more than 300 times faster than the algorithms under compar-
ison. TALS using random initializations cannot give reasonable
estimates of the power spectra, since it cannot converge to a
good solution within 1000 iterations. However, using the results
of SPA as initialization, we see TALS gives excellent estimation
results. This suggests that the usage of SPA can be twofold in
practice: one can either apply SPA for real-time applications
that put emphasis on computational efficiency, or can use it to
initialize a PARAFAC algorithm for better accuracy.

In Tables II and III, we test how the performance scales with
F and T , respectively. We fix SNR = 10 dB in both simulations,
and the other settings are unchanged. We see that applying SPA
to (8) yields reasonable results under all situations, but the other
algorithms are either not working (NMF-HALS) or sensitive
to synchronization (SPA applied to (16)). From Table II, we
see that the algorithms perform better for F = 64 and F = 128
under the current settings—to obtain the same accuracy under
finer spectral resolution, one may need more samples. This is
also reflected in Table III, where we see that a larger number of
samples leads to better performance.

In Table IV, we observe the performance of the algorithms
versus the number of sources. We set up B = 20 subchannels,
assign 3 to each source, and vary K from 2 to 8. The ith sub-
channel is assigned to source i as before. We let N = K + 3,
T = 106 , F = 64, and SNR = 10 dB. We see that although
SPA is a greedy algorithm that may suffer from error accumula-
tion and performs better for smaller K, it gives very satisfactory
spectra estimation accuracy even when K = 8.

In Figs. 7–8, we show an example where local dominance
does not hold. The spectra of the three sources are shown in Fig.
7 with blue solid lines. Fig. 8 shows the columns of Ḡ projected
onto conv{ā1 , ā2 , ā3}. Clearly, two vertices are not touched
and (A1) is significantly violated. Under this setup, we run
SPA and VolMin for 10 different trials, where the sources and
the channels are randomly generated at each trial. We see that

Fig. 9. Topologies of the two simulated sensor networks. The dots represent
the sensors, and the lines represent the communication links.

SPA does not succeed in recovering the spectra under this situ-
ation, but VolMin works well. The results here echo Remark 2
that, in challenging cases, VolMin can still provide reasonable
solution by better exploiting the same signal model. The cost is
that the average runtime of the VolMin algorithm (0.0435 sec.)
that we employ here (i.e., the algorithm in [24]) is around 20
times slower than that of SPA (0.0023 sec).

B. Decentralized Cases

In this subsection, we use simulations to verify the ef-
fectiveness of the proposed decentralized algorithm. We test
the proposed algorithm with and without reweighting, respec-
tively. Throughout this section, we set the maximal iterations
of reweighting (i.e., MaxRwIt in Algorithm 2) to be 5 and let
p = 0.05. For the regularization parameter λ, we fix it for the
algorithm with and without reweighting to be 10−3 and 0.1,
respectively. For the p = 1 case (no reweighting), the step size
of ADMM is set to be ρ = 10−3 . ADMM is stopped if the
number of iterations reaches 105 or ‖ Γ1

r − C1‖F ≤ η where
η = 10−7 for some r ∈ Nn . For the p < 1 case, we adopt a more
aggressive stopping criterion: for the first four reweighted sub-
problems, we set η = 10−2 , and for the last subproblem, we set
η = 10−4 . As we will show, this stopping criterion significantly
decreases the total number of iterations, while not affecting the
performance when combined with the reweighting strategy. We
assume that K is known and pick up Λ̂n by identifying the rows
of C1 with the K largest norms.

We test the algorithms under the sensor networks depicted
in Fig. 9. The histograms of MSEs of the estimated power
spectra obtained at sensor 1 from 100 trials are presented
Fig. 10. The results of the centralized algorithm, i.e., SPA ap-
plied to (8), are also presented as baseline. In both networks, we
set SNR = 10 and let q = 2 and (N,K) = (12, 3). We see that
the proposed algorithm without reweighting gives reasonable
MSE performance for most of the trials, but there exist several
trials where the algorithm fails. On the other hand, we see that
reweighting indeed improves the performance—at all trials, the
iteratively reweigted algorithm succeeds.

Fig. 11 may shed some light on the reason why the reweighted
algorithm works better. Here, we present the {‖ Cn

f,:‖2} ob-
tained at one instance with the network in Fig. 9. We take the
obtained solution at sensor 1 for observation. We see that the pro-
posed algorithm without reweighting works reasonably well—
the rows with the 3 largest 2-norms correspond to the desired
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Fig. 10. The left and right columns are the MSE histograms of the algorithms
with the left and right networks in Fig. 9, respectively.

Fig. 11. The values of {‖ C1
f , :‖2} yielded by the proposed algorithm with

and without reweighting, respectively, at one randomly picked instance; the
network is as in Fig. 9; SNR = 10 dB.

TABLE VI
THE ACTIVE ROWS OF THE OBTAINED Cn FOR n = 1 BY THE PROPOSED

ALGORITHMS AND THE TOTAL ITERATIONS NEEDED; SNR = 10 DB

dominant frequencies. However, there is another frequency that
is ‘active’, which could confuse the frequency picking stage
sometimes. But for the reweighted version, we see the solution
is very clean, only three active rows of Cn exist. The reason
is that using p < 1 is able to yield sparser solutions. Table VI
confirms this observation. For both networks under test, the
reweighted algorithm gives smaller numbers of active rows, K̂,
(i.e., rows with 2-norms larger than α = 0.1) of C1 , which are

Fig. 12. MSE histograms of the decentralized algorithm using q = ∞ and
q = 2, respectively.

with high probability to be K. This result also supports our
claim in Remark 5 that K is not necessarily needed as an input
if we adopt the sparse optimization-based criterion.

Another improvement of using the iteratively reweighted al-
gorithm lies in the number of iterations. In general, ADMM
can converge slowly [19]. But when combining with an itera-
tive reweighting procedure, one may terminate the reweighted
subproblem early and go on to the next subproblem—it is not
necessary to solve each subproblem to a fine-accuracy level. By
doing so, we see a big saving in the iterations: in Table VI, we
see that solving the problem without reweighting costs more
than 7000 iterations, but it requires only around 500 iterations
in total for solving 5 reweighted subproblems.

We also test different q’s under the network depicted on the
right of Fig. 9. In Fig. 12, we see that using both q = 2 and
q = ∞ yield very similar results. However, in terms of optimiza-
tion complexity, q = 2 is preferable since it admits closed-form
update of Γn

r .

C. Experiment Using Software-Defined Radios

In this subsection, we present a laboratory experiment using
real software-defined radios. The experiment was implemented
in the communications laboratory of the Department of Electri-
cal and Computer Engineering at the University of Minnesota,
and we used the Universal Software Radio Peripheral (USRP)
radios by Ettus Research as both transmitters and receivers. Two
sources and two sensors were used in the experiment, and the
sensors were not synchronized. The sources were placed ap-
proximately 3–4 m away from the sensors, and at 2–3m from
each other. All radios were communicating at a carrier frequency
of 2.5 GHz, with the sources transmitting random BPSK sig-
nals with a bandwidth of 100 KHz. We discretized the 300 KHz
bandwidth into 1024 frequency bins. Bins 411–614 were allo-
cated to source 1 and bins 205–410 and 615–819 to source 2.
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Fig. 13. The measured mixed power spectra at sensor 2.

Fig. 14. The separated power spectra by SPA and HALS.

The received signals are mixtures; see Fig. 13 for an illustra-
tion of the power spectrum of y2(t), i.e., the actual signal that
is received at sensor 2. Fig. 14 illustrates the separated spectra
that are obtained by applying SPA on (8) and HALS, respec-
tively. We plot the separated spectra from 10 different measured
datasets under the same setups, and we see that SPA works con-
sistently well. The results are quite encouraging: We see that
for all the 10 trials, SPA successfully separated the two spectra
even in the indoor laboratory environment, where modeling er-
rors are inevitable. We also notice that the NMF algorithm, i.e.,
HALS, failed at this experiment, which is consistent with our
simulations.

V. CONCLUSION

In this work, we revisited the power spectra separation prob-
lem. Unlike our prior work [11], [12] which made use of

baseline-aligned multiple-antenna sensors, we reformulated the
problem using simple single-antenna sensors without any geo-
metrical specification on their deployment. A structured matrix
factorization-based framework was established, which guaran-
tees the identifiability of the power spectra under a realistic local
dominance assumption in the spectral domain. Efficient central-
ized and effective decentralized algorithms were proposed under
this framework. Both simulations and a real experiment using
prototype software-defined radios demonstrated the effective-
ness of the proposed algorithms.

APPENDIX A
PROOF OF THEOREM 1

For notational convenience, we assume that, without loss of
generality, Π = I , or, equivalently, Λ = {1, . . . ,K}. Hence,

we see that C� can be expressed as C� = [
S̄
0 ]. For any feasible

solution, we have Ḡ = ḠC. Hence,

ḠC� = ḠC ⇒ B̄S̄C� = B̄S̄C.

Recall that B has no null space. Hence, we now have

S̄C� = S̄C ⇒ C�
Λ ,: = C̄

� = S̄ = S̄C.

Following the above, we see that C̄
�
k,: =

∑F
f =1 S̄k,f Cf ,: .

Hence, for k = 1, . . . ,K, we have

‖ C̄
�
k,:‖q ≤

∑

f =1,...,F

S̄k,f ‖ Cf ,: ‖q (30)

by the triangle inequality. Notice that, the equality holds if and
only if

C̄
�
k,: = Ck,:, and Cf ,: = 0, ∀f > K,

since S̄:,1:K = I and there exists no other unit vectors in S̄ by
the assumption that Ḡ has no repeated columns. Now, summing
up across k we have

K∑

k=1

‖ C̄
�
k,:‖q ≤

K∑

k=1

F∑

f =1

S̄k,f ‖ Cf ,: ‖q .

By the fact that
∑K

k=1 S̄k,f = 1, we see that

K∑

k=1

‖ C̄
�
k,:‖q =‖ C� ‖≤

F∑

f =1

‖ Cf ,:‖q = ‖ C ‖q ,1 .

Clearly, the lower bound is achieved if and only if the lower
bound in (30) is attained for all k = 1, . . . , K. That means,

C� = Copt ,

which completes the proof.



4604 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 17, SEPTEMBER 1, 2016

APPENDIX B
DECENTRALIZED NONNEGATIVE LEAST SQUARES

We can recast the above into the following form:

min
{Υn

r },{Sn }

1
2

N∑

n=1

∥
∥
∥Gn,: − B̂n,:S

n
∥
∥
∥

2

F

s.t. Sn = Υn
r ,Sr = Υn

r , r ∈ Nn ,

Υn
r ≥ 0,

where B̂n,: = Gn,Λn , which can be obtained locally at sensor
n. The ADMM updates are presented in (31),

Υn
r := arg min

Υn
r ≥0

ρ

2

∥
∥
∥Sn − Y n

r + Ũ
n

r

∥
∥
∥

2

F

+
ρ

2

∥
∥
∥Sr − Y n

r + Ṽ
r

n

∥
∥
∥

2

F
(31a)

Sn := arg min
Sn

1
2
‖Gn,: − Bn,:S

n‖2
F

+
ρ

2

∑

r∈Nn

∥
∥
∥Sn − Υn

r + Ũ
n

r

∥
∥
∥

2

F

+
ρ

2

∑

r∈Nn

∥
∥
∥Sn − Υr

n + Ṽ
n

r

∥
∥
∥

2

F
(31b)

Ũ
n

r := Sn − Υn
r + Ũ

n

r , (31c)

Ṽ
r

n := Sr − Υn
r + Ṽ

r

n , (31d)

where Ũ
n

r and Ṽ
r

n are the dual variables associated with
Sn = Υn

r and Sr = Υn
r , respectively. Notice that Problems

(31a)–(31b) both admit closed-form solutions. Specifically, we
have

Υn
r :=

(
Sn + Ũ

n

r + Sr + Ṽ
r

n

2

)

+

,

and

Sn := (2|Nn |ρI + (Bn,:)
T Bn,:)

−1

×
(
(Bn,:)

T Gn,: + ρ
(
Υn

r − Ũ
n

r + Υr
n − Ṽ

n

r

))
.
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