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he layering principle has long been a staple of net-
work design, enabling the modular development of
network layers in essential isolation. This piecemeal
approach has served us well but has now reached

the point of diminishing returns. A consensus towards
cross-layer design has been gradually forming as a result of
this realization, championed in part by signal processing
research. Cross-layer design aims at coupling the func-
tionality of network layers, with the goal of boosting
system-wide performance. The trend is more evident at
the interface between the physical (PHY) and medium
access control (MAC) layers. Signal processing for
communications researchers and practitioners are natu-
rally at home with physical layer issues, but less so with
queuing, statistical multiplexing, and routing issues
that are prevalent at the MAC, data link, and higher
network layers. For example, there is a tendency to

think that time-division multiple access (TDMA) is
somehow optimal for heavy symmetric loads; this is incor-

rect, because it neglects the randomness of arrivals. This
article is meant to unveil multiaccess queuing and introduce

useful stability analysis tools to the signal processing reader-
ship. A recently introduced class of joint MAC-PHY designs is

used to illustrate concepts and tools, and ALOHA is also invoked as
a familiar textbook example.

The History of Layering
The layering principle of network design has served for some 30 years as a convenient
means of isolating the functions of the different conceptual layers for the purposes of
modular design and teaching the principles of complex networking systems. This is so
despite the fact that the open systems interconnection (OSI) standard hierarchy never
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quite made it into an actual design blueprint. Yet it has
recently been recognized that cross-layer design can lift
significant performance barriers associated with the
modular approach (e.g., [1], [12]). For example, the
functionality of the data link layer can be used to effec-
tively improve the physical layer and vice versa. A rudi-
mentary example of this is multipacket combining in
the context of automatic repeat request (ARQ) proto-
cols; but more sophisticated uses of the link layer func-
tionality can be envisioned.

Scenario
Consider a system consisting of J transmitting nodes
(also referred to as terminals) communicating packets
to a central access point, e.g., the base station (BS) for
the cellular uplink [Figure 1(a)]. For brevity, we focus
on a synchronous narrowband system. Time is slotted
at the packet level, and all J transmitting nodes are
synchronized to slot timing. Nodes do not cooperate.
The BS monitors channel access and broadcasts control
signals to all nodes. Each node has a buffer in which
the incoming packets are stored. Packet arrivals are ran-
dom and independent across nodes; the vector of aver-
age arrival rates of the terminals is denoted by
λλλ := [λ1, . . . , λ J ]T , with elements measured in pack-
ets/slot. The sum of individual average arrival rates,∑ J

j=1 λj , is called the overall traffic load.
It is well known from queuing theory that, under

independent Poisson arrivals, the best utilization of
slots and the lowest mean delay per packet is achieved
when all the queues are effectively combined in one
queue to be served by the appropriate queuing disci-
pline [e.g., first-come, first-serve (FCFS)] [2]. This is
known as statistical multiplexing and is readily imple-
mentable for downlink transmission, wherein all buffers
are physically colocated at the BS. Efficient multiplex-
ing is much more complicated for the uplink, wherein
three principal classes of MAC are currently in use:
fixed allocation (FA), exemplified by TDMA; random
access (RA), with slotted ALOHA being the textbook
example; and reservation-based (RB) schemes, e.g.,
reservation-based TDMA (RB-TDMA). The choice
depends largely on traffic characteristics and the sophis-
tication and speed of the available feedback/control
mechanism. FA schemes are generally used for “regu-
lar” (quasi-deterministic) traffic with limited buffering
or strict delay/expiration constraints or where service
isolation is critical. RA schemes are generally preferred
when arrivals are bursty, the overall traffic load is limit-
ed, and low mean delay is paramount. RB schemes
bridge the gap between FA and RA; they usually
employ RA for the reservation phase.

RA protocols stem from ALOHA [3]. The simplified
idea in RA schemes is that each terminal may transmit “at
will,” whenever it has a packet in the buffer. At light traf-
fic loads with bursty data sources, it is unlikely that two
or more will transmit at the same time; hence slots are
efficiently used and delay is much smaller than that of

fixed allocation schemes. At higher loads, however, colli-
sions do occur and slots are wasted. Figure 1(b) shows a
collision of two packets followed by new transmissions of
the same packets. Note that each node retransmits with
probability p unaware of other nodes. Hence, instead of
the situation depicted in Figure 1(b), secondary collision
of the same two packets may occur or it may be that nei-
ther of the packets is retransmitted, so that (potentially
many) more slots are wasted. This leads to relatively low
maximum throughput (average number of successfully
transmitted packets per slot) and excessive delay of RA
protocols under even moderate traffic load. This collision
penalty can be alleviated, to the extent permissible by
feedback speed and complexity considerations.

Irrespective of the specifics of a particular solution,
there are a few key questions that permeate the subject
matter. Given a MAC protocol, what are the operating
limits on λλλ to maintain finite buffer sizes and mean
delay? What is the mean delay and delay variance for a
given λλλ? These issues are addressed by queuing theory.
We begin with an overview of available RA solutions,
then turn to queuing tools and associated stability and
delay analysis.

Collision Resolution for RA Protocols
When a collision occurs, the nodes involved in the colli-
sion must retransmit their packets in subsequent slots in
backoff mode. Retransmission is controlled by the MAC
protocol, and it provides means for collision resolution
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▲ 1. (a) Multiple access in a cellular wireless setup: noncooperat-
ing nodes transmit packets to the BS. (b) Collision and its resolu-
tion: yellow and blue packets collide; in backoff mode, both are
successfully transmitted.

(a)

(b)

. . . . . .



(CR): the eventually successful transmission of all collid-
ed packets. An ideal MAC protocol would resemble sta-
tistical multiplexing—there would be no collisions and
no wasted slots. It would maintain all buffer sizes finite

provided that the overall traffic load is less than 1 pack-
et/slot. Assuming that all packets are successfully trans-
mitted, we say that such a protocol has maximum stable
throughput equal to 1 packet/slot. In this section, we
are interested in maximum stable throughput of existing
MAC protocols. A more rigorous treatment of the
notion of stability will be provided later.

MAC Layer Solutions
The throughput/delay performance of plain slotted
ALOHA is often not satisfactory, and more sophisticat-
ed access schemes are needed. (See “Determination of
Stable Throughput for Slotted ALOHA” and Figure 4
for an illustration of the delay performance of slotted
ALOHA.) MAC-layer CR methods focus on coordinat-
ing the retransmissions of collided packets such that
secondary collisions can be mitigated. Depending on
feedback assumptions, several improvements of basic
ALOHA relying on MAC-layer functionality have been
proposed and are currently in use.

Tree/Stack Algorithms
The first CR algorithm is the tree algorithm [4]–[6]. It
assumes ternary feedback (0: empty slot, 1: successful
transmission of a packet, e : collision) that is made avail-
able to the terminals immediately after the packet trans-
mission is complete. After receiving the e feedback,
terminals not involved in the collision switch to backoff
mode, whereas those nodes that had transmitted split
into two subgroups. Note that, under ternary feedback, a
node involved in a collision cannot know the identities or
even the number of other nodes involved in the collision.

The tree algorithm can be described using a binary
tree as exemplified in Figure 2. The root of the tree is
the initial collision group. Each node in the tree repre-
sents an empty slot, a successful transmission, or a colli-
sion. The collision nodes split into left and right
branches (subgroups). Splitting can be either statistical
(each node randomly chooses to be in the first or the
second group with probability 1/2) or designed a pri-
ori, e.g., using the node’s binary ID. The left branch
corresponds to the first subgroup which transmits after
the collision, and the right branch corresponds to the
second subgroup that transmits after the first group
completes CR. In Figure 2, red and blue retransmit in
the first subgroup, collide and split again, followed by
two successful retransmissions. Yellow and green
retransmit and collide, then both back off and again
collide before successful retransmissions. It can be seen
that the resolution of the original collision group is
actually a depth-first search of the binary tree. With 0,
1, e feedback, each terminal can construct the collision
resolution tree and thus determine when to transmit its
packet. The binary addressing scheme applies only to a
finite-user system, while the random addressing one is
capable of dealing with the infinite-user case.

For example, the tree depicted in Figure 2 would
result if the node IDs were 100 (blue), 110 (red), 001
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Distributed Coin-Toss Resolution
of Two-Packet Collision

To gain a first-order intuitive understanding of the tree
algorithm, consider a collision of two packets. Each

of the two packets is independently retransmitted in the
next slot with probability 1/2, while the remaining ter-
minals enter backoff mode. Successful transmission of
one packet then happens with probability 1/2; the other
packet can then be transmitted in the following slot. In
this case, two slots are used for CR. A collision or an idle
slot following the initial collision happens with probabil-
ity 1/2, in which case each of the two packets will be
transmitted in the following slot independently with
probability 1/2. This procedure can be repeated until
the successful retransmission of both packets, at which
point CR is complete. With the above strategy, the two-
packet collision can be resolved in two slots with proba-
bility 1/2, three slots with probability 1/4, and i slots
with probability 1/2i−1. This yields an average of three
slots for CR. Including the slot of the original collision, a
total of four slots are needed to successfully carry two
packets. The resulting efficiency is 50%. Higher-order
collisions entail higher number of CR slots/packet, on
average, compared to two-packet collisions; hence 50%
efficiency is not attainable in general.

▲ 2. Binary tree representation of the resolution of a four-packet
collision.

(a)

(b)

Tree Splitting

Packet Sequence



(yellow), and 000 (green). After the initial collision,
blue and red go to the left subgroup and both transmit
immediately, because their first bit is 1; yellow and
green go to the right subgroup and wait for the CR of
blue and red to be resolved. Since blue and red are
both enabled, they collide again and then split once
more. Because the second bit of blue is 0, it goes to the
right subgroup and remains silent, while red, whose
second bit is 1, transmits successfully. This implies that
red was alone in its subgroup and is observed (via the
0/1/e feedback, which is 1 in this case) by blue. Blue
now knows it can transmit; it does so, and its transmis-
sion is successful. Yellow and green have been observ-
ing 0/1/e feedback in the meanwhile. They know that
the left subgroup has split once, and two successful
transmissions have occurred. Thus nothing remains in
the left subgroup, and they can now proceed. Both of
them immediately transmit and collide. They look into
their second bits, both go to the right (silent) group,
and an empty slot occurs. Then both transmit (since
both were assigned to the second subgroup) and hence
collide again; looking at their third bit, they now go
into separate subgroups, and the full collision is
resolved after two slots.

The stable throughput of the tree splitting algorithm
as described above is 0.43 packets/slot [4], compared
to 0.36 packets/slot for slotted ALOHA. However,
while slotted ALOHA suffers from bistability, the tree
splitting algorithm is stable if the overall traffic load is
less than 0.43. Instead of a fixed binary tree, a traffic-
dependent dynamic tree is used in the dynamic tree
(DT) algorithm to split the collision group into j sub-
groups where j is chosen to minimize the expected
length of the CR period based on the previous CR
periods [4]. An interesting feature of the DT algorithm
is that it embodies TDMA as a special case when the
splitting factor j is fixed and equal to the (finite) num-
ber of the nodes. In this way, the DT algorithm offers a
graceful transformation from slotted ALOHA at low
loads to TDMA at high loads. (Note that for random
arrivals TDMA is not optimal at high loads.) On the
other hand, the DT algorithm requires online estima-
tion of the average arrival rate for each node (problem-
atic for bursty sources) and adaptation of the
retransmission probabilities, which implies a relatively
complex control mechanism. Also, DT delay perform-
ance is poor at high loads.

Various improvements to the tree algorithm have
been proposed. For example, when an idle slot follows
a collision, that means that all terminals whose packets
collided are assigned to the second subgroup. If all the
terminals from the second subgroup transmit after the
idle slot, a collision will definitely happen. This can be
avoided by letting the second subgroup immediately
split into two subgroups and only enable the first of the
newly created subgroups to transmit [7]. This improve-
ment can bring the maximum throughput of the tree
algorithm up to 0.46 packets/slot. Another improve-

ment is the FCFS algorithm. The idea of the FCFS
algorithm is to split the colliding packets according to
their arrival time: packets arriving earlier than a prede-
termined instance go to the first subgroup, and packets
arriving later go to the second subgroup. Continuously
splitting this way, it leads to successive transmission of
packets in the order of their arrival. The FCFS algo-
rithm achieves throughput of 0.4878 packets/slot.
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Determination of Stable Throughput
for Slotted ALOHA

Consider a symmetric slotted ALOHA system with J
terminals. Each terminal is equipped with an infi-

nite buffer and chooses to transmit in a slot with proba-
bility p, provided its buffer is nonempty. Packet arrivals
are stationary with mean rate λ packets/slot per termi-
nal. Feedback is 0/1/e (idle/success/collision), made
available at the end of each slot. Also consider a ficti-
tious system that is identical to the above (including
drawing from a common sequence of “coin flips” to
determine transmissions), except that terminals may
choose to transmit even when their respective buffers
are empty, in which case they simply transmit a dummy
packet. If both systems are started from the same initial
state and fed with the same arrivals, then the queues in
the fictitious dominant system can never be shorter
than the queues in the original system. This is so
because a packet scheduled for service by a queue in
the dominant system can never leave the said queue
prior to its mirror packet in the corresponding queue of
the original system. It follows that if the dominant sys-
tem is stable, then so must be the original system.

The key here is that the service process for each
queue in the dominant system is stationary—something
that is not obvious in the original system. Loynes’ theo-
rem [19] states that if the arrival process and service
process of a queue are stationary, and the average
arrival rate λ is less than the average service rate µ,
then the queue is stable. This yields that the dominant
and hence also the original system is stable provided
λ < p(1 − p)(J−1) . The right-hand side (rhs) can be
maximized by setting p = 1/J . This yields
λ < (1/J)(1 − 1/J)(J−1) or λJ < (1 − 1/J)(J−1) . Note
that the rhs is a decreasing function of J, starting from
0.5 for J = 2 terminals, and quickly (and reassuringly)
converging to 1/e as J → ∞. For unbuffered infinite-
population slotted ALOHA, the textbook derivation of
this number is not sharp (e.g., [2]). Drawing heavily
from Tsybakov and Mikhailov and Rao and Ephremides,
[24], [25], the present approach does not need the
Poisson assumption or independence, and it shows
that 1/e throughput is indeed achievable for any sym-
metric finite-population slotted ALOHA system with sta-
tionary inputs.



Under the aforementioned ternary feedback assump-
tions, the maximum throughput of RA systems is upper
bounded by 0.587 packets/slot [8].

An alternative way of achieving higher throughput is
by means of collision multiplicity feedback, wherein the
number of collided packets is made available to the
transmitting terminals at the end of the packet transmis-
sion. This can be exploited to optimize the retransmis-
sion probability, but delay performance remains poor at
higher loads, because collisions are still wasteful.

Carrier Sensing/Collision Detection
Another improvement comes through the use of carrier
sensing and collision detection, as in wireline Ethernet
local area networks. In carrier sense multiple access with
collision detection (CSMA/CD), terminals sense the
common bus for a carrier before transmitting, and then
listen for collisions during transmission [9], [10]. If a
collision is detected, the transmission is immediately
aborted. If propagation delay is small relative to packet
duration, CSMA/CD alleviates the impact of collisions.
This differentiates CSMA/CD from ALOHA-type
access, which assumes that feedback is made available
after packet transmission is complete. A drawback of
CSMA/CD is that it is difficult to implement reliably in
channels with fading and shadowing (the “hidden ter-
minal” problem) and relatively large propagation delays,
which is a typical scenario in cellular wireless systems.

Reservation Schemes
RB schemes like RB-TDMA bridge the gap between
RA and FA. RB-TDMA splits the channel time into a
relatively short reservation phase followed by a longer
contention-free payload phase. RA schemes are typically
used for reservation, but polling is also viable for small
terminal populations. To be effective, RB schemes
require relatively smooth (as opposed to bursty) traffic.
In addition, the use of reservation does not eliminate
the problem of multiple access under varying traffic
conditions—it shifts it to the reservation channel. The
RA protocol used for the reservation phase is an impor-
tant factor that affects overall system performance.

PHY Layer Solutions
The problem of packet collisions can also be solved at
the physical layer using signal processing techniques.
The idea is to separate colliding packets at the signaling
level, without the involvement of the MAC layer.

Capture
So-called signal capture effects come into play in packet
transmission over fading channels, whenever one packet is
received at a much higher power than others in the collid-
ing group, and thus it can be successfully decoded. The
potential of exploiting the capture effect to improve the
performance of random access systems has been intensive-
ly studied under various fading environments, and modu-
lation and coding schemes. However, capture remains a
random effect that cannot always be relied upon.

Multiple Packet Reception (MPR)
Advanced signal processing techniques offer even more
effective solutions to CR. Since packet collision can be
viewed as a signal mixing problem, it can be tackled in
the framework of signal separation. In the communica-
tions community, closely related problems have been
studied in the context of multiuser detection and
antenna array processing.

MPR relies on receive diversity [11], [12]. To resolve
a collision, multiple independent collision signal mixtures
are needed. This diversity can be made available through
spread spectrum. From the communication system point
of view, this comes at the price of bandwidth expansion
proportional to the spreading gain. Furthermore, higher-
order collisions are still possible with any fixed amount of
spreading, which limits throughput at high loads. A dif-
ferent twist is to use multiple receive antennas at the
access point. This provides a conceptually equivalent
multipacket reception capability, which however is practi-
cally limited to a small number of antennas (“equivalent
chips”). A nice tutorial by Tong et al. on ALOHA net-
works with MPR capability can be found in [13].

Joint MAC-PHY Signal Processing Solutions:
NDMA and BNDMA
A novel approach to the CR problem has been pro-
posed recently in [1]. It is motivated by the diversity
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Determination of Stable Throughput
for Unslotted ALOHA

The line of argument used in “Determination of Stable
Throughput for Slotted ALOHA” can be employed for

unslotted ALOHA. Transmissions are now asynchronous,
but if a coin flip prohibits a terminal from transmitting,
the next coin flip occurs T seconds later, where T is the
packet duration (backoff is needed to avoid deadlock).
Now the service rate of each queue in the dominant sys-
tem is p(1 − p)2(J−1) , because each one of the other
queues, backlogged continuously in the dominant sys-
tem, effectively partitions the time axis in slots of length
T , each corresponding to a coin flip. The partitions of dif-
ferent terminals are not synchronized, thus each terminal
has two chances to interfere with a given transmission of
a queue of interest. Hence λ < p(1 − p)2(J−1) is needed.
Maximizing yields p = 1/(2J − 1), and substituting back
gives λ < (1/(2J − 1))[1 − (1/(2J − 1))]2(J−1) or
λJ < (J/(2J − 1))[1 − (1/(2J − 1))]2(J−1). For J = 2 this
yields (2/3)3 ≈ 0.296; throughput converges to the
familiar 1/(2e) for unslotted ALOHA as J → ∞. We see
that this simple dominant system approach (coupled
with Loynes’ powerful theorem) is simpler to digest and
accept than the traditional equilibrium arguments
employed in many texts.



reception concept borrowed from spread-spectrum and
receive antenna diversity but explores MAC layer func-
tionality (in particular, the retransmission capability) to
build up diversity at the physical layer. The end result
can be viewed as a “spreading on demand”-equivalent,
wherein demand depends on the collision multiplicity
determined by the BS. We collectively refer to this class
of protocols as xNDMA; NDMA stands for network
diversity multiple access.

Consider again the usual slotted ALOHA model with
0/1/e feedback made available at the end of each channel
slot. In the xNDMA context, 0 clears all terminals for
transmission, whereas 1 enables those that transmitted in
the previous slot and disables all others. Note that each ter-
minal knows whether it has transmitted or not in the previ-
ous slot. “e” signals error in packet recovery. When the BS
detects a collision it sets feedback to 1, which induces
another collision of the same packets in the following slot.
After a sufficient number of retransmissions, the BS sets
feedback to 0. The slots used for the first transmission and
subsequent retransmissions comprise a CR epoch.

After a T slots long CR epoch, the PHY layer dis-
crete-time baseband-equivalent data model is

XT ×N = AT ×K SK ×N + WT ×N . (1)

N denotes packet length in symbols, and it is fixed. K
is the number of collided packets at the beginning of
each CR epoch, which is a random variable. S is the
collided packet signal matrix, whose kth row is the
packet of the kth terminal. A is the mixing matrix,
whose entry [A]t ,k denotes the complex gain of the
symbols of the kth packet during the t th transmission.
It can represent either channel fading or a random
phase offset due to asynchronism between transmitter
and receiver. X is the received data matrix, and W is
the white Gaussian noise matrix.

The model in (1) is a classical signal separation prob-
lem, where S is to be estimated from X , coupled with a
model selection problem, where the number of collided
packets, K , has to be determined. Hence, CR proceeds
by first detecting K , then determining the appropriate
T , and subsequently estimating A. Given the estimated
A, S can be estimated using the maximum likelihood
estimator or a simpler suboptimal linear estimator [1],
Ŝ = Â†X , where (·)† stands for pseudoinverse, provid-
ed that A is full column rank. Hence, T ≥ K transmis-
sions are needed. Estimation of A can be either
training based (NDMA) or blind (BNDMA). The
choice between these two approaches determines the
appropriate strategy for detecting K . We briefly review
these approaches in the sequel.

Training-Based Collision
Resolution: NDMA 
A terminal identifying (ID) sequence known to the BS
can be embedded in the header of each packet. A sim-
ple collision detection mechanism is possible if orthog-

onal IDs are used and the BS employs matched filters
corresponding to these IDs [1]. Then, the joint termi-
nal detection problem can be decoupled into independ-
ent single terminal detection problems, and K set to
the total number of detected users. By solving the
model selection problem, IDs of terminals involved in
collisions are recognized, so that A can be estimated
using these IDs.

NDMA is feasible if the channel between every user
and the BS in (1) is frequency flat and block fading: con-
stant over each packet slot but different from slot to slot
[1]. In slowly fading environments, this can be achieved
by multiplexing several NDMA protocols or frequency
hopping [14]. In a frequency selective channel, orthogo-
nality can be maintained by using complex exponential
ID sequences and a cyclic prefix or guard time; cf. [15].

Note that T = K transmissions are needed to
ensure full rank of A in a fading channel, when K
packets collide (1). In the finite signal-to-noise ratio
(SNR) environment, two kinds of errors may result in
packet corruption. The BS may incorrectly determine
the collision multiplicity, and hence schedule an insuffi-
cient number of retransmissions. This results in a failure
to recover some or all of the packets. Even if the colli-
sion multiplicity is correctly determined, bit errors may
occur due to noise. In [16], ARQ control is suggested
to cope with the effects of finite SNR.

Blind Collision Resolution: BNDMA
A blind method for estimating A is motivated by the
fact that the length of orthogonal IDs must be equal to
or greater than the number of terminals. For large ter-
minal populations this reduces the effective throughput.
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Necessity of the Derived Conditions

The arguments in “Determination of Stable
Throughput for Slotted ALOHA” and “Determination

of Stable Throughput for Unslotted ALOHA” establish
sufficiency but not necessity. That is, the respective sta-
ble throughputs are attainable, but is it possible to do
any better? We answer this question for symmetric
ALOHA systems only (i.e., under the constraint that all
individual arrival rates are equal). The answer is no, and
the argument that shows this is elegant in its simplicity.
In a symmetric system, if λ exceeds the given bound,
then each and every queue in the dominant system will
become unstable, per Loyne’s Theorem. But then
there’s no long-term need for dummy packets—all the
queues in the dominant system will eventually become
continuously backlogged with real packets. The domi-
nant system is therefore equivalent to the original sys-
tem (the long-term average rates are all equal) hence
the original system is also unstable. This completes the
necessity argument.



For slowly varying channels, it is possible to use a simple
retransmission scheme to bypass this limitation and at
the same time ensure full column rank of the effective
mixing matrix. The trick is to employ exponential phase
modulation at the packet level.

The method suggested in [17] produces a mixing
matrix A with Vandermonde structure, while preserving
the same PHY data model (1). This is achieved using
the following retransmission scheme: Before the first
retransmission, each user randomly draws a digital carri-
er for the packet, ωk (for the kth user); In the (t − 1)th
retransmission (t th transmission), the kth user’s carrier
is multiplied by (t − 1), and the whole packet is multi-
plied by e j (t−1)ωk . Hence, the entries of A are
[A]t ,k = e j (t−1)ωk . Random selection of digital carriers
ensures that the resulting Vandermonde mixing matrix
has full rank with probability 1. Frequency selectivity
can be accommodated with the inclusion of some slot
guard time with no other modifications. Channel equal-
ization can be performed after CR, on a single-user
basis. This model structure allows use of an ESPRIT-
like signal separation method for blind packet recovery
[18], [17]. Collision multiplicity is estimated at the BS
using rank detection of the received data autocorrela-
tion matrix [17]. When this matrix is deemed full rank,
the BS asks for another retransmission. Otherwise, it
clears the channel and proceeds with estimating A and
S . Note that the collision multiplicity method needs
T = K + 1 slots to detect rank deficiency in the noise-
less case. This is also the condition for the use of the
ESPRIT-like method for packet separation, so that a K -
fold collision is resolved in K + 1 slots in BNDMA.

Queuing Tools
Define the vector of queue lengths (the number of
packets in each buffer) at the beginning of the kth
transmission period, denoted by s(k) := [s1(k), . . . ,

s J (k)]T . A transmission period is usually a slot, but it
can also be defined as a CR epoch, e.g., for xNDMA
protocols. The question we want to answer is this: For
what values of the vector of arrival rates, λλλ, the queue
lengths and mean packet delay remain stable in some
sense? To make this specific, we need to introduce per-
tinent models for the packet arrivals and associated
notions of stability.

Arrival Models and Stability
We distinguish two classes of arrival models:
▲ Poisson arrivals, which are independent across termi-
nals. This is the stochastic model most commonly
employed in this context. It is appropriate for traffic enter-
ing a network, aggregated from many low-rate users.
▲ (So-called) Deterministic fluid arrivals. This model
places deterministic constraints on the arrivals, which can
also be viewed as hard constraints on all sample paths of
stochastic arrivals. This is called the deterministic fluid
model, and is appropriate for leaky-bucket rate-controlled
packet streams (e.g., traversing interior network nodes).

Based on the choice between stochastic or determin-
istic arrivals, two corresponding notions of stability can
be naturally formulated. We shall first address the prob-
abilistic interpretation of stability, assuming Poisson
arrivals. The definition we adopt originated from the
work of Loynes [19]. In the form below, it can be
found in [20] and [21].

Definition 1
Queue j of the system is stable, if

lim
k→∞

Pr{s j (k) < x } = F (x ) and lim
x→∞ F (x ) = 1. (2)

If lim
x→∞ lim

k→∞
inf Pr{s j (k) < x } = 1, (3)

the queue is substable. A stable queue is also substable.
If a queue is not substable it is unstable. The system is
stable if all the queues are stable. If at least one queue
is unstable, the system is unstable. In (2), inf stands for
the greatest lower bound. 

The definition of stability in (2) is equivalent to the
positive recurrence of the associated embedded Markov
chain. In other words, the system is stable if and only if
there is a positive probability mass function of s(k) when
k tends to infinity. Substability (3) means that different
initial conditions s(0) may yield different positive proba-
bility mass functions of s(k) when k tends to infinity.

An example of the associated embedded Markov
chain is that of xNDMA protocols [1], [17]. Setting the
transition times at the beginnings of CR epochs, we have

s j (k + 1) =
{

s j (k) − 1 + nj (k), s j (k) > 0
nj (k), s j (k) = 0 (4)

for j = 1, 2, . . . , J , where nj (k) is the number of new
arrivals into queue j during the kth CR epoch. nj (k) is
a Poisson random variable.

The deterministic interpretation of stability follows
from the arrivals model first suggested by Cruz [22],
[23], in which packet arrivals are assumed to satisfy
certain deterministic constraints along each sample
path. In this model, the number of packet arrivals to
the j th queue over the time interval (s , t ), denoted by
nj (s , t ), satisfies

nj (s , t ) ≤ ρj (t − s ) + σj , t > s . (5)

Note that the slope ρj serves as an upper bound on the
long-term average arrival rate λj . In determining suffi-
cient conditions for stability, we may set ρj = λj .
0 ≤ σj < ∞ is a measure of burstiness [22]. Intuitively,
a data stream is allowed to have a burst of σj packets, as
long as the long-term average rate remains ≤ ρj . To see
this, divide by (t − s ) and take limit as (t − s ) → ∞.

In the deterministic fluid context, stability means
that every queue in the system remains deterministical-
ly bounded for all time.
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Dominant System Approach
The dominant system approach was initially developed
to overcome the intractability arising in the analysis of
the inseparable multidimensional Markov chain for
finite-population buffered slotted ALOHA [24]–[26],
[20], [21]. The approach is best illustrated by example.
Two such examples are presented in “Determination of
Stable Throughput for Slotted ALOHA” and “Deter-
mination of Stable Throughput for Unslotted ALOHA”
(see also “Necessity of the Derived Conditions”), deal-
ing with a plain-vanilla version of the classical ALOHA
family of RA protocols.

For slotted ALOHA, it has been shown in [24] that
for J = 2, 

√
λ1 + √

λ2 < 1 is necessary and sufficient
for stability; for λ1 = λ2 this reduces to
2
√

λ < 1 ⇒ λ < 1/4, for total load <0.5, as per the
simpler dominant system argument. For general J , the
issue of stability of asymmetric slotted ALOHA is still
an open question. A single necessary and sufficient sta-
bility condition is missing for J > 3. We note that it is
possible to obtain other dominant systems which yield
a tighter bound for the stability region; on this matter,
see [25], [20], and [21].

The dominant system approach can be used to find a
sufficient condition for stability of the xNDMA system.
Consider a dominant system in which every one of the
J queues always transmits one packet at the beginning
of a CR epoch, even if it has none in its queue, in which
case it transmits a dummy packet. This increases the
service time for all queues without affecting arrivals.
Queues in the dominant system can be analyzed sepa-
rately. The CR epoch length is always the same, so a
dominant system queue is equivalent to a slotted
M/D/1 queue with service time J slots (NDMA), or
J + 1 slots (BNDMA). The service process is determin-
istic in the dominant system, hence trivially stationary
(note that this is—again—not obvious in the original
system). Since the arrivals are stationary as well, Loynes’
theorem applies and yields λj < 1/ J for NDMA and
λj < 1/( J + 1) for BNDMA.

Foster-Lyapunov Approach
The Foster-Lyapunov approach is based on the
Lyapunov approach to stability analysis of nonlinear
systems. We reproduce the Foster-Lyapunov criterion
for ergodicity of a Markov chain (e.g., [27]): Suppose
that the chain is irreducible and let S0 be a finite subset
of the state space S. Then the chain is positive recur-
rent if for some V : S → R and some ε > 0 we have
infq V (q) > −∞ and

∑
w∈S

pqwV (w) < ∞, ∀q ∈ S0,∑
w∈S

pqwV (w) ≤ V (q) − ε, ∀q /∈ S0,

where pqw is the probability of transition from state q
to state w. 
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E[V
(
s(k + 1)

) | s(k)] = E




J∑
j=1

(
sj(k) − 1{sj(k) > 0}

+nj(k)
) | s(k)




= V
(
s(k)

) −
J∑

j=1

1{sj(k) > 0}

+ E




J∑
j=1

nj(k) | s(k)


< ∞,

E[V
(
s(k + 1)

) − V (s(k)) | s(k)]= E




J∑
j=1

(
sj(k + 1) − sj(k)

)

| s(k)




=
J∑

j=1

E
[
nj(k) − 1{sj(k) > 0}

| s(k)
]

=
J∑

j=1

λjl(k)

−
J∑

j=1

1
{
sj(k) > 0

}

E[V (s(k + 1)) − V (s(k)) | s(k)] < −ε. (6)

An Application
of the Foster-Lyapunov Approach

Let us prove that 
∑J

j=1 λj < 1 is sufficient for stability of
the NDMA system. Consider the Lyapunov function

V (s) = ∑J
j=1 sj , defined on the state space S = ZJ+ of the

Markov chain, where Z+ denotes the nonnegative integers.
For all s ∈ S, we have V (s(k)) ≥ 0, which satisfies the first
condition. For the second condition, we have 

because the third term is always finite due to Poisson
arrivals, nj(k), and bounded epoch length (1{·} is the indi-
cator function). Consider the last condition. We have

where l(k) is the kth epoch length in slots, and it is equal
to the number of transmitted packets 

∑J
i=1 1{si(k) > 0}.

Hence, E[V (s(k + 1)) − V (s(k)) | s(k)] = l(k)(
∑J

j=1 λj − 1).

Let S0 = {0} . Then, ∀s(k) 	∈ S0 , we have that l(k) ≥ 1.
Therefore, ∀s(k) 	∈ S0 , if 

∑J
j=1 λj < 1 then there exists ε ,

where 0 < ε < 1 − ∑J
j=1 λj , such that 

It follows that all conditions of the Foster’s criterion are sat-
isfied. Therefore, we conclude that s(k) is ergodic. Hence,∑J

j=1 λj < 1 is sufficient for stability.



If a chain is irreducible and aperiodic positive recur-
rent, then it is ergodic (e.g., [27]), which implies (2).
Note that 

∑
w∈S pqwV (w) = E [V (s(k + 1)) | s(k) = q],

and 
∑

w∈S pqwV (w) − V (q) = E [V (s(k + 1)) − V (s(k))

| s(k) = q] also. The right-hand side of the last equation
resembles the familiar notion of drift of a one-dimensional
discrete Markov chain. Then, roughly speaking, one may
think of Foster’s criterion as a generalization of drift analy-
sis: if for all states that yield large enough value of the
Lyapunov function (states outside a finite subset S 0) drift
is negative (cf. the last condition), then the size of the
queues decreases on average, so that the chain is stable.

A relaxed condition on the arrival rates that guaran-
tees stability of an NDMA system can be obtained by
using the Foster-Lyapunov approach, see “An
Application of the Foster-Lyapunov Approach”
(cf. [28]). Another good example of an application of
the Foster-Lyapunov criterion can be found in [29].

Deterministic Fluid Arrivals Approach
The aim of the deterministic fluid arrivals approach is
to prove that, under a suitable condition on the λj ’s,
the state (backlog) of every queue in the system will
remain bounded. One example of use of this elegant
approach can be found in [30]. The method usually
entails an induction argument, starting by showing sta-
bility of the queue with the lowest arrival rate.

In the case of BNDMA, it is easier to prove that
every queue in the system will empty out in finite time
ad infinitum, irrespective of initial conditions and the
state of other queues in the system. This is again
achieved using an induction argument and in turn
implies that every queue remains bounded [28]. The
result is that the BNDMA system is stable if 

J∑

j=1

λj + J
max
j=1

(λj ) < 1. (8)

The fluid approach is exemplified in “An Application
of the Deterministic Fluid Arrivals Approach,” applied to
a J = 2-user BNDMA system; for general J see [28].

Figure 3 depicts stability bounds for a two-user sys-
tem for slotted ALOHA, NDMA and BNDMA,
obtained using the reviewed approaches. Transmission
of dummy packets in the dominant system enforces
equal service rates of all queues. This reduces the maxi-
mum individual rate making the bound loose at points
of highest asymmetry—when one terminal occupies the
channel. The deterministic fluid and Foster-Lyapunov
approaches, on the other hand, capture the asymmetry
of arrival rates and yield tighter bounds. The difference
in the stability regions of NDMA and BNDMA stems
from the extra retransmission required by BNDMA.

Other Performance Analysis Tools
The considered queuing tools generally yield sufficient
conditions for stability. Necessary conditions can some-
times be produced from steady-state analysis, e.g., see
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An Application of the Deterministic
Fluid Arrivals Approach

Let us show that (8) is sufficient for stability of a two-
user, J = 2, BNDMA system. Without loss of generali-

ty, assume that 

Let us show that queue 1 empties out after a finite time
irrespective of (finite) initial conditions and the state of
queue 2. We first assume that it never empties and then
show that this leads to a contradiction. If queue 1 never
empties it remains continuously backlogged and trans-
mits at all times. Over the time interval [0, T), it accumu-
lates at most qmax

1 := s1(0) + �λ1T� + σ1 packets, (�x�
denotes the floor operator). If it transmits continuously
and always collides with queue 2, then all CR epochs
are J + 1 = 3 slots long. Then queue 1 can be active
over at most t1,a = 3qmax

1 = 3�λ1T� + 3[s1(0) + σ1] slots.
From (8) and (7) it follows that

Then, queue 1 can be active in at most
t1,a = T + 3[s1(0) + σ1 − δ1T] slots over [0, T) .
If T ≥ (s1(0) + σ1)/δ1, then t1,a < T , which contradicts
the assumption that queue 1 never empties. Hence queue
1 will empty once, in finite time. Repeating this argument,
we show that queue 1 remains bounded for all time.

Now, we want to show that queue 2 also empties out
after a finite time irrespective of initial conditions. The
maximum number of packets accumulated at queue 2,
in [0, T) is qmax

2 := s2(0) + �λ2T� + σ2 . Assuming that
queue 2 never empties, the longest possible activity
burst of queue 2 during [0, T) is obtained for: 
▲ v1 = qmax

1 epochs of length 3, when both queues
transmit (max. that queue 1 can transmit over [0, T))

▲ v2 = qmax
2 − qmax

1 epochs of length 2 , when only
queue 2 transmits [note that qmax

1 < qmax
2 c.f. (7)]. 

This yields the following upper bound on the length of
time over which queue 2 can remain continuously
active: t2,a ≤ 3v1 + 2v2. From (8) and (7) it follows that

Now, if T ≥ (s1(0) + σ1 + 2s2(0) + 2σ2)/(2δ2) , then
t2,a < T , which contradicts the assumption that queue
2 never empties. This shows that queue 2 empties
once. Repeating this argument, and now using that
queue 1 remains bounded for all time, we conclude
that queue 2 also remains bounded for all time.
Therefore, the system is stable.

λ1 <
1
3

⇒ �λ1T� = 1
3

T − δ1T, δ1 > 0

λ2 <
1
2

(1 − λ1) ⇒ �λ2T� = 1
2

(1 − λ1)T − δ2T, δ2 > 0.

λ1 ≤ λ2, and
s1(0) + λ1t + σ1 ≤ s2(0) + λ2t + σ2,

for t ≥ 0. (7)



[28] for xNDMA. Steady-state analysis
assumes stability and typically boils
down to balance equations on the aver-
age number of packets arriving to and
departing from a queue, as exemplified
in Little’s theorem, e.g., [2].

Steady-state analysis methods are also
useful in characterizing the effect of
noise on the joint MAC-PHY design.
This is an important issue when practical
PHY layer components are considered.
In the context of xNDMA, the estima-
tion of the number of collided nodes is
obtained from noisy data. In addition,
bit errors may arise from the collision
resolution procedure. These make the
balance equation of queue arrivals and
departures statistically dependent on the
signal-to-noise ratio [16].

Additional tools are needed to eval-
uate delay performance of different
protocols. These methods are present-
ed in classical books on networking,
like [2]. Examples of application of
approximate delay analysis tools for
Poisson arrivals in the context of
xNDMA can be found in [1], [17],
and [28]. The basis of their approach is
delay analysis of an M/G/1 queue
with server vacations. Examples of
delay analyses for deterministic fluid
arrivals model can be found in the
original work of Cruz [22], [23].
Comparison of delay versus through-
put performance of TDMA and differ-
ent RA protocols for a ten-user system
with equal arrival rates is presented in
Figure 4.

Conclusions
This ar ticle has reviewed various
aspects of MAC-PHY cross-layer
designs, with the goals of introducing
pertinent queuing and stability analysis
tools to the SP-oriented readership,
and illustrating the advantages of such
cross-layer designs using the recently introduced class
of xNDMA protocols as an example. The results of
queuing analysis show that a jointly designed MAC-
PHY layer provides increased throughput (close to 1
packet/slot) and low delay characteristics over a wide
range of offered loads. The throughput-delay benefits
of xNDMA come at the expense of a moderate increase
in receiver complexity and power consumption.
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▲ 4. Delay versus throughput.

▲ 3. Two-user stability bounds.
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