Analyzing Data 'Boxes': Multi-way linear algebra and its applications in signal processing and communications

Nikos Sidiropoulos

Dept. ECE, TUC-Greece
nikos@telecom.tuc.gr

Dedication

In memory of Richard Harshman (\dagger Jan. 10, 2008), who co-founded three-way analysis, and fathered PARAFAC in the early 70's.

Richard was a true gentleman.

Acknowledgments

\square 3-way Students: X. Liu, T. Jiang
\square 3-way Collaborators: R. Bro (Denmark), J. ten Berge, A. Stegeman (Netherlands), D. Nion (ENSEA-France \& TUC-Greece)
\square Sponsors: NSF CCR 9733540, 0096165, 9979295, 0096164; ONR N/N00014-99-1-0693; DARPA/ATO MDA 972-01-0056; ARL C \& N CTA DADD19-01-2-0011

Contents

\square 3-way arrays: similarities and differences with matrices
\square Rank, and low-rank decomposition
\square 3-way notation, using CDMA as example
\square Uniqueness
\square Algorithms
\square Performance
\square Application: blind speech separation
\square What lies ahead \& wrap-up

Applications

\square CDMA intercept / signal intelligence
\square Sensor array processing
\square Multi-dimensional harmonic retrieval
\square Radar
\square Speech separation
\square Multimedia data mining
\square Chemistry
\square Psychology
\square Chromatography, spectroscopy, magnetic resonance ...

Matrices, Factor Analysis, Rotational Indeterminacy

$$
\begin{gathered}
\mathbf{X}=\mathbf{A} \mathbf{B}^{T}=\mathbf{a}_{1} \mathbf{b}_{1}^{T}+\cdots+\mathbf{a}_{r} \mathbf{b}_{r}^{T} \quad(r:=\operatorname{rank}(\mathbf{X})) \\
x_{i, j}=\sum_{k=1}^{r} a_{i, k} b_{j, k} \\
\mathbf{X}=\mathbf{A} \mathbf{B}^{T}=\mathbf{A} \mathbf{M} \mathbf{M}^{-1} \mathbf{B}^{T}
\end{gathered}
$$

Reverse engineering of soup?

Can only guess recipe: $\mathbf{a}_{1} \mathbf{b}_{1}^{T}+\cdots+\mathbf{a}_{r} \mathbf{b}_{r}^{T}$

Sample from two or more Cooks!

Left: $\mathbf{a}_{1} \mathbf{b}_{1}^{T}+\cdots+\mathbf{a}_{r} \mathbf{b}_{r}^{T} ;$ right: $1.2 \times \mathbf{a}_{1} \mathbf{b}_{1}^{T}+\cdots+0.87 \times \mathbf{a}_{r} \mathbf{b}_{r}^{T}$

Same ingredients, different proportions \hookrightarrow recipe!

Three-Way Arrays

\square Two-way arrays, AKA matrices: $\mathbf{X}:=\left[x_{i, j}\right]:(I \times J)$
\square Three-way arrays: $\left[x_{i, j, k}\right]:(I \times J \times K)$
\square CDMA w/ Rx Ant array @ baseband: chip \times symbol \times antenna

Take-Home Point

Fact 1: Low-rank matrix (2-way array) decomposition not unique for rank >1
Fact 2: Low-rank 3- and higher-way array decomposition (PARAFAC) is unique under certain conditions

Three-Way vs Two-Way Arrays - Similarities

\square Rank := smallest number of rank-one "factors" ("terms" is probably better) for exact additive decomposition (same concept for both 2-way and 3-way)
\square Two-way rank-one factor: rank-one MATRIX outer product of 2 vectors (containing all double products)
\square Three-way rank-one factor: rank-one 3-WAY ARRAY outer product of 3 vectors (containing all triple products) - same concept

Three-Way vs Two-Way Arrays - Differences

\square Two-way $(I \times J)$: row-rank $=$ column-rank $=\operatorname{rank} \leq \min (I, J)$;
\square Three-way: row-rank \neq column-rank \neq "tube"-rank \neq rank
\square Two-way: $\operatorname{rank}(\operatorname{randn}(\mathrm{I}, \mathrm{J}))=\min (\mathrm{I}, \mathrm{J})$ w.p. 1 ;
Three-way: $\operatorname{rank}(\operatorname{randn}(2,2,2)$) is a RV (2 w.p. 0.3, 3 w.p. 0.7)
\square 2-way: rank insensitive to whether or not underlying field is open or closed $(\mathbb{R}$ versus $\mathbb{C})$; 3-way: rank sensitive to \mathbb{R} versus \mathbb{C}
\square 3-way: Except for loose bounds and special cases [Kruskal; J.M.F. ten Berge], general results for maximal rank and typical rank sorely missing for decomposition over \mathbb{R}; theory more developed for decomposition over \mathbb{C} [Burgisser, Clausen, Shokrollahi, Algebraic complexity theory, Springer, Berlin, 1997]

Khatri-Rao Product

Column-wise Kronecker Product:

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
5 & 10 \\
15 & 20 \\
25 & 30
\end{array}\right], \quad \mathbf{A} \odot \mathbf{B}=\left[\begin{array}{cc}
5 & 20 \\
15 & 40 \\
25 & 60 \\
15 & 40 \\
45 & 80 \\
75 & 120
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{vec}\left(\mathbf{A D B}^{T}\right)=(\mathbf{B} \odot \mathbf{A}) \mathbf{d}(\mathbf{D}) \\
& \mathbf{A} \odot(\mathbf{B} \odot \mathbf{C})=(\mathbf{A} \odot \mathbf{B}) \odot \mathbf{C}
\end{aligned}
$$

LRD of Three-Way Arrays: Notation

- Scalar: [CDMA: $(i, j, k, f):(\mathrm{Rx}$, symbol, chip, user)]

$$
x_{i, j, k}=\sum_{f=1}^{F} a_{i, f} b_{j, f} c_{k, f}, \quad i=1, \cdots, I, j=1, \cdots, J, k=1, \cdots, K
$$

- Slabs:

$$
\mathbf{X}_{k}=\mathbf{A D}_{k}(\mathbf{C}) \mathbf{B}^{T}, k=1, \cdots, K
$$

- Matrix:

$$
\mathbf{X}^{(K J \times I)}=(\mathbf{B} \odot \mathbf{C}) \mathbf{A}^{T}
$$

- Vector:

$$
\mathbf{x}^{(K J I)}:=\operatorname{vec}\left(\mathbf{X}^{(K J \times I)}\right)=(\mathbf{A} \odot(\mathbf{B} \odot \mathbf{C})) \mathbf{1}_{F \times 1}=(\mathbf{A} \odot \mathbf{B} \odot \mathbf{C}) \mathbf{1}_{F \times 1}
$$

LRD of N-Way Arrays: Notation

- Scalar:

$$
x_{i_{1}, \cdots, i_{N}}=\sum_{f=1}^{F} \prod_{n=1}^{N} a_{i_{n}, f}^{(n)}
$$

- Matrix:

$$
\mathbf{X}^{\left(I_{1} I_{2} \cdots I_{N-1} \times I_{N}\right)}=\left(\mathbf{A}^{(N-1)} \odot \mathbf{A}^{(N-2)} \odot \cdots \odot \mathbf{A}^{(1)}\right)\left(\mathbf{A}^{(N)}\right)^{T}
$$

- Vector:

$$
\begin{gathered}
\mathbf{x}^{\left(I_{1} \cdots I_{N}\right)}:=\operatorname{vec}\left(\mathbf{X}^{\left(I_{1} I_{2} \cdots I_{N-1} \times I_{N}\right)}\right)= \\
\left(\mathbf{A}^{(N)} \odot \mathbf{A}^{(N-1)} \odot \mathbf{A}^{(N-2)} \odot \cdots \odot \mathbf{A}^{(1)}\right) \mathbf{1}_{F \times 1}
\end{gathered}
$$

Uniqueness

[Kruskal, 1977], $N=3, \mathbb{R}: k_{\mathbf{A}}+k_{\mathbf{B}}+k_{\mathbf{C}} \geq 2 F+2$
k -rank= maximum r such that every r columns are linearly independent (\leq rank)
[Sidiropoulos et al, IEEE TSP, 2000]: $N=3, \mathbb{C}$
[Sidiropoulos \& Bro, J. Chem., 2000]: any N, \mathbb{C} :
$\sum_{n=1}^{N} k-$ ranks $\geq 2 F+(N-1)$

Key-I

Kre Kraskal's Permutation Lemma [Kruskal, 1977]: Consider A $(I \times F)$ having no zero column, and $\overline{\mathbf{A}}(I \times \bar{F})$. Let $w(\cdot)$ be the weight (\# of nonzero elements) of its argument. If for any vector \mathbf{x} such that

$$
w\left(\mathbf{x}^{H} \overline{\mathbf{A}}\right) \leq F-r_{\overline{\mathbf{A}}}+1,
$$

we have

$$
w\left(\mathbf{x}^{H} \mathbf{A}\right) \leq w\left(\mathbf{x}^{H} \overline{\mathbf{A}}\right),
$$

then $F \leq \bar{F}$; if also $F \geq \bar{F}$, then $F=\bar{F}$, and there exist a permutation matrix \mathbf{P} and a non-singular diagonal matrix \mathbf{D} such that $\mathbf{A}=\overline{\mathbf{A}} \mathbf{P D}$.

Easy to show for a pair of square nonsingular matrices (use rows of pinv); but the result is very deep and difficult for fat matrices - see [Jiang \& Sidiropoulos, TSP:04], [Stegeman \& Sidiropoulos, LAA:07]

Key-II

Property: [Sidiropoulos \& Liu, 1999; Sidiropoulos \& Bro, 2000]
If $k_{\mathbf{A}} \geq 1$ and $k_{\mathbf{B}} \geq 1$, then it holds that

$$
k_{\mathbf{B} \odot \mathbf{A}} \geq \min \left(k_{\mathbf{A}}+k_{\mathbf{B}}-1, F\right),
$$

whereas if $k_{\mathbf{A}}=0$ or $k_{\mathbf{B}}=0$

$$
k_{\mathbf{B} \odot \mathbf{A}}=0
$$

Is Kruskal's Condition Necessary?

\square Long-held conjecture (Kruskal'89): Yes
\square ten Berge \& Sidiropoulos, Psychometrika, 2002: Yes for $F \in\{2,3\}$, no for $F>3$
\square Jiang \& Sidiropoulos '03: new insights that explain part of the puzzle: E.g., for $r_{\mathbf{C}}=F$, the following condition has been proven to be necessary and sufficient:

No linear combination of two or more columns of $\mathbf{A} \odot \mathbf{B}$ can be written as KRP of two vectors

P-a.s. uniqueness results

\square de Lathauwer '03 - SIAM JMAA '06 (cf. Jiang \& Sidiropoulos '03): Decomposition is a.s. unique provided

$$
\min (K, I J) \geq F \text { and } F(F-1) \leq \frac{1}{2} I(I-1) J(J-1)
$$

Far better than previously known in many cases of practical interest

Algorithms

\square SVD/EVD or TLS 2-slab solution (similar to ESPRIT) in some cases (but conditions for this to work are restrictive)
\square Workhorse: ALS [Harshman, 1970]: LS-driven (ML for AWGN), iterative, initialized using 2 -slab solution or multiple random cold starts
\square ALS \longrightarrow monotone convergence, usually to global minimum (uniqueness), close to CRB for $F \ll I J K$

Algorithms

\square ALS is based on matrix view:

$$
\mathbf{X}^{(K J \times I)}=(\mathbf{B} \odot \mathbf{C}) \mathbf{A}^{T}
$$

\square Given interim estimates of \mathbf{B}, \mathbf{C}, solve for conditional LS update of A:

$$
\mathbf{A}_{C L S}=\left((\mathbf{B} \odot \mathbf{C})^{\dagger} \mathbf{X}^{(K J \times I)}\right)^{T}
$$

\square Similarly for the CLS updates of \mathbf{B}, \mathbf{C} (symmetry); repeat in a circular fashion until convergence in fit (guaranteed)

Algorithms

\square ALS initialization matters, not crucial for heavily over-determined problems
\square Alt: rank-1 updates possible [Kroonenberg], but inferior
\square COMFAC (Tucker3 compression), G-N, Levenberg, ATLD, DTLD, ESPRIT-like,...
\square G-N converges faster than ALS, but it may fail
\square In general, no "algebraic" solution like SVD
\square Possible if e.g., a subset of columns in A is known [Jiang \& Sidiropoulos, JASP 2003]; or under very restrictive rank conditions

Robust Regression Algorithms

Laplacian, Cauchy-distributed errors, outliers
\square Least Absolute Error (LAE) criterion: optimal (ML) for Laplacian, robust across α-stable
\square Similar to ALS, each conditional matrix update can be shown equivalent to a LP problem \longrightarrow alternating LP [Vorobyov, Rong, Sidiropoulos, Gershman, 2003]
\square Alternatively, very simple element-wise updating using weighted median filtering [Vorobyov, Rong, Sidiropoulos, Gershman, 2003]
\square Robust algorithms perform well for Laplacian, Cauchy, and not far from optimal in the Gaussian case

CRBs for the PARAFAC model

\square Dependent on how scale-permutation ambiguity is resolved
\square Real i.i.d. Gaussian, 3-way, Complex circularly symmetric i.i.d. Gaussian, 3-way \& 4-way [Liu \& Sidiropoulos, TSP 2001]
\square Compact expressions for complex 3-way case \& asymptotic CRB when one mode length goes to infinity [Jiang \& Sidiropoulos, JASP/SMART:04]
\square Laplacian, Cauchy [Vorobyov, Rong, Sidiropoulos, Gershman, TSP:04] - scaled versions of the Gaussian CRB; scaling parameter only dependent on noise pdf

Performance

Figure 1: RMSEs versus SNR: Gaussian noise, $8 \times 8 \times 20, F=2$

Performance

Figure 2: RMSEs versus SNR: Cauchy noise, $8 \times 8 \times 20, F=2$

Performance

ALS works well in AWGN because it is ML-driven, and with 3-way data it is easy to get to the large-samples regime: e.g.,
$10 \times 10 \times 10=1000$
Performance is worse (and further from the CRB) when operating close to the identifiability boundary; but ALS works under model identifiability conditions only, which means that at high SNR the parameter estimates are still accurate

Main shortcoming of ALS and related algorithms is the high computational cost

For difficult datasets, so-called swamps are possible: progress towards convergence becomes extremely slow

Demo: Blind speech separation

\square Frequency-domain vs time-domain methods
\square Joint diagonalization (symmetric PARAFAC / INDSCAL) per frequency bin
\square Exploits time variation in speaker powers: $\mathbf{R}_{k}(f)=\mathbf{A}(f) \mathbf{D}_{k} \mathbf{A}^{H}(f)$
\square Frequency-dependent permutation problem is key
\square How to ensure consistency ("string together") across bins
\square Engineering! - not science ...
\square We now have very competitive solution
\square Joint work with D. Nion, K. Mokios, A. Potamianos http:
//www.telecom.tuc.gr/~nikos/BSS_Nikos.html

Adaptive PARAFAC

Nion \& Sidiropoulos 2008, IEEE TSP, submitted

Figure 3: Blind speaker separation and tracking

Adaptive PARAFAC

MIMO radar

Figure 4: Trajectory tracking

Adaptive PARAFAC

Complexity

Figure 5: Execution time
\square Group homepage (Nikos Sidiropoulos):
www.telecom.tuc.gr/~nikos
\square 3-way group at KVL/DK (Rasmus Bro):
http://www.models.kvl.dk/users/rasmus/ and
http://www.models.kvl.dk/courses/
\square 3-Mode Company (Peter Kroonenburg):
http://www.leidenuniv.nl/fsw/three-mode/3modecy.htm
\square Hard-to-find original papers (Richard Harshman):
http://publish.uwo.ca/~harshman/
\square 3-way workshop: TRICAP every 3 years, since '97; 2006, Chania-Crete Greece; 2009, Pyrenees Spain.

What lies ahead \& wrap-up

\square Take home point: $(N>3)$-way arrays are different; low-rank models unique, have many applications
\square Major challenges: Rank \& uniqueness: i) rank detection; ii) necessary \& sufficient conditions, esp. for higher-way models; iii) uniqueness under application-specific constraints
\square Major challenges: Algorithms: Faster at small performance loss; incorporation of application-specific constraints
\square New exciting applications: Yours!

Preaching the Gospel of 3-Way Analysis

Thank you!

