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Tensors?

A tensor is an array whose elements are indexed by (i , j , k , . . .) –
more than two indexes.

Purchase data: indexed by ‘user’, ‘item’, ‘seller’, ‘time’
Movie rating data: indexed by ‘user’, ‘movie’, ‘time’
MIMO radar: indexed by ‘angle’, ‘range’, ‘Doppler’, ‘profiles’
...
Tensor can also represent an operator – more later.

A matrix is a second-order (AKA two-way) tensor, whose elements
are indexed by (i , j).
Three-way tensors are easy to visualize “shoe boxes”.

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 3 / 222



Why Are We Interested in Tensors?

Tensor algebra has many similarities with matrix algebra, but also
some striking differences.
Determining matrix rank is easy (SVD), but determining
higher-order tensor rank is NP-hard.
Low-rank matrix decomposition is easy (SVD), but tensor
decomposition is NP-hard.
A matrix can have an infinite number of low-rank decompositions,
but tensor decomposition is essentially unique under mild
conditions.
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Pertinent Applications

Early developments: Psychometrics and Chemometrics
Begining from the 1990s: Signal processing

communications, radar,
speech and audio,
biomedical
...

Starting in mid-2000’s: Machine learning and data mining

clustering
dimensionality reduction
latent factor models (topic mining & community detection)
structured subspace learning
...
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Chemometrics - Fluorescence Spectroscopy

credit:

http://www.chromedia.org/
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Fig. 6. An outlying slab (left) and a relatively clean slab (right) of the Dorrit
data.

dataset, and thus the recovered spectra are believed to be close
to the ground truth - see the row tagged as ‘from pure samples’
in Fig. 7. We see that the spectra estimated by the proposed
algorithm are visually very similar to those measured from the
pure samples. However, both of the nonnegativity-constrained
ℓ1 and ℓ2 PARAFAC algorithms yield clearly worse results
- for both of them, an estimated emission spectrum and an
estimated excitation spectrum are highly inconsistent with the
results measured from the pure samples. It is also interesting
to observe the weights of the slabs given by the proposed
algorithm in Fig. 8. One can see that the algorithm automat-
ically fully downweights slab5, which is consistent with our
observation (consistent with domain expert knowledge) that
slab 5 is an extreme outlying sample (cf. Fig. 6). This verifies
the effectiveness of our algorithm for joint slab selectionand
model fitting.

D. ENRON E-mail Data Mining

In this subsection, we apply the proposed algorithm on the
celebrated ENRON E-mail corpus. This data set contains the e-
mail communications between184 persons within 44 months.
Specifically,X(i, j, k) denotes the number of e-mails sent by
personi to personj within monthk. Many studies have been
done for mining the social groups out of this data set [26],
[27], [49]. In particular, [27] applied a sparsity-regularized
and non-negativity-constrained PARAFAC algorithm on this
data set, and some interesting (and interpretable) resultshave
been obtained. In particular, the significant non-zero elements
of A(:, r) usually correspond to persons with similar ‘social’
positions such as lawyers or executives.

Here, we also aim at mining the social groups out of the
ENRON data, while taking data for ‘outlying months’ into
consideration. It is well known that the ENRON company
went through a criminal investigation and finally filed for
bankruptcy. Hence, one may conjecture that the e-mail inter-
action patterns between the social groups might be irregular
during the outbreak of the crisis. We fit the data using the
following formulation:

min
A,B,C

K∑

k=1

(∥∥X(:, :, k)−ADk(C)BT
∥∥2
F
+ ǫ
) p

2

λaf(A) + λb‖B‖2F + λc‖C‖2F
s.t. A ≥ 0, B ≥ 0, C ≥ 0,
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Fig. 7. The estimated emission and excitation curves obtainedusing the
proposed algorithm, as well as nonnegativity-constrainedℓ2 andℓ1 PARAFAC
fitting.
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Fig. 8. The normalized weights of the samples obtained via IRALS.

wheref(A) is a function that promotes sparsity following the
insight in [27]; ‖B‖2F and ‖C‖2F are added to avoid scaling
/ counter-scaling issues, as in the previous example. Notice
that here we use an aggressive sparsity promoting function
f(A) from [41], which itself cannot be put in closed form –
notwithstanding, the proximal operator off(A) can be written
in closed-form, and thus is easy to incorporate into our ADMM
framework. We fit the ENRON data withR = 5 as in [27],
and setλa = 6.5 × 10−2, λb = λc = 10−3. The same pre-
processing as in [27], [49] is applied to the non-zero data to
compress the dynamic range; i.e., all the non-zero raw data
elements are transformed by an element-wise mappingx′ =
log2(x)+1. As in the last subsection, the proposed algorithm
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Chemometrics - Fluorescence Spectroscopy

Resolved spectra of different materials.
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Fig. 6. An outlying slab (left) and a relatively clean slab (right) of the Dorrit
data.

dataset, and thus the recovered spectra are believed to be close
to the ground truth - see the row tagged as ‘from pure samples’
in Fig. 7. We see that the spectra estimated by the proposed
algorithm are visually very similar to those measured from the
pure samples. However, both of the nonnegativity-constrained
ℓ1 and ℓ2 PARAFAC algorithms yield clearly worse results
- for both of them, an estimated emission spectrum and an
estimated excitation spectrum are highly inconsistent with the
results measured from the pure samples. It is also interesting
to observe the weights of the slabs given by the proposed
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ically fully downweights slab5, which is consistent with our
observation (consistent with domain expert knowledge) that
slab 5 is an extreme outlying sample (cf. Fig. 6). This verifies
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during the outbreak of the crisis. We fit the data using the
following formulation:
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Fig. 7. The estimated emission and excitation curves obtainedusing the
proposed algorithm, as well as nonnegativity-constrainedℓ2 andℓ1 PARAFAC
fitting.
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Fig. 8. The normalized weights of the samples obtained via IRALS.

wheref(A) is a function that promotes sparsity following the
insight in [27]; ‖B‖2F and ‖C‖2F are added to avoid scaling
/ counter-scaling issues, as in the previous example. Notice
that here we use an aggressive sparsity promoting function
f(A) from [41], which itself cannot be put in closed form –
notwithstanding, the proximal operator off(A) can be written
in closed-form, and thus is easy to incorporate into our ADMM
framework. We fit the ENRON data withR = 5 as in [27],
and setλa = 6.5 × 10−2, λb = λc = 10−3. The same pre-
processing as in [27], [49] is applied to the non-zero data to
compress the dynamic range; i.e., all the non-zero raw data
elements are transformed by an element-wise mappingx′ =
log2(x)+1. As in the last subsection, the proposed algorithm
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Signal Processing - Signal Separation

Spectrum sensing in cognitive radio – the multiple transceiver
case.

1

A Factor Analysis Framework for Power Spectra
Separation and Multiple Emitter Localization

Xiao Fu, Nicholas D. Sidiropoulos, John H. Tranter, and Wing-Kin Ma

Abstract—Spectrum sensing for cognitive radio has focused on
detection and estimation of aggregate spectra, without regard
for latent component identification. Unraveling the constituent
power spectra and the locations of ambient transmitters can be
viewed as the next step towards situational awareness, which
can facilitate efficient opportunistic transmission and interference
avoidance. This paper focuses on power spectra separation
and multiple emitter localization using a network of multi-
antenna receivers. A PARAllel FACtor analysis (PARAFAC)-
based framework is proposed that offers an array of attractive
features, including identifiability guarantees, ability to work
with asynchronous receivers, and low communication overhead.
Dealing with corrupt receiver reports due to shadowing or
jamming can be a practically important concern in this con-
text, and addressing it requires new theory and algorithms. A
robust PARAFAC formulation and a corresponding factorization
algorithm are proposed for this purpose, and identifiability of the
latent factors is theoretically established for this more challenging
setup. In addition to pertinent simulations, real experiments
with a software radio prototype are used to demonstrate the
effectiveness of the proposed approach.

Index Terms— Spectrum estimation, spectra separation, emit-
ter localization, tensor factorization, nonnegativity, robust esti-
mation, cognitive radio

I. I NTRODUCTION

Cognitive radio can help resolve the problem of spectrum
scarcity, by exploring and judiciously exploiting transmission
opportunities in space, time, and frequency.Spectrum sensing
is the first step towards this end, enabling secondary spectrum
reuse while limiting collisions and persistent interference to
licensed users [2], [3].

There is rich literature on spectrum sensing viewed as a
set of parallel detection problems, one per frequency bin; see
[4] for a recent tutorial. Wideband spectrum sensing generally
requires high sampling rates, implying expensive analog-to-
digital converters (ADCs) that consume considerable amount
of energy and can hardly fit in portable devices. Exploiting

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Original manuscript submitted toIEEE Trans. Signal Process., January 15,
2015; revised, May 12, 2015; accepted for publication, June18, 2015. A
conference version of part of this work was presented at ICASSP 2014 [1].

X. Fu was with the Department of Electronic Engineering, the Chinese
University of Hong Kong, Shatin, N.T., Hong Kong; he is now with the
Department of Electrical and Computer Engineering, University of Min-
nesota, Minneapolis, MN, 55455, e-mail: xfu@umn.edu. N. D. Sidiropoulos
and J. H. Tranter are with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN, 55455, e-mail:
(nikos,trant004)@umn.edu. W.-K. Ma is with the Department ofElectronic
Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong,
e-mail: wkma@ieee.org.
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Fig. 1. Motivation for spectra separation and transmitter localization. Primary
user 1 (PU1) is engaged in two-way communication with another node (not
shown) using the same set of frequencies to receive and transmit in time-
division duplex (TDD) mode. PU2 is likewise communicating withanother
node (not shown). (a) Using aggregate spectrum sensing, thecognitive radio
units (CRU) see the band of interest fully occupied. Since PU2 and CR
receivers are co-located, beamforming cannot be used for spatial interference
avoidance. (b) If the individual PU power spectra and node locations can be
estimated, on the other hand, the CR transmitter can modulate its signal in
the band occupied by PU1 and beamform towards the CR receiver /PU2.

frequency-domain sparsity, compressive spectrum sensingcan
obtain accurate spectrum estimates at sub-Nyquist sampling
rates, without frequency sweeping [5]. Cooperative spectrum
sensing schemes that use compressive sensing have been
considered in [6], [7], where the spectrum is estimated locally,
then consensus on globally fused sensing outcomes is reached.

Whereas most work on spectrum sensing (e.g., [4]–[7]) has
focused on reconstructing the signal’sFourier spectrum(i.e.,
the Fourier transform of the signal itself), in cognitive radio
and certain other applications only thepower spectrum(PS)
(i.e., the Fourier transform of the signal’s autocorrelation) is
needed – there is no reason to reconstruct or demodulate the
time-domain signal itself [8]–[10]. It was shown in [9] thatthe
sampling rate requirements can be considerably relaxed by ex-
ploiting a low-order correlation model, without even requiring
spectrum sparsity. The main idea in this line of work is that
power measurements are linear in the autocorrelation function,
hence a finite number of autocorrelation lags can be estimated
by building an over-determined system of linear equations.
This autocorrelation-based parametrization also underpins re-
cent work in so-calledfrugal sensing[11]–[13], dealing with
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Signal Processing - Signal Separation
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The two single-antenna radios inside each dashed box are synchronized with
each other to act as a dual-antenna receiver; the two dashed boxes arenot
synchronized with one another.

yields visually better estimation of the second power spectrum
(ESPRIT shows more residual leakage from the first spectrum
to the second).

Table V summarizes the results of multiple laboratory
experiments (averaged over 10 measurements), to illustrate the
consistency and effectiveness of our proposed framework. In
order to establish a metric for the performance of our power
spectra separation, we define the side-lobe to main-lobe ratio
(SMR) as our performance measurement. Specifically, letS1

andS2 denote the frequency index sets occupied by source 1
and source 2, respectively. We define

SMR =
1

2

(‖ŝ1(:,S2)‖1
‖ŝ1(:,S1)‖1

+
‖ŝ2(:,S1)‖1
‖ŝ2(:,S2)‖1

)
;

notice that SMR∈ [0, 1], and since the power spectra from
source 1 and source 2 do not overlap,S1 andS2 are disjoint,
which is necessary for the SMR metric as defined above to
be meaningful. Note that lower SMRs signify better spectra
separation performance. We observe that the average SMRs of
the ESPRIT and TALS algorithms are reasonably small, while
NMF exhibits approximately double SMR on average. The
estimated average DOAs are also presented in Table V; one
can see that both ESPRIT and TALS yield similar estimated
DOAs. It should be noted that power spectra separation was
consistently achieved over numerous trials with varying geom-
etry of source-receiver placement; DOA estimates exhibited
somewhat greater variation in accuracy.

TABLE V
THE ESTIMATED AVERAGE MRRS AND DOAS BY ESPRIT, TALS,AND

NMF RESPECTIVELY.

Algorithm Measure Avergae Result

ESPRIT
SMR 0.1572
DOAs (−67.1438◦, 47.3884◦)

TALS
SMR 0.1014
DOAs (−67.1433◦, 53.0449◦)

NMF
SMR 0.2537
DOAs -
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Fig. 15. The measured power spectrum usingy2,1(t).
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Fig. 16. The separated power spectra by ESPRIT and TALS, respectively.

VIII. C ONCLUSION

The problem of joint power spectra separation and source
localization has been considered in this paper. Working in the
temporal correlation domain, this problem has been formulated
as a PARAFAC decomposition problem. This novel formu-
lation does not require synchronization across the different
multi-antenna receivers, and it can exhibit better identifi-
ability than conventional spatial correlation-domain sensor
array processing approaches such as MI-SAP. Robustness
issues have also been considered, and identifiability of the
latent factors (and the receivers reporting corrupted data) was
theoretically established in this more challenging setup.A
robust PARAFAC algorithm has been proposed to deal with
this situation, and extensive simulations have shown that the
proposed approaches are effective. In addition to simulations,
real experiments with a software radio prototype were used to
demonstrate the effectiveness of the proposed approach.
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NMF exhibits approximately double SMR on average. The
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VIII. CONCLUSION

The problem of joint power spectra separation and source
localization has been considered in this paper. Working in the
temporal correlation domain, this problem has been formulated
as a PARAFAC decomposition problem. This novel formu-
lation does not require synchronization across the different
multi-antenna receivers, and it can exhibit better identifi-
ability than conventional spatial correlation-domain sensor
array processing approaches such as MI-SAP. Robustness
issues have also been considered, and identifiability of the
latent factors (and the receivers reporting corrupted data) was
theoretically established in this more challenging setup. A
robust PARAFAC algorithm has been proposed to deal with
this situation, and extensive simulations have shown that the
proposed approaches are effective. In addition to simulations,
real experiments with a software radio prototype were used to
demonstrate the effectiveness of the proposed approach.
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NMF exhibits approximately double SMR on average. The
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VIII. C ONCLUSION

The problem of joint power spectra separation and source
localization has been considered in this paper. Working in the
temporal correlation domain, this problem has been formulated
as a PARAFAC decomposition problem. This novel formu-
lation does not require synchronization across the different
multi-antenna receivers, and it can exhibit better identifi-
ability than conventional spatial correlation-domain sensor
array processing approaches such as MI-SAP. Robustness
issues have also been considered, and identifiability of the
latent factors (and the receivers reporting corrupted data) was
theoretically established in this more challenging setup.A
robust PARAFAC algorithm has been proposed to deal with
this situation, and extensive simulations have shown that the
proposed approaches are effective. In addition to simulations,
real experiments with a software radio prototype were used to
demonstrate the effectiveness of the proposed approach.
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Machine Learning - Social Network Co-clustering

Email data from the Enron company.
Indexed by ‘sender’, ‘receiver’, ‘month’ – a three-way tensor. 23
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Fig. 8. The normalized weights yielded by the proposed algorithm when applied on the ENRON e-mail data.

Fig. 8. This verifies our guess: The interaction pattern during this particular period is not regular,
and downweighting these slabs can give us more clean social groups.

TABLE III
THE DATA MINING RESULT OF THE ENRON E-MAIL CORPUS BY THE PROPOSED ALGORITHM.

cluster 1 (Legal; 16 persons) cluster 2 (Excecutive; 18 persons) cluster 3 (Executive; 25 persons)
Brenda Whitehead, N/A David Delainey, CEO ENA and Enron Energy Services Andy Zipper , VP Enron Online
Dan Hyvl, N/A Drew Fossum, VP Transwestern Pipeline Company (ETS) Jeffrey Shankman, President Enron Global Markets
Debra Perlingiere, Legal Specialist ENA Legal Elizabeth Sager, VP and Asst Legal Counsel ENA Legal Barry Tycholiz, VP Marketing
Elizabeth Sager, VP and Asst Legal Counsel ENA Legal James Steffes, VP Government Affairs Richard Sanders, VP Enron Wholesale Services
Jeff Hodge, Asst General Counsel ENA Legal Jeff Dasovich, Employee Government Relationship Executive James Steffes, VP Government Affairs
Kay Mann, Lawyer John Lavorato, CEO Enron America Mark Haedicke, Managing Director ENA Legal
Louise Kitchen, President Enron Online Kay Mann, Lawyer Greg Whalley, President
Marie Heard, Senior Legal Specialist ENA Legal Kevin Presto, VP East Power Trading Jeff Dasovich, Employee Government Relationship Executive
Mark Haedicke, Managing Director ENA Legal Margaret Carson, Employee Corporate and Environmental Policy Jeffery Skilling, CEO
Mark Taylor , Manager Financial Trading Group ENA Legal Mark Haedicke, Managing Director ENA Legal Vince Kaminski, Manager Risk Management Head
Richard Sanders, VP Enron Wholesale Services Philip Allen, VP West Desk Gas Trading Steven Kean, VP Chief of Staff
Sara Shackleton, Employee ENA Legal Richard Sanders, VP Enron Wholesale Services Joannie Williamson, Executive Assistant
Stacy Dickson, Employee ENA Legal Richard Shapiro , VP Regulatory Affairs John Arnold, VP Financial Enron Online
Stephanie Panus, Senior Legal Specialist ENA Legal Sally Beck, COO John Lavorato, CEO Enron America
Susan Bailey, Legal Assistant ENA Legal Shelley Corman, VP Regulatory Affairs Jonathan McKa, Director Canada Gas Trading
Tana Jones, Employee Financial Trading Group ENA Legal Steven Kean, VP Chief of Staff Kenneth Lay, CEO

Susan Scott, Employee Transwestern Pipeline Company (ETS) Liz Taylor, Executive Assistant to Greg Whalley
Vince Kaminski, Manager Risk Management Head Louise Kitchen, President Enron Online

cluser 4 (Trading; 12 persons) cluster 5 (Pipeline; 15 persons) Michelle Cash, N/A
Chris Dorland, Manager Bill Rapp, N/A Mike McConnel, Executive VP Global Markets
Eric Bas, Trader Texas Desk Gas Trading Darrell Schoolcraft, Employee Gas Control (ETS) Kevin Presto, VP East Power Trading
Philip Allen, Manager Drew Fossum, VP Transwestern Pipeline Company (ETS) Richard Shapiro, VP Regulatory Affairs
Kam Keiser, Employee Gas Kevin Hyatt, Director Asset Development TW Pipeline Business (ETS)Rick Buy, Manager Chief Risk Management Officer
Mark Whitt, Director Marketing Kimberly Watson, Employee Transwestern Pipeline Company (ETS) Sally Beck, COO
Martin Cuilla, Manager Central Desk Gas Trading Lindy Donoho, Employee Transwestern Pipeline Company (ETS) Hunter Shively, VP Central Desk Gas Trading
Matthew Lenhart, Analyst West Desk Gas Trading Lynn Blair, Employee Northern Natural Gas Pipeline (ETS)
Michael Grigsby, Director West Desk Gas Trading Mark McConnell, Employee Transwestern Pipeline Company (ETS)
Monique Sanchez, Associate West Desk Gas Trader (EWS) Michelle Lokay, Admin. Asst. Transwestern Pipeline Company (ETS)
Susan Scott, Employee Transwestern Pipeline Company (ETS)Rod Hayslett, VP Also CFO and Treasurer
Jane Tholt, VP West Desk Gas Trading Shelley Corman, VP Regulatory Affairs
Philip Allen, VP West Desk Gas Trading Stanley Horton, President Enron Gas Pipeline

Susan Scott, Employee Transwestern Pipeline Company (ETS)
Teb Lokey, Manager Regulatory Affairs
Tracy Geaccone, Manager (ETS)

VIII. C ONCLUSION

In this work, we considered the problem of low-rank tensor decomposition in the presence of
outlying slabs. Several practical motivating applications have been introduced. A conjugate aug-
mented optimization framework has been proposed to deal with the formulatedℓp minimization-
based factorization problem. The proposed algorithm features similar complexity as the classic
TALS algorithm that is not robust to outlying slabs. Regularized and constrained optimization
has also been considered by employing an ADMM update scheme.Simulations using synthetic

March 31, 2015 DRAFT
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Goals of this course

A comprehensive overview with sufficient technical depth.
Required background: First graduate courses in linear algebra,
probability & random vectors. A bit of optimization will help, but not
strictly required.
Sufficient technical details to allow graduate students to start
tensor-related research; and practitioners to start developing
tensor software.
Proofs of and insights from special cases that convey the essence.
Understand the basic (and very different) ways in which tensor
decompositions are used in signal processing and machine
learning.
Various examples of how practical problems are formulated and
solved as tensor decomposition problems.
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Roadmap

Preliminaries
Rank and rank decomposition (CPD)
Uniqueness, demystified
Other models
- Tucker, MLSVD
- Tensor Trains, PARALIND / Block Component Decomposition, ...
(brief)
Algorithms
- basic and constrained algorithms, factorization at scale
Applications in signal processing and machine learning
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Rank & Rank Decomposition - Matrices

Consider an I × J matrix X.
colrank(X) := no. of linearly indep. columns of X, i.e.,
dim(range(X)).
colrank(X) is the minimum k ∈ N such that X = ABT , where A is
an I × k basis of range(X), and BT is k × J.
dim(range(XT )), which is the minimum ` ∈ N such that XT = BAT

⇐⇒ X = ABT , where B is J × ` and AT is `× I.
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Rank & Rank Decomposition - Matrices

X =
∑`

n=1 anbT
n , where A = [a1, · · · ,a`] and B = [b1, · · · ,b`].

rank(X) = minimum m such that X =
∑m

n=1 anbT
n .

Easy to notice: colrank(X) = rowrank(X) = rank(X).
The three definitions actually coincide!
Obviously, rank(X) ≤ min(I, J).

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 16 / 222



Low-Rank Matrix Approximation

In practice, we observe X = L + N.
L = ABT is low-rank.
N represents noise and ‘unmodeled dynamics’.

In many cases we are interested in the L part:

min
L | rank(L)=`

||X− L||2F ⇐⇒ min
A∈RI×`, B∈RJ×`

||X− ABT ||2F .

Solution: truncated SVD of X.
X = UΣVT , L = U(:,1 : `)Σ(1 : `,1 : `)(V(:,1 : `))T .
A = U(:,1 : `)Σ(1 : `,1 : `), B = V(:,1 : `).

Even without noise, low-rank decomposition of X is non-unique:

ABT = AMM−1BT = (AM)(BM−T )T ,

holds for any non-singular M.
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Useful Products

Kronecker product of A (I×K ) and B (J ×L) is the IJ ×KL matrix

A⊗ B :=




BA(1,1) BA(1,2) · · · BA(1,K )
BA(2,1) BA(2,2) · · · BA(2,K )

...
... · · · ...

BA(I,1) BA(I,2) · · · BA(I,K )




Properties:
b⊗ a = vec(abT ).
vec

(
AMBT

)
= (B⊗ A) vec(M).

vec
(

AMBT
)

= vec

(
K∑

k=1

L∑

`=1

A(:, k)M(k , `)(B(:, `))T

)

=
K∑

k=1

L∑

`=1

M(k , `)B(:, `)⊗ A(:, k)

= (B⊗ A) vec(M).
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Useful Products - Cont’d

The vectorization property is handy for computation:

min
M
||X− AMBT ||2F ⇐⇒ min

m
||vec(X)− (B⊗ A)m||22,

where m = vec(M).
Khatri-Rao Product: A� B := [a1 ⊗ b1, · · · a` ⊗ b`] .
Define D = Diag(d) and d = diag(D). vec

(
ADBT ) = (B� A) d,

which is useful when dealing with the following

min
D=Diag(d)

||X− ADBT ||2F ⇐⇒ min
d
||vec(X)− (B� A)d||22.

Khatri–Rao product B� A is a subset of columns from B⊗ A.
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Useful Products - More Properties

(A⊗ B)⊗ C = A⊗ (B⊗ C) (associative)
Note though that A⊗ B 6= B⊗ A (non-commutative).
(A⊗ B)T = AT ⊗ BT (note order, unlike (AB)T = BT AT ).
(A⊗ B)∗ = A∗ ⊗ B∗ =⇒ (A⊗ B)H = AH ⊗ BH

∗, H stand for conjugation and Hermitian transposition, respectively.
(A⊗ B)(E⊗ F) = (AE⊗ BF) ( mixed product rule).

(A⊗ B)−1 = A−1 ⊗ B−1, for square A, B.
If A = U1Σ1VT

1 and B = U2Σ2VT
2 , A⊗ B = (U1Σ1VT

1 )⊗ (U2Σ2VT
2 )

= (U1 ⊗ U2)(Σ1 ⊗Σ2)(V1 ⊗ V2)T .
rank(A⊗ B) = rank(A)rank(B).
tr(A⊗ B) = tr(A)tr(B), for square A, B.
det(A⊗ B) = det(A)det(B), for square A, B.
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Useful Products - More Properties

(A� B)� C = A� (B� C) (associative).
A� B 6= B� A (non-commutative).
(A⊗ B)(E� F) = (AE)� (BF) (mixed product rule).
Heads-up: the mixed product rule plays an essential role in
large-scale tensor computations.
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Useful Products - Tensor Outer Product

Tensor (outer) product of a (I × 1) and b (J × 1) is defined as
the I × J matrix a } b with elements

(a } b)(i , j) = a(i)b(j)

Note that a } b = abT .
a } b } c with elements (a } b } c)(i , j , k) = a(i)b(j)c(k).
Naturally generalizes to three- and higher-way cases.
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Tensor Rank

Figure: Schematic of a rank-1 matrix and tensor.

A rank-1 matrix X of size I × J is an outer product of two vectors:
X(i , j) = a(i)b(j), ∀i ∈ {1, · · · , I}, j ∈ {1, · · · , J}; i.e.,

X = a } b.

A rank-1 third-order tensor X of size I × J × K is an outer
product of three vectors: X(i , j , k) = a(i)b(j)c(k); i.e.,

X = a } b } c.
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Tensor Rank

Rank of matrix X is the smallest F that X =
∑F

f =1 af } bf holds for
some af ’s and bf ’s.
Rank of tensor X is the minimum number of rank-1 tensors
needed to produce X as their sum.
A tensor of rank at most F can be written as

X =
F∑

f =1

af } bf } cf ⇐⇒ X(i , j , k) =
F∑

f =1

af (i)bf (j)cf (k)

It is also customary to use X(i , j , k) =
∑F

f =1 ai,f bj,f ck ,f .
Let A := [a1, · · · ,aF ], B := [b1, · · · ,bF ], and C := [c1, · · · ,cF ]⇒
X(i , j , k) =

∑F
f =1 A(i , f )B(j , f )C(k , f ).

For brevity, X = JA,B,CK.
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Tensor Rank - Illustration
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Figure: Schematic of tensor of rank three.
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Slab Representations

… …

Frontal slabs Horizontal slabs Lateral slabs

Figure: Slab views of a three-way tensor.
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Slab Representations - Towards Rank Decomposition

Let us look at the frontal slab X(:, :,1) of X:

X(i , j ,1) =
F∑

f =1

af (i)bf (j)cf (1) =⇒ X(:, :,1) =
F∑

f =1

af bT
f cf (1) =

ADiag([c1(1),c2(1), · · · ,cF (1)])BT = ADiag(C(1, :))BT .

Denote Dk (C) := Diag(C(k , :)) for brevity. Hence, for any k ,

X(:, :, k) = ADk (C)BT , vec(X(:, :, k)) = (B� A)(C(k , :))T ,

By parallel stacking, we obtain the matrix unfolding

X3 := [vec(X(:, :,1)), vec(X(:, :,2)), · · · , vec(X(:, :,K ))]→

X3 = (B� A)CT , (IJ × K ).
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Slab Representations - Towards Rank Decomposition

In the same vain, we may consider lateral slabs , e.g.,

X(:, j , :) = ADj(B)CT → vec(X(:, j , :)) = (C� A)(B(j , :))T .

Hence

X2 := [vec(X(:,1, :)), vec(X(:,2, :)), · · · , vec(X(:, J, :))]→

X2 = (C� A)BT , (IK × J),

Similarly for the horizontal slabs X(i , :, :) = BDi(A)CT ,

X1 := [vec(X(1, :, :)), vec(X(2, :, :)), · · · , vec(X(I, :, :))]→
X1 = (C� B)AT , (KJ × I).
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Slab Representations

… …

Frontal slabs Horizontal slabs Lateral slabs

Figure: Slab views of a three-way tensor.

Frontal slabS: X(:, :, k) = ADk (C)BT .
Horizontal slabs: X(i , :, :) = BDi(A)CT .
Lateral slabs: X(:, j , :) = ADj(B)CT .
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Low-rank Tensor Approximation

Adopting a least squares criterion, the problem is

min
A,B,C

||X−
F∑

f =1

af } bf } cf ||2F ,

Equivalently, we may consider

min
A,B,C

||X1 − (C� B)AT ||2F .

Alternating optimization:

A← arg min
A
||X1 − (C� B)AT ||2F ,

B← arg min
B
||X2 − (C� A)BT ||2F ,

C← arg min
C
||X3 − (B� A)CT ||2F ,

The above is widely known as Alternating Least Squares (ALS).
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Bounds on Tensor Rank

For an I × J matrix X, we know that rank(X) ≤ min(I, J), and
rank(X) = min(I, J) almost surely.
Considering X = ABT where A is I × F and B is J × F , the
number of unknowns, or degrees of freedom (DoF) in the ABT

model is (I + J − 1)F .
The number of equations in X = ABT is IJ, suggesting that F (at
most) of order min(I, J) may be needed.
What can we say about I × J × K tensors X?
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Bounds on Tensor Rank

For X =
∑F

f =1 af } bf } cf , the DoF is (I + J + K − 2)F .
The number of equations is IJK .
This suggests that

F ≥ d IJK
I + J + K − 2

e

may be needed to describe an arbitrary tensor X of size I × J × K .
Suggests a 3rd-order tensor’s rank can potentially be
min(IJ, JK , IK ).
In fact this turns out being sufficient as well.
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Bounds on Tensor Rank - An Intuitive Way to See It

Denote X(:, :, k) = AkBT
k .

X(:, :, k) is of size I × J ⇒ Ak and Bk have at most min(I, J)
columns.

Let A := [A1, · · · ,AK ], B := [B1, · · · ,BK ], and
C := IK×K ⊗ 11×min(I,J), we can synthesize X as X = JA,B,CK.

The k th frontal slab looks like

X(:, :, k) = [A1, . . . ,AK ]




0 . . . 0
...

...
...

. . . Imin(I,J) . . .
...

...
...

0 . . . 0




[B1, . . . ,BK ]T

implies at most min(IK , JK ) columns in A,B,C to represent X.
Using role symmetry, the rank upper bound is min(IK , JK , IJ).
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A Lower Bound of Tensor Rank

Concatenate the frontal slabs one next to each other

[X(:, :,1) · · ·X(:, :,K )] = A
[
Dk (C)BT · · ·Dk (C)BT

]

F must be ≥ dim(range([X(:, :,1) · · ·X(:, :,K )])).
Define

R1(X) := dim colspan(X) := dim span {X(:, j , k)}∀j,k ,

R2(X) := dim rowspan(X) := dim span {X(i , :, k)}∀i,k ,
R3(X) := dim fiberspan(X) := dim span {X(i , j , :)}∀i,j .

We have max(R1,R2,R3) ≤ F .
Combining with our previous argument on upper bound, we have

max(R1,R2,R3) ≤ F ≤ min(R1R2,R2R3,R1R3).

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 34 / 222



Typical, Generic, and Border Rank

Consider a 2× 2× 2 tensor X whose elements are i.i.d., drawn
from the standard normal distribution N (0,1).
The rank of X over the real field, i.e., when we consider

X =
F∑

f =1

af } bf } cf , af ∈ R2×1,bf ∈ R2×1,cf ∈ R2×1, ∀f

is

rank(X) =

{
2, with probability π

4
3, with probability 1− π

4

The rank of the same X is 2 with probability 1 when decomposition
over the complex field.
As another example, for X = randn(3,3,2),

rank(X) =





3, with probability 1
2

4, with probability 1
2
, over R;

3, with probability 1 , over C.
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Typical & Generic Rank

Consider the 2× 2× 2 case and denote S1 := X(:, :,1) and
S2 := X(:, :,2).
For X to have rank(X) = 2, we must be able to express these
slabs as

S1 = AD1(C)BT , and S2 = AD2(C)BT ,

for some 2× 2 real or complex matrices A, B, and C.
If X = randn(2,2,2), S1 and S2 are nonsingular almost surely.
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Typical & Generic Rank

A, B, D1(C), and D2(C) must all be nonsingular too.
Denoting Ã := AD1(C), D := (D1(C))−1D2(C)⇔ BT = (Ã)−1S1,
and S2 = ÃD(Ã)−1S1, leading to

S2S−1
1 = ÃD(Ã)−1.

For rank(X) = 2 over R, the matrix S2S−1
1 should have two real

eigenvalues.
But complex conjugate eigenvalues do arise with positive
probability.
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Typical & Generic Rank

We see that the rank of a tensor for decomposition over R is a
random variable that can take more than one value with positive
probability.
These values are called typical ranks.
For decomposition over C the situation is different:
rank(randn(2,2,2)) = 2 with probability 1.
When there is only one typical rank (that occurs with probability 1
then) we call it generic rank.

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 38 / 222



Border Rank

Consider X = u } u } v + u } v } u + v } u } u, where
||u|| = ||v|| = 1, with |uT v| 6= 1.
Consider

Xn = n(u +
1
n

v) } (u +
1
n

v) } (u +
1
n

v)− nu } u } u

= u } u } v + u } v } u + v } u } u+

+
1
n

v } v } u + +
1
n

u } v } v +
1
n2 v } v } v,

so Xn = X + terms that vanish as n→∞.
X has rank equal to 3, but border rank equal to 2 [Com14].
The above example shows the following is ill-posed in general:

min
{af ,bf ,cf }F

f =1

∣∣∣∣∣

∣∣∣∣∣X−
F∑

f =1

af } bf } cf

∣∣∣∣∣

∣∣∣∣∣

2

F

.
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Comments

For a tensor of a given size, there is always one typical rank over
C, which is therefore generic.
For I1 × I2 × · · · × IN tensors, this generic rank is the value

d
∏N

n=1 In∑N
n=1 In − N + 1

e

except for the so-called defective cases:
(i) I1 >

∏N
n=2 In −

∑N
n=2(In − 1)

(ii) the third-order case of dimension (4,4,3)
(iii) the third-order cases of dimension (2p + 1,2p + 1,3), p ∈ N
(iv) the 4th-order cases of dimension (p,p,2,2), p ∈ N
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Comments - Cont’d

Typical rank may change when the tensor is constrained in some
way; e.g., when the frontal slabs are symmetric.
Consider, for example, a fully symmetric tensor, i.e., one such that
X(i , j , k) = X(i , k , j) = X(j , i , k) = X(j , k , i) = X(k , i , j) = X(k , j , i).
Then the symmetric rank of N-way X over C is defined as the
minimum R such that X =

∑R
r=1 ar } ar } · · ·} ar .

It has been shown that this symmetric rank equals d
(I+N−1

N

)
/Ie

almost surely except in the defective cases
(N, I) = (3,5), (4,3), (4,4), (4,5), where it is 1 higher [AH95].

Taking N = 3 as a special case, this formula gives (I+1)(I+2)
6 .

We also remark that constraints such as nonnegativity of a factor
matrix can strongly affect rank.
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Tensor Rank

Maximal and typical ranks for decomp. over R [KB09, Lan12].

Table: Maximum attainable rank over R.
Size Maximum attainable rank over R
I × J × 2 min(I, J) + min(I, J, bmax(I, J)/2c)
2× 2× 2 3
3× 3× 3 5

Table: Typical rank over R
Size Typical ranks over R
I × I × 2 {I, I + 1}
I × J × 2, I > J min(I, 2J)
I × J × K , I > JK JK

Table: Symmetry may affect typical rank.
Size Typical ranks, R Typical ranks, R

partial symmetry no symmetry
I × I × 2 {I, I + 1} {I, I + 1}
9× 3× 3 6 9
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Tensor Rank in Practice

Given a particular tensor X, determining rank(X) is NP-hard
[Hås90].
Is this an issue in practical applications of tensor decomposition?
In applications, one is really interested in fitting a model that has
the “essential” or “meaningful” number of components – “signal
rank”.
Determining the signal rank is challenging, even in the matrix
case.
There exist heuristics that can help.
... but, at the end of the day, the process generally involves some
trial-and-error.
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Tensors as Operators – Rank Matters

Consider M1 ×M2, where M1 and M2 are both 2× 2 matrices.
A naive implementation of P = M1M2 requires 8 multiplications.
The rank of a tensor can give an upper bound of the number of
multiplications that is needed.
Define [vec(P)]k = vec(M1)T Xkvec(M2), e.g.,

X1 =




1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


 ,

then vec(M1)T Xkvec(M2) = P(1,1).
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Tensors as Operators – Rank Matters

Assume that X has a decomposition Xk = ADk (C)BT with rank F .
Any element of P can be written as vec(M1)T ADk (C)BT vec(M2).
BT vec(M2) can be computed using F inner products, and the
same is true for vec(M1)T A.
If the elements of A, B, C take values in {0,±1}, then these inner
products require no multiplication.
Letting uT := vec(M1)T A and v := BT vec(M2), it remains to
compute uT Dk (C)v =

∑F
f =1 u(f )v(f )C(k , f ), ∀k ∈ {1,2,3,4}.
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Tensor as Operator – Rank Matters

F multiplications to compute the products {u(f )v(f )}Ff =1.
The rest is all selections, additions, subtractions if C takes values
in {0,±1}.
The rank of Strassen’s 4× 4× 4 tensor is 7, so F = 7 suffices.
Contrast to the “naive” approach which entails F = 8
multiplications.
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Are Matrix Unfoldings Rank-Revealing?

Recall we have three unfoldings

X1 = (C� B)AT , X2 = (C� A)BT , X3 = (B� A)CT

If rank(C� B) = rank(A) = F , then rank(X1) = F = rank(X).
For this to happen it is necessary (but not sufficient) that JK ≥ F ,
and I ≥ F , so F has to be small: F ≤ min(I, JK ).
It follows that F ≤ max(min(I, JK ),min(J, IK ),min(K , IJ)) is
necessary to have a rank-revealing matricization of the tensor.
However, we know that the (perhaps unattainable) upper bound
on F = rank(X) is F ≤ min(IJ, JK , IK ).
In more general (and more interesting cases) of tensor
factorization,

F = rank(X) ≥ max(rank(X1), rank(X2), rank(X3)).
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Going to Higher-Order

Let us start with 4-way tensors:

X(i , j , k , `) =
F∑

f =1

af (i)bf (j)cf (k)ef (`),∀





i ∈ {1, · · · , I}
j ∈ {1, · · · , J}
k ∈ {1, · · · ,K}
` ∈ {1, · · · ,L}

or, equivalently X =
F∑

f =1

af } bf } cf } ef .

Upon defining A := [a1, · · · ,aF ], B := [b1, · · · ,bF ],
C := [c1, · · · ,cF ], E := [e1, · · · ,eF ], we may also write

X(i , j , k , `) =
F∑

f =1

A(i , f )B(j , f )C(k , f )E(`, f ),

and we sometimes also use X(i , j , k , `) =
∑F

f =1 ai,f bj,f ck ,f e`,f .
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Going to Higher-Order

Now consider X(:, :, :,1), which is a third-order tensor:

X(i , j , k ,1) =
F∑

f =1

ai,f bj,f ck ,f e1,f .

let us vectorize X(:, :, :,1) into an IJK × 1 vector

vec (vec (X(:, :, :,1))) = (C� B� A)(E(1, :))T .

Stacking one next to each other the vectors corresponding to
X(:, :, :,1), X(:, :, :,2), · · · , X(:, :, :,L), we obtain (C� B� A)ET ;
and after one more vec(·) we get (E� C� B� A)1.
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Going to Higher-Order

(E�C�B�A)1 = ((E�C)� (B�A))1 = vec
(
(B� A)(E� C)T ):

“Balanced” matricization of the 4th-order tensor:

Xb = (B� A)(E� C)T .

Xb is rank-revealing means F ≤ min(IJK , IJL, IKL, JKL)

Looks better than the 3-order case? - but the rank upper bound is
also much higher.
In short: matricization can reveal tensor rank in low-rank cases
only.
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Going to Higher-Order

For a general N-way tensor, we can write it in scalar form as

X(i1, · · · , iN) =
F∑

f =1

a(1)
f (i1) · · · a(N)

f (iN) =
F∑

f =1

a(1)
i1,f
· · · a(N)

iN ,f
,

and in (combinatorially!) many different ways, including

XN = (AN−1 � · · · � A1)AT
N → vec(XN) = (AN � · · · � A1)1.

We sometimes also use the shorthand vec(XN) =
(
�1

n=NAn
)

1.
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Reprise – what’s coming next

CPD: Uniqueness, demystified
Tucker
MLSVD: Properties, analogies, computation
Links between CPD and Tucker, MLSVD
Other models:

Tensor Trains
Hierarchical Tucker
PARALIND and Block-Term Decomposition
Coupled Decompositions
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Reprise

Most significant advantage of tensors vs. matrices: low-rank
tensor decomposition (essentially) unique for rank� 1, even
rank > #rows, columns, fibers.
For matrices, only true for rank = 1 – not interesting, in most
cases.
But why tensors (of order ≥ 3) are so different may seem like a
mystery ...
Phase transition between second-order (matrices) and third- or
higher-order tensors.
Let’s shed some light into this phenomenon.
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Essential uniqueness

a
1

a
2

a
3

b
1

b
2

b
3

c
1

c
2

c
3

+ +=

Given tensor X of rank F , its CPD is essentially unique iff the F
rank-1 terms in its decomposition (the outer products or “chicken
feet”) are unique;
i.e., there is no other way to decompose X for the given number of
terms.
Can of course permute “chicken feet” without changing their sum
→ permutation ambiguity.
Can scale a1 by α and counter-scale b1 (or c1) by 1

α .
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Essential uniqueness

a
1

a
2

a
3

b
1

b
2
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3

c
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3

+ +=

If X = JA,B,CK, with A : I × F , B : J × F , and C : K × F , then
essential uniqueness means that A, B, and C are unique up to a
common permutation and scaling / counter-scaling of columns.
Meaning that if X =

q
Ā, B̄, C̄

y
, for some Ā : I × F , B̄ : J × F , and

C̄ : K × F , then there exists a permutation matrix Π and diagonal
scaling matrices Λ1,Λ2,Λ3 such that

Ā = AΠΛ1, B̄ = BΠΛ2, C̄ = CΠΛ3, Λ1Λ2Λ3 = I.
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Simple proof of uniqueness

Consider I × J × 2 tensor X of rank F ≤ min(I, J).

X(1) = X(:, :,1) = AD1(C)BT ,

X(2) = X(:, :,2) = AD2(C)BT ,

Assume, for the moment, no zero element on the diagonals.
Ã := AD1(C), D := (D1(C))−1D2(C).

Then, X(1) = ÃBT , X(2) = ÃDBT , or

[
X(1)

X(2)

]
=

[
Ã
ÃD

]
BT .
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Simple proof of uniqueness

[U,Σ,V] = svd
([

X(1)

X(2)

])
, i.e.,

[
X(1)

X(2)

]
= UΣVT

Assuming rank
(
X(1)

)
= rank

(
X(2)

)
= F (⇒ rank of all matrices is

F )→

U =

[
U1
U2

]
=

[
Ã
ÃD

]
M =

[
ÃM
ÃDM

]
,

where matrix M is F × F nonsingular.
Compute auto- and cross-correlation

R1 = UT
1 U1 = MT ÃT ÃM =: QM,

R2 = UT
1 U2 = MT ÃT ÃDM = QDM.

Both R1 and R2 are F × F nonsingular.

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 57 / 222



Simple proof of uniqueness

What have we accomplished so far?
Obtained equations involving square nonsingular matrices
(instead of possibly tall, full column rank ones). Key step comes
next: (

R−1
1 R2

)
M−1 = M−1D

M−1 holds eigenvectors of
(

R−1
1 R2

)
, and D holds eigenvalues

(assumed to be distinct, for the moment).
∃ freedom to scale eigenvectors (remain eigenvectors), and
obviously one cannot recover the order of the columns of M−1.
→ permutation and scaling ambiguity in recovering M−1 from
eigendecomposition of

(
R−1

1 R2

)
.
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Simple proof of uniqueness

What we do recover is actually M̃−1 = M−1ΠΛ, where Π is a
permutation matrix and Λ is a nonsingular diagonal scaling matrix.
If we use M̃−1 to recover Ã from equation U1 = ÃM⇒
Ã = U1M−1, we will in fact recover ÃΠΛ.
That is, Ã up to the same column permutation and scaling that
stem from the ambiguity in recovering M−1.
Now easy to see that we can recover B and C by going back to
the original equations for X(1) and X(2) and left-inverting A.
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Simple proof of uniqueness

During the course of the derivation, made assumptions in passing:

that the slabs of X have rank F = rank(X), and
that the eigenvalues in D are distinct (⇒ one row of C has no zero
elements).

Next we revisit those, starting from the last one, and show that
they can be made WLOG.

First note that
(

R−1
1 R2

)
is diagonalizable (i.e., has a full set of

linearly independent eigenvectors) by construction under our
working assumptions.
If two or more of its eigenvalues are identical though, then linear
combinations of the corresponding eigenvectors are also
eigenvectors, corresponding to the same eigenvalue. Hence
distinct eigenvalues (elements of D) are necessary for
uniqueness.
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Simple proof of uniqueness

Consider creating two random slab mixtures

X̃(1) = γ1,1X(1) + γ1,2X(2) =

A
(
γ1,1D1(C) + γ1,2D2(C)

)
BT ,

X̃(2) = γ2,1X(1) + γ2,2X(2) =

A
(
γ2,1D1(C) + γ2,2D2(C)

)
BT .

Net effect C← C̃ := ΓC, and we draw Γ :=

[
γ1,1 γ1,2
γ2,1 γ2,2

]
from

i.i.d. U [0,1].

All elements of C̃ 6= 0, rank
(

X̃(1)
)

= rank
(

X̃(2)
)

= F , almost
surely.
Any two columns of C̃ = Γ × corresponding two columns of C⇒
distinct ratios C̃(1, :)/C̃(2, :) a.s. iff any two columns of C are
linearly independent – C has Kruskal rank ≥ 2.
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Simple proof of uniqueness

We have proven

Theorem
Given X = JA,B,CK, with A : I × F, B : J × F, and C : 2× F, if F > 1
it is necessary for uniqueness of A, B that kC = 2. If, in addition
rA = rB = F, then rank(X) = F and the decomposition of X is
essentially unique.

For K ≥ 2 slices, consider two random slice mixtures to obtain

Theorem
Given X = JA,B,CK, with A : I × F, B : J × F, and C : K × F, if F > 1
it is necessary for uniqueness of A, B that kC ≥ 2. If, in addition
rA = rB = F, then rank(X) = F and the decomposition of X is
essentially unique.
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Intermediate result conveying flavor of Kruskal’s

Theorem
Given X = JA,B,CK, with A : I × F, B : J × F, and C : K × F, it is
necessary for uniqueness of A, B, C that

min(rA�B, rB�C, rC�A) = F . (1)

If F > 1, then it is also necessary that

min(kA, kB, kC) ≥ 2. (2)

If, in addition,
rC = F , (3)

and
kA + kB ≥ F + 2, (4)

then the decomposition is essentially unique.
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Intermediate result conveying flavor of Kruskal’s

Necessary conditions: consider

X(JI×K ) = (A� B) CT , (5)

X(IK×J) = (C� A)BT , (6)

X(KJ×I) = (B� C)AT . (7)

Need the KRPs to be fcr, else can add a vector in the right null
space of that Khatri-Rao product to any of the rows of the
corresponding third matrix without affecting the data.
Consider the F = 2 case: if one can mix two rank-1 factors
[meaning: use two linear combinations of the two factors instead
of the pure factors themselves] without affecting their contribution
to the data, then the model is not unique, irrespective of the
remaining factors.
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Intermediate result conveying flavor of Kruskal’s

Consider I × 2, J × 2, K × 2 case, assume WLOG that kA = 1.
This means that the two columns of A are collinear, i.e.,

xi,j,k = ai,1(bj,1ck ,1 + λbj,2ck ,2),

which implies that the i-th slab of X along the first mode is given by

Xi = ai,1B̄CT , i = 1, · · · , I,

where B̄ = [b1 λb2], and C = [c1 c2].
Therefore, slabs along the first mode are multiples of each other;

a1 =
[
a1,1, · · · ,aI,1

]T uniquely determined up to global scaling (A
determined up to scaling of its columns)
... but ∃ linear transformation freedom in choosing B and C.
Tensor X comprises only copies of matrix X1; same as matrix
decomposition.
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Intermediate result conveying flavor of Kruskal’s

Sufficiency will be shown by contradiction.
WLOG assume rC = F (implies that C is tall or square), and
rA�B = F .
Suffices to consider square C, for otherwise C contains a square
submatrix consisting of linearly independent rows.
Amounts to discarding the remaining rows of C, or, equivalently,
dispensing with certain data slabs along third mode.
Suffices to prove that the parameterization of X in terms of A, B,
and the row-truncated C is unique based on part of the data. The
uniqueness of the full C then follows trivially.
Will use the following elementary fact, which is a very special case
of the Permutation Lemma in [Kruskal, ’77].
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Simple case of Kruskal’s Permutation Lemma

Let w(v) denote the number of nonzero elements (the weight) of v
∈ CK .
Consider two F × F nonsingular matrices C and C̄. Suppose that

w(vT C) = 1, ∀v | w(vT C̄) = 1. (8)

Meaning: for all v such that w(vT C̄) = 1, it holds that w(vT C) = 1
as well.
It then follows that C̄ = CΠΛ, where Π is a permutation matrix,
and Λ is a nonsingular diagonal scaling matrix.
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Insight: simple case of Kruskal’s Permutation Lemma

For a proof, note that if condition (8) holds, then

C̄−1C̄ = I =⇒ C̄−1C = ΠT D,

where D is a nonsingular diagonal matrix, and we have used that
the product C̄−1C is full rank, and its rows have weight one.
It then follows that

C = C̄ΠT D⇐⇒ C̄ = CD−1Π = CΠΛ.
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Intermediate result conveying flavor of Kruskal’s

Suppose X = JA,B,CK =
q
Ā, B̄, C̄

y
. From (5), it follows that

(A� B) CT = X(JI×K ) =
(
Ā� B̄

)
C̄T . (9)

Since rA�B = rC = F , it follows that rĀ�B̄ = rC̄ = F .
Taking linear combinations of the slabs along the third mode,

K∑

k=1

vkX(:, :, k) = Adiag(vT C)BT = Ādiag(vT C̄)B̄T , (10)

for all v := [v1, · · · , vF ]T ∈ CF .
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Intermediate result conveying flavor of Kruskal’s

The rank of a matrix product is always less than or equal to the
rank of any factor, and thus

w(vT C̄) = rdiag(vT C̄) ≥ rĀdiag(vT C̄)B̄T = rAdiag(vT C)BT . (11)

Assume w(vT C̄) = 1; then (11) implies rAdiag(vT C)BT ≤ 1, and we
wish to show that w(vT C) = 1.
Use shorthand w := w(vT C). Using Sylvester’s inequality and the
definition of k-rank:

rAdiag(vT C)BT ≥ min(kA,w) + min(kB,w)− w.
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Intermediate result conveying flavor of Kruskal’s

Hence
min(kA,w) + min(kB,w)− w ≤ 1. (12)

Consider cases:
1 Case of w ≤ min(kA, kB): then (12) implies w ≤ 1, hence w = 1,

because C is nonsingular and v 6= 0;
2 Case of min(kA, kB) ≤ w ≤ max(kA, kB): then (12) implies

min(kA, kB) ≤ 1, which contradicts (2), thereby excluding this range
of w from consideration;

3 Case of w ≥ max(kA, kB): then (12) implies that w ≥ kA + kB − 1.
Under (4), however, this yields another contradiction, as it requires
that w ≥ F + 1, which is impossible since the maximum possible
w = w(vT C) is F .

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 71 / 222



Intermediate result conveying flavor of Kruskal’s

We conclude that, under (1)-(2) and (3)-(4), w(vT C̄) = 1 implies
w(vT C) = 1. From the elementary version of the Permutation
Lemma, it follows that C̄ = CΠΛ.
From (9) we now obtain

[
(A� B)−

(
Ā� B̄

)
ΛΠT

]
CT = 0,

and since C is nonsingular,
(
Ā� B̄

)
= (A� B)ΠΛ−1. (13)
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Intermediate result conveying flavor of Kruskal’s

It follows that, for every column af ⊗ bf of A� B there exists a
unique column āf ′ ⊗ b̄f ′ of Ā� B̄ such that

af ⊗ bf = āf ′ ⊗ b̄f ′λf ′ .

It only remains to account for uniqueness of the truncated rows of
a possibly tall C, but this is now obvious from (9), (13), and (1).
This completes the proof.
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Full rank in one mode

Assume only one of the loading matrices is full column rank,
instead of two.

Theorem (Jiang & Sidiropoulos, ’04)
Given X = JA,B,CK, with A : I × F, B : J × F, and C : K × F, and
assuming rC = F, it holds that the decomposition X = JA,B,CK is
essentially unique⇐⇒ nontrivial linear combinations of columns of
A� B cannot be written as ⊗ product of two vectors.

Despite its conceptual simplicity and appeal, the above condition
is hard to check.
In [Jiang & Sidiropoulos, ’04] it is shown that it is possible to recast
this condition as an equivalent criterion on the solutions of a
system of quadratic equations – which is also hard to check, ...
but serves as a stepping stone to easier conditions and even
generalizations of the EVD-based computation.
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Full rank in one mode: generic uniqueness

Theorem (Chiantini & Ottaviani, 2012, Domanov & De
Lathauwer, 2015, Strassen, 1983)
Given X = JA,B,CK, with A : I × F, B : J × F, and C : K × F, let
K ≥ F and min(I, J) ≥ 3. Then rank(X) = F and the decomposition of
X is essentially unique, almost surely, if and only if (I − 1)(J − 1) ≥ F.
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Kruskal

Most well-known result covered by [Kruskal ’77]:

Theorem (Kruskal ’77)
Given X = JA,B,CK, with A : I × F, B : J × F, and C : K × F, if
kA + kB + kC ≥ 2F + 2, then rank(X) = F and the decomposition of X
is essentially unique.

Kruskal’s condition is sharp, in the sense that there exist
decompositions that are not unique as soon as F goes beyond the
bound [Derksen, 2013].
This does not mean that uniqueness is impossible beyond
Kruskal’s bound!
Uniqueness well beyond Kruskal’s bound, but not always – there
exist counter-examples.
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Generalization of Kruskal’s theorem to tensors of any
order

Theorem (Sidiropoulos & Bro, 2000)

Given X = JA1, . . . ,ANK, with An : In × F, if
∑N

n=1 kAn ≥ 2F + N − 1,
then the decomposition of X in terms of {An}Nn=1 is essentially unique.

This condition is sharp in the same sense as the N = 3 version is
sharp [Derksen, 2013].
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Is low-rank tensor decomposition always unique?

One may wonder whether CPD is unique almost surely for any
value of F strictly less than the generic rank?
Cf. equations-versus-unknowns discussion.
Proven for symmetric decompositions, with few exceptions:
(N, I; F ) = (6,3; 9), (4,4; 9), (3,6; 9) where there are two
decompositions generically [Chiantini, 2016]
For unsymmetric decompositions it has been verified for tensors
up to 15000 entries that the only exceptions are
(I1, · · · , IN ; F ) = (4,4,3; 5), (4,4,4; 6), (6,6,3; 8),
(p,p,2,2; 2p − 1) for p ∈ N, (2,2,2,2,2; 5), and the so-called
unbalanced case I1 > α, F ≥ α, with α =

∏N
n=2 In −

∑N
n=2(In − 1)

[Chiantini, 2014].
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Tucker and Multilinear SVD (MLSVD)

Any I × J matrix X can be decomposed via SVD as X = UΣVT ,
where UT U = I = UUT , VT V = I = VVT , Σ(i , j) ≥ 0, Σ(i , j) > 0
only when j = i and i ≤ rX, and Σ(i , i) ≥ Σ(i + 1, i + 1), ∀i .
U := [u1, · · · ,uI ], V := [v1, · · · ,vJ ], σf := Σ(f , f )

X = U(:,1 : F )Σ(1 : F ,1 : F )(V(:,1 : F ))T =
F∑

f =1

σf uf vT
f

Can we generalize the SVD to tensors, in a way that retains the
many beautiful properties of matrix SVD?
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Tucker and Multilinear SVD (MLSVD)

Intuitively, introduce K × K matrix W, WT W = I = WWT , and a
nonnegative I × J × K core tensor Σ such that Σ(i , j , k) > 0 only
when k = j = i .

I

= I

J

K

K

I

J

K

U

V

W

X G

J

Figure: Diagonal tensor SVD?
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Tucker and Multilinear SVD (MLSVD)

Can we write an arbitrary tensor X in this way?
Back-of-the-envelop calculation:

DoF in model = I2 + J2 + K 2 + min(I, J,K );
# equations = IJK
DoF < # equations :-(

Contrast: for matrices: I2 + J2 + min(I, J) > I2 + J2 > IJ, always!
More formal look: postulated model can be written out as

σ1u1 } v1 } w1 + σ2u2 } v2 } w2 + · · ·+ σmum } vm } wm,

where m := min(I, J,K ); so, a tensor of rank at most min(I, J,K ),
but we know that tensor rank can be (much) higher than that.
Hence we certainly have to give up diagonality.
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Tucker and Multilinear SVD (MLSVD)

Consider instead a full (possibly dense, but ideally sparse) core
tensor G

I

= I

J

J

K

K

I

J

K

U

V

W

X G

Figure: The Tucker model
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Tucker and Multilinear SVD (MLSVD)

Element-wise view

= U(i,:)

V(j,:)

W(k,:)

X(i,j,k) G
iÆ

Æ

j

Æ

k

Figure: Element-wise view of the Tucker model
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Tucker and Multilinear SVD (MLSVD)

From the last figure→

X(i , j , k) =
I∑

`=1

J∑

m=1

K∑

n=1

G(`,m,n)U(i , `)V(j ,m)W(k ,n),

or, equivalently,

X =
I∑

`=1

J∑

m=1

K∑

n=1

G(`,m,n)U(:, `) } V(:,m) } W(:,n),

or X =
I∑

`=1

J∑

m=1

K∑

n=1

G(`,m,n)u` } vm } wn. (14)

Here u` := U(:, `) and likewise for the vm, wn.
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Tucker and Multilinear SVD (MLSVD)

X =
I∑

`=1

J∑

m=1

K∑

n=1

G(`,m,n)u` } vm } wn

Note that each column of U interacts with every column of V and
every column of W in this decomposition.
The strength of this interaction is encoded in the corresponding
element of G.
Different from CPD, which only allows interactions between
corresponding columns of A,B,C, i.e., the only outer products that
can appear in the CPD are of type af } bf } cf .
The Tucker model in (14) also allows “mixed” products of
non-corresponding columns of U, V, W.
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Tucker and Multilinear SVD (MLSVD)

Note that any tensor X can be written in Tucker form (14), and a
trivial way of doing so is to take U = II×I , V = IJ×J , W = IK×K , and
G = X.
Hence we may seek a possibly sparse G, which could help reveal
the underlying “essential” interactions between triples of columns
of U, V, W.
This is sometimes useful when one is interested in quasi-CPD
models.
The main interest in Tucker though is for finding subspaces and for
tensor approximation purposes.
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Tucker vs. CPD

CPD appears to be a special case of the Tucker model,
corresponding to G(`,m,n) = 0 for all `,m,n except possibly for
` = m = n.
However, when U, V, W are all square, such a restricted diagonal
Tucker form can only model tensors up to rank min(I, J,K ).
If we allow “fat” (and therefore, clearly, non-orthogonal) U, V, W in
Tucker though, it is possible to think of CPD as a special case of
such a “blown-up” non-orthogonal Tucker model.
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Tucker vs. CPD

By similar token, if we allow column repetition in A, B, C for CPD,
i.e.,

every column of A is repeated JK times, and we call the result U;
every column of B is repeated IK times, and we call the result V;
every column of C is repeated IJ times, and we call the result W,

then it is possible to think of non-⊥ Tucker as a special case of
CPD, *but*, repeated columns→ k-ranks = 1→ very non-unique.
In a nutshell,

both CPD and Tucker are sum-of-outer-products models;
one can argue that the most general form of one contains the other;
what distinguishes the two is uniqueness,
which is related but not tantamount to model parsimony
(“minimality”);
and modes of usage, which are quite different for the two models,
as we will see.
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MLSVD

Tucker model in long vector form

x := vec(X) = (U⊗ V⊗W) g,

where g := vec(G); order of vectorization of X only affects order in
which U, V, W appear in the Kronecker product chain, and the
permutation of the elements of g.
From the properties of the Kronecker product, the expression
above is the result of vectorization of matrix

X1 = (V⊗W) G1UT

where the KJ × I matrix X1 contains all rows (mode-1 vectors) of
tensor X, and the KJ × I matrix G1 is a likewise reshaped form of
the core tensor G.
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MLSVD

X1 = (V⊗W) G1UT

Notice we can linearly transform the columns of U and absorb the
inverse transformation in G1, i.e.,

G1UT = G1M−T (UM)T ,

Hence the Tucker model is not unique.
X1 contains all rows of tensor X; let r1 denote the row-rank
(mode-1 rank) of X.
WLOG can pick U to be an I × r1 orthonormal basis of the
row-span of X, and absorb the linear transformation in G, which is
thereby reduced from I × J × K to r1 × J × K .
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MLSVD

Doing the same for other two modes→WLOG the Tucker model
can be written in compact form as

x := vec(X) = (Ur1 ⊗ Vr2 ⊗Wr3) g,

where Ur1 is I × r1, Vr2 is J × r2, Wr3 is K × r3, and g := vec(G) is
r1r2r3 × 1 – the vectorization of the r1 × r2 × r3 reduced-size core
tensor G.

I I=

J

K

J

K

U

V

X
G

r
1

r
1

r
2

r
2

r
3 r

3

W

Figure: Compact (reduced) Tucker model: r1, r2, r3 are the mode (row,
column, fiber, resp.) ranks of X.
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MLSVD

I I=

J

K

J

K

U

V

X
G

r
1

r
1

r
2

r
2

r
3 r

3

W

Figure: Compact (reduced) Tucker model: r1, r2, r3 are the mode (row,
column, fiber, resp.) ranks of X.

Drop subscripts from Ur1 , Vr2 , Wr3 for brevity.
MLSVD (earlier name: HOSVD) = Tucker with orthonormal U, V,
W chosen as the right singular vectors of the matrix unfoldings X1,
X2, X3, resp.
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MLSVD

Orthonormality of the columns of Ur1 , Vr2 , Wr3 implies
orthonormality of the columns of their Kronecker product.
This is because (Ur1 ⊗ Vr2)T (Ur1 ⊗ Vr2) = (UT

r1
⊗ VT

r2
)(Ur1 ⊗ Vr2) =

(UT
r1

Ur1)⊗ (VT
r2

Vr2) = I⊗ I = I.
Recall that
x1 ⊥ x2 ⇐⇒ xT

1 x2 = 0 =⇒ ||x1 + x2||22 = ||x1||22 + ||x2||22.
It follows that

||X||2F :=
∑

∀ i,j,k

|X(i , j , k)|2 = ||x||22 = ||g||22 = ||G||2F ,

where x = vec(X), and g = vec(G).

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 93 / 222



MLSVD

If we drop certain outer products from the decomposition
x = (U⊗ V⊗W) g, or equivalently from (14), i.e., set the
corresponding core elements to zero, then, by orthonormality

∣∣∣
∣∣∣X− X̂

∣∣∣
∣∣∣
2

F
=

∑

(`,m,n)∈D
|G(`,m,n)|2,

where D is the set of dropped core element indices.
So, if we order the elements of G in order of decreasing
magnitude, and discard the “tail”, then X̂ will be close to X, and we
can quantify the error without having to reconstruct X, take the
difference and evaluate the norm.
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MLSVD

With the matrix SVD in mind, feel tempted to drop entire columns
of U, V, W.
For matrix SVD, this corresponds to zeroing out small singular
values on the diagonal of Σ; per Eckart–Young→ best low-rank
approximation.
Can we do the same for higher-order tensors?
Can permute the slabs of G in any direction, and corresponding
columns of U, V, W accordingly – cf. (14).
Bring the frontal slab with the highest energy ||G(:, :,n)||2F up front,
then the one with second highest energy, etc.
Likewise order the lateral slabs of the core without changing the
energy of the frontal slabs; etc.
→ compact the energy of the core on its upper-left-front corner.
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MLSVD

We can then truncate the core, keeping only its upper-left-front
dominant part of size r

′
1 × r

′
2 × r

′
3, with r

′
1 ≤ r1, r

′
2 ≤ r2, and r

′
3 ≤ r3.

The resulting approximation error can be readily bounded as

∣∣∣
∣∣∣X− X̂

∣∣∣
∣∣∣
2

F
≤

r1∑

`=r ′1+1

||G(`, :, :)||2F +

r2∑

m=r ′2+1

||G(:,m, :)||2F

+

r3∑

n=r ′3+1

||G(:, :,n)||2F ,

where we use ≤ as opposed to = because dropped elements may
be counted up to three times (in particular, the lower-right-back
ones).
One can of course compute the exact error of such a truncation
strategy, but this involves instantiating X− X̂.
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MLSVD

Truncation in general does not yield the best approximation of X
for the given (r

′
1, r

′
2, r

′
3).

There is no exact equivalent of the Eckart–Young theorem for
tensors of order higher than two [Kolda, 2013].
The best low multilinear rank approximation problem for tensors is
NP-hard.
Despite this “bummer”, much of the beauty of matrix SVD remains
in MLSVD.
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MLSVD

Slabs of the core array G along each mode are orthogonal to each
other, i.e., (vec(G(`, :, :)))T vec(G(`

′
, :, :)) = 0 for `

′ 6= `, and
||G(`, :, :)||F equals the `-th singular value of X1.
These properties generalize a property of matrix SVD, where
“core matrix” of singular values Σ is diagonal→ its rows are
orthogonal to each other; same true for columns.
Diagonality→ orthogonality of one-lower-order slabs (sub-tensors
of order one less than the original tensor).
Converse is not true, e.g., consider

[
1 1
1 −1

]
.

Core diagonality not possible in general for higher-order tensors:
DoF vs. # equations ...
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MLSVD

... *but* all-orthogonality of one-lower-order slabs of the core
array, and interpretation of their Frobenius norms as singular
values of a certain matrix view of the tensor come WLOG +
WLOPT (see next property).
Intuitively pleasing result, first pointed out by [De Lathauwer,
2000]; motivates the analogy to matrix SVD.
Simply truncating slabs (or elements) of the full core will not give
the best low multilinear rank approximation of X in the case of
three- and higher-order tensors; but
Error ||X− X̂||2F is in fact at most 3 times higher than the minimal
error (N times higher in the N-th order case) [Grasedyck, 2012,
Hackbusch 2012].
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MLSVD

Error bound is actually the proper generalization of the
Eckart–Young theorem.
In the matrix case, because of diagonality there is only one
summation and equality instead of inequality.
Simply truncating the MLSVD at sufficiently high (r

′
1, r

′
2, r

′
3) is often

enough to obtain a good approximation in practice – we may
control the error as we wish, so long as we pick high enough
(r
′
1, r

′
2, r

′
3).
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MLSVD

If we are interested in the best possible approximation of X with
mode ranks (r

′
1, r

′
2, r

′
3), however, then we need the following

(dropping the
′
s for brevity):

Let
(

Û, V̂, Ŵ, Ĝ1

)
be a solution to

min
(U,V,W,G1)

||X1 − (V⊗W)G1UT ||2F

such that: U : I × r1, r1 ≤ I, UT U = I
V : J × r2, r2 ≤ J, VT V = I
W : K × r3, r3 ≤ K , WT W = I
G1 : r3r2 × r1

Claim: Then Ĝ1 = (V̂⊗ Ŵ)T X1Û; and x
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MLSVD

Substituting the conditionally optimal G1, problem recast in
“concentrated” form

max
(U,V,W)

||(V⊗W)T X1U||2F

such that: U : I × r1, r1 ≤ I, UT U = I
V : J × r2, r2 ≤ J, VT V = I
W : K × r3, r3 ≤ K , WT W = I

Û = dominant r1-dim. right subspace of (V̂⊗ Ŵ)T X1;

V̂ = dominant r2-dim. right subspace of (Û⊗ Ŵ)T X2;

Ŵ = dominant r3-dim. right subspace of (Û⊗ V̂)T X3;

Ĝ1 has orthogonal columns; and{
||Ĝ1(:,m)||22

}r1

m=1
= r1 principal sing. vals of (V̂⊗ Ŵ)T X1.

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 102 / 222



MLSVD: Proof

(Note: Each column of Ĝ1 is a vectorized slab of the core array Ĝ)
||vec(X1)− (U⊗ V⊗W) vec(G1)||22 = ||X1 − (V⊗W)G1UT ||2F .
Conditioned on (orthonormal) U, V, W the optimal G is given by
vec(Ĝ1) = (U⊗ V⊗W)T vec(X1).

Therefore Ĝ1 = (V⊗W)T X1U.

Consider ||X1 − (V⊗W)G1UT ||2F , and define X̃1 := (V⊗W)G1UT ;
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MLSVD: Proof

Use that
||X1−X̃1||2F = Tr((X1−X̃1)T (X1−X̃1)) = ||X1||2F +||X̃1||2F−2Tr(XT

1 X̃1).

Orthonormality of U, V, W⇒ ||X̃1||2F = ||G1||2F .
Consider

−2Tr(XT
1 X̃1) = −2Tr(XT

1 (V⊗W)G1UT ),

Substitute G1 = (V⊗W)T X1U to obtain

−2Tr(XT
1 (V⊗W)(V⊗W)T X1UUT ).

Using property of trace to bring rightmost to the left,

−2Tr(UT XT
1 (V⊗W)(V⊗W)T X1U) = −2Tr(GT

1 G1) = −2||G1||2F .
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MLSVD: Proof

It follows ||X1 − (V⊗W)G1UT ||2F = ||X1||2F − ||G1||2F ⇐⇒
maximize ||G1||2F = ||(V⊗W)T X1U||2F .

So Û is the dominant right subspace of (V̂⊗ Ŵ)T X1;

take it to be the r1 principal right singular vectors of (V̂⊗ Ŵ)T X1.

Corresponding results for V̂ and Ŵ by role symmetry.
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MLSVD: Proof

To show that Ĝ1 has orthogonal columns, let Ĝ1 = [ĝ1,1, · · · , ĝ1,r1 ],
Û = [û1, · · · , ûr1 ], and consider

ĝT
1,m1

ĝ1,m2 = ûT
m1

XT
1 (V̂⊗ Ŵ)(V̂⊗ Ŵ)T X1ûm2 .

Let ΓΣŨT be the SVD of (V̂⊗ Ŵ)T X1.

Then Ũ = [Û, Ǔ], so

(V̂⊗ Ŵ)T X1um2 = γm2
σm2
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MLSVD: Proof

It follows, by virtue of orthonormality of left singular vectors of
(V̂⊗ Ŵ)T X1 (here δ(·) is the Kronecker delta)

ĝT
1,m1

ĝ1,m2 = σm1σm2γ
T
m1
γm2

= σm1σm2δ(m1 −m2),

By role symmetry, it follows that the slabs of Ĝ along any mode
are likewise orthogonal.
As byproduct of last equation,
||Ĝ(:, :,m)||2F = ||Ĝ1(:,m)||22 = ||ĝ1,m||22 = σ2

m;
that is, the Frobenius norms of the lateral core slabs are the r1
principal singular values of (V̂⊗ Ŵ)T X1.
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Best rank-1 tensor approximation: NP-hard :-(

The best rank-1 tensor approximation problem over R is NP-hard
[Hillar & Lim, 2013].
So the best low multilinear rank approximation problem is also
NP-hard (the best multilinear rank approximation with
(r1, r2, r3) = (1,1,1) is the best rank-1 approximation).
This is reflected in key limitation of MLSVD characterization:

gives explicit expressions that relate the sought U, V, W, and G, ...
but does not provide an explicit solution for any of them!

On the other hand, characterization naturally suggests alternating
least squares scheme x
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⊥-Tucker ALS

⊥-Tucker ALS

1 Initialize:
U = r1 principal right singular vectors of X1;
V = r2 principal right singular vectors of X2;
W = r3 principal right singular vectors of X3;

2 repeat:
U = r1 principal right sing. vec. of (V⊗W)T X1;
V = r2 principal right sing. vec. of (U⊗W)T X2;
W = r3 principal right sing. vec. of (U⊗ V)T X3;
until negligible change in ||(V⊗W)T X1U||2F .

3 G1 = (V⊗W)T X1U.
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⊥-Tucker ALS

First variant of Tucker-ALS goes back to [Kroonenberg & De
Leeuw].
Initialization in step 1) [together with step 3)] is (truncated)
MLSVD. Not optimal, but helps in most cases.
Each variable update is conditionally optimal→ reward
||(V⊗W)T X1U||2F is non-decreasing (⇔ cost
||X1 − (V⊗W)G1UT ||2F is non-increasing)
Also bounded from above (resp. below), thus convergence of the
reward (cost) sequence is guaranteed.
Conceptual similarity of the above algorithm with ALS for CPD.
Using MLSVD with somewhat higher (r1, r2, r3) can be
computationally preferable to ALS.
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Tucker for large-scale problems

In the case of big data, even the computation of MLSVD may be
prohibitive.
Randomized projection approaches become more appealing.
Draw the columns of U, V, W from the columns, rows, fibers of X:
[Oseledets, 2008; Mahoney, 2008]. Drawback: no identifiability.
“Completely” random projections: [Sidiropoulos et al., 2012,
2014]: Identifiability!
Krylov subspace methods offer an alternative for large-scale
problems; see [Savas, 2013] for Tucker-type extensions.
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Compression as preprocessing: CANDELINC

Consider a tensor X in vectorized form, and corresponding CPD
and orthogonal Tucker (⊥-Tucker) models

x = (A� B� C)1 = (U⊗ V⊗W)g.

Pre-multiplying with (U⊗ V⊗W)T = (UT ⊗ VT ⊗WT ) and using
the mixed-product rule for ⊗, �, we obtain

g =
(

(UT A)� (VT B)� (WT C)
)

1,

i.e., the Tucker core array G (shown above in vectorized form g)
admits a CPD decomposition of rank(G) ≤ rank(X).
Let

r
Ã, B̃, C̃

z
be a CPD of G, i.e., g = (Ã� B̃� C̃)1. Then

x = (U⊗ V⊗W)g = (U⊗ V⊗W)(Ã� B̃� C̃)1 =

=
(

(UÃ)� (VB̃)� (WC̃)
)

1,

by the mixed product rule.
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Compression as preprocessing: CANDELINC

Assuming that the CPD of X is essentially unique, it then follows
that

A = UÃΠΛa, B = VB̃ΠΛb, C = WC̃ΠΛc ,

where Π is a permutation matrix and ΛaΛbΛc = I.
It follows that

UT A = ÃΠΛa, VT B = B̃ΠΛb, WT C = C̃ΠΛc ,

so that the CPD of G is essentially unique, and therefore
rank(G) = rank(X).
This suggests that an attractive way to compute the CPD of X is to
first compress, compute the CPD of G, and then “blow-up” the
resulting factors, since A = UÃ (up to column permutation and
scaling).
Also shows that A = UUT A, and likewise for the other two modes.
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Compression as preprocessing: CANDELINC

Caveat: discussion ↑ assumes exact CPD and ⊥-Tucker models;
but also works for low-rank least-squares approximation, see
Candelinc theorem of [Carroll et al., 1980]; and [Bro & Andersson,
1998].
Does not work for a constrained CPD (e.g. one or more factor
matrices nonnegative, monotonic, sparse, . . . )
In ALS can still exploit multi-linearity, to update U by solving a
constrained and/or regularized linear least squares problem.
For G, we can use the vectorization property of the Kronecker
product to bring it to the right, and then use a constrained or
regularized linear least squares solver.
By the mixed product rule, this last step entails pseudo-inversion
of the U, V, W matrices, instead of their (much larger) Kronecker
product.
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Compression as preprocessing: Oblique Tucker

This type of model is sometimes called oblique Tucker, to
distinguish from orthogonal Tucker.
More generally, one can fit the constrained CPD in the
uncompressed space, but with X replaced by its
parameter-efficient factorized representation.
The structure of the latter may then be exploited to reduce the per
iteration complexity; see [De Lathauwer, Tensorlab3, Asilomar
2016].
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Other tensor models: Tensor Train (TT) and
hierarchical Tucker (hTucker)

⊥-Tucker/MLSVD approximation / compression limited to tensors
of moderate order.
Consider situation at order N and assume for simplicity that
r1 = r2 = . . . = rN = r > 1.
Then the core tensor G has rN entries.
This exponential dependence of the number of entries on the
tensor order N is called the Curse of Dimensionality
In such cases one may resort to a Tensor Train (TT)
representation or a hierarchical Tucker (hTucker) decomposition
instead [Oseledets, 2011], [Grasedyck, 2013].
Caveat: approximation / compression only; no identifiability in
general.
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Tensor Train (TT) and hierarchical Tucker (hTucker)

A TT of an N-th order tensor X is of the form

X(i1, i2, . . . , iN) =
∑

r1r2...rN−1

u(1)
i1r1

u(2)
r1i2r2

u(3)
r2i3r3

. . . u(N)
iN rN−1

, (15)

in which one can see U(1) as the locomotive and the next factors
as the carriages.
Each carriage “transports” one tensor dimension, and two
consecutive carriages are connected through the summation over
one common index.
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Tensor Train (TT) and hierarchical Tucker (hTucker)

Since every index appears at most twice and since there are no
index cycles, the TT-format is “matrix-like”, i.e. a TT approximation
can be computed using established techniques from numerical
linear algebra, similarly to MLSVD.
Number of entries is now O(NIr2), so the Curse of Dimensionality
has been broken.
hTucker is the extension in which the indices are organized in a
binary tree.

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 118 / 222



PARALIND, Block Term Decomposition

Possible to have unique decomposition in terms that are not even
rank-1.
Block Term Decompositions (BTD) [De Lathauwer, 2008, 2011]
write a tensor as a sum of terms that have low multilinear rank.
As in CPD, uniqueness of a BTD is up to a permutation of the
terms. The scaling/counterscaling ambiguities within a rank-1
term generalize to the indeterminacies in a Tucker representation.
Expanding the block terms into sums of rank-1 terms with
repeated vectors yields a form that is known as PARALIND [Bro,
Harshman, Sidiropoulos, Lundy, 2009].
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Data Fusion: Coupled Decompositions

Multiple data sets may be jointly analyzed by means of coupled
decompositions of several matrices and/or tensors, possibly of
different size.
Harshman’s PARAFAC2 is early variant, in which coupling was
imposed through a shared covariance matrix.
In coupled setting, particular decompositions may inherit
uniqueness from other decompositions; in particular, the
decomposition of a data matrix may become unique thanks to
coupling [Sorensen & De Lathauwer, 2015].
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Reprise – what’s coming up next

Algorithms:
Alternating Least Squares (ALS)
Gradient Descent
Quasi-Newton & Non-linear Least Squares
Line Search
Handling Missing Values
Stochastic Gradient Descent (SGD)
Imposing Constraints
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Introduction to ALS

ALS is the “workhorse” algorithm for tensor decompositions
Special case of Block Coordinate Descent (BCD)
Flexible and easy to derive
No parameters to tune
General ALS iteration:

1 Fix all factors except for one
2 Solve the linear LS estimation problem for that factor
3 Cycle over all factors

Today we will see ALS for CPD and Tucker
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ALS for CPD

Suppose we fix A,B, then update formula for C is:

C← arg min
C
||X3 − (B� A)CT ||2F ,

This is a simple linear Least Squares problem
Solution :

CT ← (B� A)†X3.
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ALS for CPD (contd.)

The pseudo-inverse

(B� A)† =
[
(B� A)T (B� A)

]−1
(B� A)T ,

can be simplified.
We can show that

(B� A)T (B� A) = (BT B) ∗ (AT A),

This only involves the Hadamard product of F × F matrices,
Easy to invert for small ranks F
But note that in case of big sparse data, small F may not be enough

Thus the update of C can be performed as

CT ←
(

(BT B) ∗ (AT A)
)−1

(B� A)T X3.
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ALS for CPD (contd.)

When F is small
(B� A)T X3

is the bottleneck
Notice that B� A is IJ × F , and X3 is IJ × K .
Brute-force computation of

(B� A)T X3

needs IJF additional memory and flops to instantiate B� A, even
though the result is only F × K , and IJKF flops to actually
compute the product – but see [BK07, VMV15, PTC13].
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ALS for CPD (contd.)

When X is sparse,
NNZ(X) nonzero elements stored in a [i,j,k,value] list
Every nonzero element multiplies a column of (B� A)T

Result should be added to column k
The specific column can be generated on-the-fly with F + 1 flops,
for an overall complexity of (2F + 1)NNZ(X), without requiring any
additional memory (other than that needed to store running
estimates of A, B, C, and the data X).

When X is dense, the number of flops is inevitably of order IJKF ,
but still no additional memory is needed this way.
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ALS for CPD (contd.)

Computation can be parallelized in several ways
See [BK07, KPHF12, RSSK14, CV14, SRSK15] for various
resource-efficient algorithms for matricized tensor times
Khatri–Rao product (MTTKRP) computations.
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ALS for Tucker

As we saw previously, for ⊥-Tucker ALS we have:
1 Initialize:

U = r1 principal right singular vectors of X1;
V = r2 principal right singular vectors of X2;
W = r3 principal right singular vectors of X3;

2 repeat:
U = r1 principal right sing. vec. of (V⊗W)T X1;
V = r2 principal right sing. vec. of (U⊗W)T X2;
W = r3 principal right sing. vec. of (U⊗ V)T X3;
until negligible change in ||(V⊗W)T X1U||2F .

3 G1 = (V⊗W)T X1U.

Steps 1 and 3 correspond to truncated MLSVD
Not necessarily optimal, but very good initialization in most cases
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ALS for Tucker (contd.)

ALS for ⊥-Tucker ALS also called Higher Order Orthogonal
Iteration (HOOI)
Each variable update is optimal conditioned on the rest of the
variables,

Reward ||(V⊗W)T X1U||2F is non-decreasing and bounded from
above
Convergence of the reward (cost) sequence is guaranteed

First variant of Tucker-ALS goes back to [Kro08].
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ALS for Tucker (contd.)

For ⊥-Tucker ALS,
Need to compute products of type (V⊗W)T X1

Then compute the principal right singular vectors of resulting
r2r3 × I matrix
Column-generation idea can be used here as well to avoid
intermediate memory explosion and exploit sparsity in X when
computing (V⊗W)T X1.
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ALS for Tucker (contd.)

For oblique Tucker ALS need to compute
((V⊗W)G1)† X1 for updating U(
U† ⊗ V† ⊗W†

)
x for updating g↔ G

Requires pseudo-inverses of relatively small matrices,
But note that

((V⊗W)G1)† 6= G†1 (V⊗W)† ,

Equality holds if V⊗W is full column rank and G1 is full row rank,
which requires r2r3 ≤ r1.
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Gradient Descent

Consider the squared loss

L(A,B,C) := ||X1 − (C� B)AT ||2F =

tr
(

(X1 − (C� B)AT )T (X1 − (C� B)AT )
)

= ||X1||2F−

2 tr
(

XT
1 (C� B)AT

)
+ tr

(
A(C� B)T (C� B)AT

)
.

Recall that (C� B)T (C� B) = (CT C) ∗ (BT B)

We may equivalently take the gradient of
−2 tr

(
XT

1 (C� B)AT )+ tr
(
A(CT C) ∗ (BT B)AT ).
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Gradient Descent (contd.)

Arranging the gradient in the same format as A, we have
∂L(A,B,C)

∂A
= −2XT

1 (C� B) + 2 A
[
(CT C) ∗ (BT B)

]

= −2
(

XT
1 − A(C� B)T

)
(C� B),

Appealing to role symmetry, we likewise obtain
∂L(A,B,C)

∂B
= −2XT

2 (C� A) + 2 B
[
(CT C) ∗ (AT A)

]

= −2
(

XT
2 − B(C� A)T

)
(C� A),

∂L(A,B,C)

∂C
= −2XT

3 (B� A) + 2 C
[
(BT B) ∗ (AT A)

]

= −2
(

XT
3 − C(B� A)T

)
(B� A).

With these gradient expressions at hand, we can employ any
gradient-based algorithm for model fitting.
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Gradient Descent (contd.)

Remark
The conditional least squares update for A is

A←
[
(CT C) ∗ (BT B)

]−1
(C� B)T X1,

This means that:
Taking a gradient step or solving the LS sub-problem to
(conditional) optimality involves computing the same quantities:
(CT C) ∗ (BT B) and (C� B)T X1.
The only difference is that to take a gradient step you don’t need
to invert the F × F matrix (CT C) ∗ (BT B).
For small F , each gradient step is essentially as expensive as an
ALS step.
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Quasi Newton & Non-linear Least Squares

The well-known Newton descent algorithm uses a local quadratic
approximation of the cost function L(A,B,C) to obtain a new step
as the solution of the set of linear equations

Hp = −g,

in which g and H are the gradient and Hessian of L, respectively.
Computation of Hessian may be prohibitively expensive,

Resort to an approximation
Newton and Nonlinear Least Squares (NLS)
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Quasi Newton & Non-linear Least Squares (contd.)

Quasi-Newton methods such as Nonlinear Conjugate Gradients
(NCG) and (limited memory) BFGS use a diagonal plus low-rank
matrix approximation of the Hessian.
In combination with line search or trust region globalization
strategies for step size selection, quasi-Newton does guarantee
convergence to a stationary point

Contrary to plain ALS, and its convergence is superlinear
[SVD13, NW06]
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Quasi Newton & Non-linear Least Squares (contd.)

NLS methods such as Gauss–Newton and Levenberg–Marquardt
start from a local linear approximation of the residual
X1 − (C� B)AT to approximate the Hessian as Dθϕ(θ)TDθϕ(θ),
with Dθϕ(θ) the Jacobian matrix of ϕ(θ) (where θ is the
parameter vector)
The algebraic structure of Dθϕ(θ)TDθϕ(θ) can be exploited to
obtain a fast inexact NLS algorithm that has several favorable
properties [TB06, SVD13].
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Quasi Newton & Non-linear Least Squares (contd.)

Robustness: NLS has been observed to be more robust for
difficult decompositions than plain ALS [SVD13, TB06].
Parallelizability: Dθϕ(θ)TDθϕ(θ) can easily be split into smaller
matrix-vector products (N2 in the N-th order case)

Makes inexact NLS overall well-suited for parallel implementation.
Variants for low multilinear rank approximation are discussed in
[IAVHDL11, SL10] and references therein.
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Line Search

An important issue in numerical optimization is the choice of
step-size
We cam exploit the multi-linearity of the cost function [RCH08]
Suppose we have determined an update (“search”) direction, say
the negative gradient one.
We seek to select the optimal step-size µ for the update




A
B
C


←




A
B
C


+ µ




∆A
∆B
∆C


 ,

and the goal is to

min
µ

∣∣∣
∣∣∣X1 − ((C + µ∆C)� (B + µ∆B)) (A + µ∆A)T

∣∣∣
∣∣∣
2

F
.
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Line Search (contd.)

min
µ

∣∣∣
∣∣∣X1 − ((C + µ∆C)� (B + µ∆B)) (A + µ∆A)T

∣∣∣
∣∣∣
2

F
.

Note that the above cost function is a polynomial of degree 6 in µ.
We can determine the coefficients c0, · · · , c6 of this polynomial by
evaluating it for 7 different values of µ and solving




1 µ1 µ2
1 · · · µ6

1
1 µ2 µ2

2 · · · µ6
2

...
1 µ7 µ2

7 · · · µ6
7







c0
c1
...

c6


 =




`1
`2
...
`7


 ,

where `1, · · · , `7 are the corresponding loss values.
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Line Search (contd.)

Once the coefficients are determined, the derivative is the 5-th
order polynomial c1 + 2c2µ+ · · ·+ 6c6µ

5

Use numerical root finding to evaluate the loss at its roots and pick
the best µ.

This has a drawback:
It requires 11 evaluations of the loss function.
We can do half of that by working polynomial coeffs. out
analytically
Bottom line: optimal line search costs more than gradient
computation per se (which roughly corresponds to 3 evaluations of
the loss function)

In practice, we typically use a small, or “good enough” µ.
We resort to exact line search in more challenging cases
(e.g.,“swamps”)
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Handling Missing Values

Real data are never perfect
Parts of data may be missing for various reasons

Faulty measurement sensors
Errors when storing data
Partial observation of the data (e.g., recommendation
systems/Netflix prize)
...

Need to modify algorithms to handle missing values
In the case of recommendation systems, also need to use
decomposition to estimate missing values.
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Handling Missing Values (contd.)

Consider the C-update step in ALS,

min
C
||X3 − (B� A)CT ||2F

If there are missing elements in X (and so in X3), define the weight
tensor

W(i , j , k) =

{
1, X(i , j , k) : available
0, otherwise.

,

We now modify the update step as minC ||W3 ∗ (X3− (B�A)CT )||2F
where matrix W3 is the matrix unfolding of tensor W obtained in
the same way that matrix X3 is obtained by unfolding tensor X
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Handling Missing Values (contd.)

min
C
||W3 ∗ (X3 − (B� A)CT )||2F

Notice that the Hadamard operation applies to the product
((B� A)CT ), not to (B� A) –

This complicates things

One may think of resorting to column-wise updates, but this does
not work!
Instead, if we perform row-wise updates on C, then we have to
deal with minimizing over C(k , :) the squared norm of vector

Diag(W3(:, k))X3(:, k)− Diag(W3(:, k))(B� A)(C(k , :))T ,

which is a simple linear least squares problem.
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Handling Missing Values (contd.)

There are two basic alternatives to the above strategy for handling
missing data.
Alternative 1

Use derivative-based methods, such as (stochastic) gradient
descent or Gauss-Newton

Derivatives are easy to compute, even in the presence of W
Stochastic gradient descent, computes gradient estimates by
drawing only from the observed values

This bypasses element-wise multiplication by W, stochastic
gradient methods
Deals with missing data in a natural and effortless way.
Well known in the machine learning community, but seemingly
under-appreciated in the signal processing community.
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Handling Missing Values (contd.)

Alternative 2
Use Expectation-Maximization to impute the missing values
together with the estimation of the model parameters A,B,C
[TB05].
Initially impute misses with the average of the available entries (or
any other reasonable estimate)

Efficiency Considerations
For very big and sparse data, imputation is very inefficient in
terms of memory, and is thus avoided
As a short-cut in large-scale applications, one may deliberately
use only part of the available entries when estimating a
decomposition [VDSD14]
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Stochastic Gradient Descent (SGD)

Popular in the machine learning community for many types of
convex non-convex problems
In its simplest form:

SGD randomly picks a data point X(i , j , k) from the available ones,
takes a gradient step only for those model parameters that have an
effect on X(i , j , k); that is, only the i-th row of A, the j-th row of B
and the k -th row of C
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Stochastic Gradient Descent (SGD) (contd.)

We have

∂

∂A(i , f )

(
X(i , j , k)−

F∑

f =1

A(i , f )B(j , f )C(k , f )

)2

=

−2


X(i , j , k)−

F∑

f ′=1

A(i , f
′
)B(j , f

′
)C(k , f

′
)


× B(j , f )C(k , f ),

so that

∂

∂A(i , :)
= −2

(
X(i , j , k)−

F∑

f =1

A(i , f )B(j , f )C(k , f )

)
× (B(j , :) ∗ C(k , :)) .

B(j , :) ∗ C(k , :) is used once outside and once inside the
parenthesis
2F multiplications for the update of A(i , :), and 6F for the SGD
update of A(i , :), B(j , :), C(k , :).
Very cheap, especially for random access memory
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Stochastic Gradient Descent (SGD) (contd.)

Missing elements
SGD naturally deals with missing elements
They are simply never sampled to execute an update
This has made SGD very popular in recommendation systems

Also because of efficiency in very large, sparse data

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 149 / 222



Stochastic Gradient Descent (SGD) (contd.)

One major drawback:
Truly random disk access pattern is a bad idea
Computation will be dominated from the disk I/O.
Solution: Fetch blocks of data from secondary memory, and use
intelligent caching strategies

updates involving (stemming from) X(i , j , k) and X(i
′
, j

′
, k

′
) do not

conflict with each other and can be executed in parallel, provided
i
′ 6= i , j

′ 6= j , k
′ 6= k – where all three 6= must hold simultaneously

Max number of parallel updates is min({In}N
n=1) in the general

N-way case
See [BTK+] for parallel SGD CPD algorithms
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Stochastic Gradient Descent (SGD) (contd.)

Other Relevant Block Sampling Approaches:
[VD]

Efficiently decompose TB-size tensors without resorting to parallel
computation
Leverages CPD uniqueness of the sampled blocks to uniqueness of
the CPD of the full tensor

[PS12]
Randomized block-sampling approach for very sparse datasets
parallel CPD decomposition of multiple pseudo-randomly drawn
sub-tensors, and combining the CPDs using anchor rows
Sampling is based on mode densities
Identifiability is guaranteed if the sub-tensors have unique CPD
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Imposing Constraints

We are often interested in imposing constraints on a CPD model
Why do we need this? CPD is essentially unique after all!
In the next few slides we will review reasons why constraints are
useful
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Imposing Constraints (contd.)

Reasons to impose constraints:

Restoring identifiability in otherwise non-identifiable cases;
Improving estimation accuracy in relatively challenging
(low-SNR, and/or barely identifiable, and/or numerically
ill-conditioned) cases;
Ensuring interpretability of the results (e.g., power spectra
cannot take negative values); and
As a remedy against ill-posedness

There are many types of constraints that are relevant in many
applications. We will review a representative list.
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Imposing Constraints (contd.)

Symmetry or Hermitian (conjugate) symmetry:
Require B = A, or B = A∗, leading to X(:, :, k) = ADk (C)AT or
X(:, :, k) = ADk (C)AH .

This is actually only partial symmetry
Corresponds to joint diagonalization of the frontal slabs, using a
non-orthogonal and possibly fat diagonalizer A

Full symmetry: C = B = A.
Symmetric tensors arise when one considers higher-order
statistics (HOS).
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Imposing Constraints (contd.)
Real-valued parameters:

When X ∈ RI×J×K , complex-valued A,B,C make little sense,
Sometimes arise because tensor rank is sensitive to the field over
which the decomposition is taken
Issue in some applications in Chemistry and Psychology
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Imposing Constraints (contd.)

Element-wise non-negativity:
A ≥ 0 and/or B ≥ 0, and/or C ≥ 0.
When all three are in effect, the resulting problem is known as
non-negative tensor factorization (NTF).
Non-negativity can help restore uniqueness

Even non-negative matrix factorization (NMF) is unique under
certain (stricter) conditions

Example:
When kC = 1 CPD alone cannot be unique
But if NMF of X(:, :, k) = ADk (C)BT is unique (this requires
F < min(I, J) and a certain level of sparsity in A and B)
non-negativity can still ensure essential uniqueness of A,B,C!

Applications:
Modeling power spectra
Modeling “sum-of-parts” representation (generally interpretability)

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 156 / 222



Imposing Constraints (contd.)

Orthogonality: This e.g., may be the result of prewhitening
[SDC+12].
Probability simplex constraints: A(i , :) ≥ 0, A(i , :)1 = 1, ∀ i , or
A(:, f ) ≥ 0, 1T A(:, f ) = 1, ∀ f , are useful when modeling
allocations or probability distributions.
Linear constraints: More general linear constraints on A,B,C
are also broadly used. Can be column-wise, row-wise, or
matrix-wise, such as tr(WA) ≤ b.
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Imposing Constraints (contd.)

Monotonicity and related constraints: Useful in cases where
we deal with, e.g., concentrations that are known to be decaying,
or spectra that are known to have a single or few peaks
(unimodality, oligo-modality [BS98]).
Sparsity: In many cases we know (an upper bound on) the
number of nonzero elements of A,B,C, per column, row, or as a
whole; or the number of nonzero columns or rows of A,B,C
(group sparsity).
Smoothness: Smoothness can be measured in different ways,
but a simple one is in terms of convex quadratic inequalities such
as ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣



−1 1 0 · · · 0

0 −1 1 0 · · · 0
...

. . . . . .


A

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

F
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Imposing Constraints (contd.)

Data model constraints:
All the above constraints apply to the model parameters.
We may also be interested in constraints on the reconstructed
model of the data, e.g.,

(A� B� C)1 ≥ 0, (element-wise), 1T (A� B� C)1 = 1,

If X models a joint probability distribution, or in (A�B�C)1 being
“smooth” in a suitable sense.
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Constrained matrix/tensor factorization

Consider the (low-rank) matrix factorization problem:

Y ≈WHT

where the factor matrices W and H need to satisfy some constraints:
non-negative, sparse, etc.

Numerous applications: NMF, dictionary learning, ...
Constraints help resolve the non-uniqueness of unconstrained
matrix factorization;
... but also complicate the problem (even→ NP-hard, e.g., SVD
vs. NMF) and often require custom algorithm development.
We need an algorithmic framework that is more efficient and more
flexible wrt the types of constraints it can readily accommodate.

We also address tensor counterpart - already unique, but constraints
→ better estimates

Y(1) ≈ (C� B)AT
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Problem formulation

Starting with constrained matrix factorization, we formulate the
problem as

minimize
W,H

1
2
‖Y−WHT‖2F + r(W) + r(H),

and r(·) can take the value +∞ to incorporate hard constraints.
Easily becomes NP-hard when there are constraints.
Popular method: alternating optimization (AO).
Key to accelerate algorithm: solve the sub-problems efficiently.

We propose to solve the sub-problems using ADMM,

hence the name AO-ADMM [Huang, Sidiropoulos, Liavas ’15]
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ADMM: scaled form

Consider a convex optimization problem in the following form.

minimize
x,z

f (x) + g(z)

subject to Ax + Bz = c,

The alternating direction method of multipliers [Boyd et al., 2011]:

x← arg min
x

f (x) + (ρ/2)‖Ax + Bz− c + u‖22,

z← arg min
z

g(z) + (ρ/2)‖Ax + Bz− c + u‖22,
u← u + (Ax + Bz− c), dual update

For convex problems, converges to the global solution.
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ADMM inner-loop

Adopting the alternating optimization framework, reformulate the
sub-problem for H in each AO iteration as

minimize
H,H̃

1
2
‖Y−WH̃‖2F + r(H)

subject to H = H̃T .

ADMM iterates:

H̃← (WT W + ρI)−1(WT Y + ρ(H + U)T ),

H← arg min
H

r(H) +
ρ

2
‖H− H̃T + U‖2F ,

U← U + H− H̃T .
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Inner convergence

Suppose Y is m × n, H is n × k .

ADMM for convex problems is well studied.
Linear convergence. Theoretically, best convergence rate given by
ρ = σmax(W)σmin(W);
Empirically, ρ = trace(WT W)/k works almost as good (and much
easier to obtain);
Initialize H and U from the previous AO outer-loop, then optimality
gap is bounded by the per-iteration improvement of an AO step;
After ∼ 10 AO outer-iterations, ADMM converges in only one
inner-iteration.
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Implementation: H̃

H̃← (WT W + ρI)−1(WT Y + ρ(H + U)T )

WT Y and WT W only need to be computed once,
with complexity O(nnz(Y)k) and O(mk2) respectively;
Can cache the Cholesky decomposition (O(k3)) of
WT W + ρI = LLT ;
Within one ADMM iteration, H̃ is obtained from
one forward substitution and one backward substitution,
with complexity O(nk2).
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Implementation: H

H← arg min
H

rH(H) +
ρ

2
‖H− H̃T + U‖2F

so-called proximity operator, in a lot of cases can be efficiently
evaluated

non-negative: H ≥ 0;
l1 regularization: λ‖H‖1 (soft thresholding);
sum to one: H1 = 1 or HT 1 = 1;
smoothness regularization: λ‖TH‖2F where T is tri-diagonal (linear
complexity using banded-system solver).

All with O(nk) complexity.
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ADMM: summary

1: Initialize H and U from previous AO iteration
2: G = WT W, F = WT Y
3: ρ = trace(G)/k
4: Cholesky decomposition: G + ρI = LLT

5: repeat
6: H̃← L−T L−1(F + ρ(H + U)) by forward/backward substitution
7: H← arg minH rH(H) + ρ

2‖H− H̃T + U‖2F
8: U← U + H− H̃
9: until convergence

10: return H and U.

Most of the computations are done at line 2 and line 4;
One iteration of ADMM has complexity = one ALS update;
Only one matrix inversion is required (line 4).
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Constrained PARAFAC

It is easy to extend from 2-way to higher-way data arrays.
For 3-way tensors, the update of A becomes

minimize
A

1
2
‖Y(1) − (C� B)AT‖2F + r(A)

Same sub-problem as the matrix case by letting Y = Y(1) and
W = (C� B), except that there are additional structures in W.

WT W = CT C ∗ BT B, element-wise product;
WT Y = (C� B)T Y, usually the bottle-neck operation even in the
unconstrained factorization case.
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AO-ADMM: Reprise

AO-ADMM can be viewed as a generalization of the workhorse ALS
method:

similar monotonic convergence property (due to AO);
per-iteration complexity is almost the same;
any smart implementation of ALS can easily be modified to handle
constraints with the corresponding proximity operator:
plug-and-play!!
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Non-negative Matrix Factorization(NMF): real data

Sparse real data: Topic Detection and Tracking 2 (TDT2) text corpus,
of size 10212× 36771.
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Non-negative PARAFAC: synthetic data

Synthetically generate the true factors randomly ∼ i.i.d. exponential
elements, with 50% zeros. Then added Gaussian noise with variance
0.01.
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Non-negative PARAFAC: real data

Sparse real data: Facebook Wall Posts, of size 46952× 46951× 1592.
Used tensor toolbox∗ to handle basic sparse tensor operations.
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AO-ADMM: recap

Efficiency: Uses ADMM to solve the subproblems, with
computation caching, warm start, and good choice of ρ;
Flexibility:

Can handle many constraints on the latent factors with
element-wise complexity;
Can handle non-LS loss: missing values, l1 fitting, K-L divergence...

Convergence:
Monotonic decrease of the cost function;
Adopting block successive upperbound minimization (BSUM) as
the AO framework, we can guarantee that every limit point is a
stationary point.

Bottleneck: MTTKRP - same as ALS. So ...
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Back to ALS: MTTKRP

C = X(3)(B� A)(BT B ∗ AT A)†

A = X(1)(C� B)(CT C ∗ BT B)†

B = X(2)(C� A)(CT C ∗ AT A)†

Computation and inversion of (CT C ∗ BT B) relatively easy:
relatively small K × F , J × F matrices, invert F × F matrix, usually
F is small
Bottleneck is computing X(1)(C� B); likewise X(2)(C� A),
X(3)(B� A)

Entire X needs to be accessed for each computation in each ALS
iteration, data transport costs
Memory access pattern is different for the three computations,
making efficient block caching very difficult
‘Solution’: replicate data three times in main (fast) memory :-(
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MTTKRP - Prior work

Kolda et al, 2008 compute X(1)(C� B) with 3F NNZ flops using
NNZ intermediate memory (on top of that required to store the
tensor). Does not provision for efficient parallelization
(accumulation step must be performed serially)
Kang et al, 2012 compute X(1)(C� B) with 5F NNZ flops using
O(max(J + NNZ,K + NNZ)) intermediate memory. Parallel
implementation.
Choi et al, 2014 (DeFacTo): 2F (NNZ + P) flops, using
(2NNZ + I + 3P + 2) memory, where P is the number of
non-empty J-mode fibers. Parallel implementation.
Room for considerable improvements in terms of memory- and
computation-efficiency, esp. for high-performance parallel
computing architectures
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[Ravindarn, Sidiropoulos, Smith, Karypis ’14]: Suite of
three agorithms

Algorithm 1: Output: M1 ← X(1)(C� B) ∈ RI×F

1: M1 ← 0
2: for k = 1, . . . ,K do
3: M1 ← M1 + X(:, :, k)B diag(C(k , :))
4: end for

Algorithm 2: Output: M2 ← X(2)(C� A) ∈ RJ×F

1: M2 ← 0
2: for k = 1, . . . ,K do
3: M2 ← M2 + X(:, :, k)Adiag(C(k , :))
4: end for

Algorithm 3: Output: M3 ← X(3)(B� A) ∈ RK×F

1: for k = 1, . . . ,K do
2: M3(k , :)← 1T (A ∗ (X(:, :, k)B))
3: end for
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Features

Essentially no additional intermediate memory needed - updates
of A,B and C can be effectively performed in place
Let Ik be the number of non-empty rows and Jk be the number of

non-empty columns in X(:, :, k) and define NNZ1 :=
K∑

k=1
Ik ,

NNZ2 :=
K∑

k=1
Jk

Algorithm 1: F NNZ1 + F NNZ2 + 2F NNZ flops. Kang: 5FNNZ;
Kolda 3FNNZ. Note NNZ > NNZ1,NNZ2
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Features

Algorithms 1, 2, 3 share the same tensor data access pattern -
enabling efficient orderly block caching / pre-fetching if the tensor
is stored in slower / serially read memory, without need for
three-fold replication (→ asymmetry between Algorithms 1, 2 and
Algorithm 3)
The loops can be parallelized across K threads, where each
thread only requires access to an I × J slice of the tensor. This
favors parallel computation and distributed storage.
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Imposing Constraints (contd.)

Parametric constraints:
All the above are non-parametric constraints.
There are also important parametric constraints that often arise,
particularly in signal processing applications.
Examples:

1 Vandermonde or Toeplitz structure imposed on A, B, C
This may reduce the number of parameters needed and suppress
noise

2 Non-negativity can be parametrized as A(i , j) = θ2
i,j , θ ∈ R

3 Magnitude constraint |A(i , j)| = 1 as A(i , j) = e
√
−1θi,j

4 Orthogonality may be parametrized via Jacobi rotations or
Householder reflections.

5 Smoothness, probability simplex, and linear constraints can be
formulated as parametric constraints
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Reprise – what’s coming up next

Applications in Machine Learning
Knowledge base completion.
Recommender systems - collaborative filtering.
Factorization machines - multilinear classification.
Gaussian mixture model parameter estimation.
Topic mining.
Multilinear subspace learning.
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Knowledge Base Completion

NELL – Tom Mitchell @ CMU
Given known facts of (subject, verb, object)-type such as (Obama,
likes, football), (Donald, likes, football), (Donald, is, American)
infer additional knowledge, such as (Obama, is, American).

X
≈

object

subject

verb

a1

b1
c1

+

a2

b2
c2

+

aF

bF
cF

. . . +

You obviously need a model for this ... and the most basic
algebraic model is low-rank ... but does low-rank make sense in
this context?
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Knowledge Base Completion

X
≈

object

subject

verb

a1

b1
c1

+

a2

b2
c2

+

aF

bF
cF

. . . +

Think ... about matrix case in which you unfold verb-object in one
long mode: the long rows for Obama and Donald are similar, so
you copy entries from one to the other to make them identical↔
matrix completion!
If you don’t unfold↔ tensor completion.
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Recommender Systems: Collaborative Filtering

Given users × movies (I × J) ratings matrix R.
Low-rank approx. R ≈ UVT ; U (I × F ), V (J × F ), F << min(I, J).
U(i , :): reduced-dim latent description of user i ;
V(j , :): reduced-dim latent description of movie j ;
R ≈ UVT implies that user i ’s rating of movie j is approximated as
R(i , j) ≈ U(i , :)(V(j , :))T , i.e., the inner product of the latent
descriptions of the i-th user and the j-th movie. Intuitive!
Premise: every user is a linear combination of few (F ) user “types”
(e.g., sports fan, college student, ... ↔ rows of VT / columns of V).
Every movie is a linear combination of few movie types (e.g.,
comedy, drama, documentary, ... ↔ columns of U). Intuitive!
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Collaborative Filtering: Schematic

= + +

u2 u3

v1 v2 v3

customer

movie

=

U=[u1 u2 u3]

V=[v1 v2 v3]

reduced-dim

customer rep

u1

customer type 1 customer type 2

Fit model; predict using R i, j = U(i, : )(V j, : )T = σf=1
F uf(i)vf(j)

R

= UVT

reduced-dim movie rep
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Recommender Systems: Collaborative Filtering

Only very small % of the entries of R is available – between 1 per
thousand and 1 per 105 in practice. Few people provide feedback.
Goal: predict a user’s missing ratings using not only that user’s
past ratings but also the ratings of all other users – hence the term
collaborative filtering.
If we can find U and V from the available ratings, then we can
impute the missing ones using inner products of columns of U and
V. This suggests using the following formulation.

min
U, V

∣∣∣
∣∣∣W ∗

(
R− UVT

)∣∣∣
∣∣∣
2

F
,

where W(i , j) = 1 if R(i , j) is available, 0 otherwise.
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Recommender Systems: Collaborative Filtering

In practice, unclear what would be good F .
Overestimate, use rank penalty to control over-fitting and improve
generalization.
Rank of X = # nonzero singular values of X.
Nuclear norm ||X||∗ (sum of singular values) is commonly used
convex surrogate (|| · ||1 vs. || · ||0 of vector of singular values).
||X||∗ = minU,V | X=UVT

1
2

(
||U||2F + ||V||2F

)
, so

min
U, V

∣∣∣
∣∣∣W ∗

(
R− UVT

)∣∣∣
∣∣∣
2

F
+
λ

2

(
||U||2F + ||V||2F

)
.
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Recommender Systems: Collaborative Filtering

Additional information on the context in which the ratings were
given is often available: time, social context, gender, ...
Every context type +1 mode→ very sparse higher-order tensors.
Bummer: approximating very sparse may require very high rank ...
Analogy: matrix I is full rank.
CPD of user × movie × time tensor R w/ elements R(i , j , k)

min
A, B, C

K∑

k=1

∣∣∣
∣∣∣W(:, :, k) ∗

(
R(:, :, k)− ADk (C)BT

)∣∣∣
∣∣∣
2

F
,

Xiong et al.: rank + smoothness regularization, Bayesian MCMC.
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Machine learning interpretation of CPD

I

J

K

X_ = + +

a2 a3

b1 b2
b3

c1 c2 c3

C=[c1 c2 c3]

customer

item

=

A=[a1 a2 a3]
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reduced-dim

customer rep

a1

customer type 1 customer type 2

𝑋 𝑖, 𝑗, 𝑘 =  

𝑓=1

𝐹

 𝑎𝑓(𝑖)𝑏𝑓(𝑗)𝑐𝑓(𝑘
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From Matrix to Tensor: Context

Karatzoglou et al.: used age as the third mode (< 18, 18-50, and
> 50), and non-⊥ Tucker instead of CPD.

min
U,V,W,G

||Γ ∗ (R− (U,V,W,G))||2F +

λ
(
||U||2F + ||V||2F + ||W||2F

)
+ µ||G||2F ,

Here (U,V,W,G) stands for Tucker model generated by
U,V,W,G;
||X||2F is the sum of squared elements of tensor X.
Note: ||U||2F = Tr(UT U), so UT U = I resists rank regularization.
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Multilinear classification

In support vector machine (SVM) classification, we use a linear
mapping wT x =

∑
i w(i)x(i) to discriminate between vectors

belonging to two different classes: sign(wT x− b).
Augmenting each x with a unit as last element (i.e., replacing x by
[x,1]T ) and likewise absorbing −b in w→ sign(wT x).
Classifier design: choice of vector w.
Using a measure of classification error as cost function.
Hinge loss plus λ||w||22 for the popular soft margin approach.
What if classes are not linearly separable?
Standard ML approach: use kernels and the kernel trick.
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Multilinear classification

What if classes are not linearly separable?
Systems approach?
Think about Taylor series ... higher-order polynomial
approximation ... multivariate polynomial functions.
First step: linear-quadratic function, also taking into account all
pairwise products of input variables.
Bilinear mapping xT Wx =

∑
i,j W(i , j)x(i)x(j) = vec

(
xT Wx

)
=(

xT ⊗ xT ) vec(W) = (x⊗ x)T vec(W).
Augmenting x with a unit as last element (i.e., replacing x by
[x,1]T ), higher-order mappings include lower-order ones.
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Multilinear classification

More generally, multilinear mapping, e.g.,
(x⊗ x⊗ x)T vec(W) =

∑
i,j,k W(i , j , k)x(i)x(j)x(k).

Classifier design problem boils down to designing a suitable
matrix or tensor W of weights.
In order to em keep the number of model parameters low relative
to the number of training samples (to enable statistically
meaningful learning and generalization), a low-rank tensor model
such as CPD (Steffen Rendle, 2010), or low multilinear rank one
such as Tucker can be employed.
Model parameters learned using a measure of classification error
as cost function.
A simple optimization solution is to use SGD, drawing samples
from the training set at random.
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Gaussian mixture parameter estimation

Consider F Gaussians N (µf , σ
2
f I), where µf ∈ RI×1 is the mean

vector and σ2
f is the variance of the elements of the f -th Gaussian.

Let π = [π1, · · · , πF ]T be a prior distribution.
Experiment: first draw fm ∼ π; then draw xm ∼ N (µfm , σ

2
fm I).

The distribution of xm is then a mixture of the F Gaussians, i.e.,∑F
f =1 πfN (µf , σ

2
f I).
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Gaussian mixture parameter estimation

Run M independent trials of the above experiment→ {xm}Mm=1.
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Given {xm}Mm=1, estimate mixture parameters {µf , σ
2
f , πf}Ff =1.

Can also estimate F from {xm}Mm=1, but assume F given to ease
burden.
Note conceptual similarity to k -means (here: F -means) clustering
or vector quantization (VQ): main difference is that here we make
an additional modeling assumption that the “point clouds” are
isotropic Gaussian about their means.
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Gaussian mixture parameter estimation

Consider

E [xm] =
F∑

fm=1

E [xm|fm]πfm =
F∑

f =1

µfπf = Mπ,

where M := [µ1, · · · ,µF ] (I × F ). Next, consider

E [xmxT
m] =

F∑

fm=1

E [xmxT
m|fm]πfm =

F∑

f =1

(
µfµ

T
f + σ2

f I
)
πf

= MDiag(π)MT + σ̄2I, σ̄2 :=
F∑

f =1

σ2
f πf .

It is tempting to consider third-order moments, which are easier to
write out in scalar form

E [xm(i)xm(j)xm(k)] =
F∑

f =1

E [xm(i)xm(j)xm(k)|f ]πf .
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Gaussian mixture parameter estimation

Conditioned on f , xm(i) = µf (i) + zm(i), where zm ∼ N (0, σ2
f I),

and likewise for xm(j) and xm(k). Plugging these back into the
above expression, and using that
. If two out of three indices i , j , k are equal, then
E [zm(i)zm(j)zm(k)|f ] = 0, due to zero mean and independence of
the third; and
. If all three indices are equal, then E [zm(i)zm(j)zm(k)|f ] = 0
because the third moment of a zero-mean Gaussian is zero, we
obtain

E [xm(i)xm(j)xm(k)|f ] = µf (i)µf (j)µf (k)+

σ2
f (µf (i)δ(j − k) + µf (j)δ(i − k) + µf (k)δ(i − j)) ,

where δ(·) is the Kronecker delta.

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 196 / 222



Gaussian mixture parameter estimation

Averaging over πf ,

R(i , j , k) :=E [xm(i)xm(j)xm(k)] =
F∑

f =1

πfµf (i)µf (j)µf (k)+

F∑

f =1

πfσ
2
f (µf (i)δ(j − k) + µf (j)δ(i − k) + µf (k)δ(i − j)) .

Further assume, for simplicity, that σ2
f = σ2, ∀f , and σ2 is known.

Then
∑F

f =1 πfµf (i) = E [xm(i)] can be easily estimated. So we
may pre-compute the second term in the above equation, call it
Γ(i , j , k), and form

R(i , j , k)− Γ(i , j , k) =
F∑

f =1

πfµf (i)µf (j)µf (k),

which is evidently a symmetric CPD model of rank (at most) F .
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Gaussian mixture parameter estimation

R(i , j , k)− Γ(i , j , k) =
F∑

f =1

πfµf (i)µf (j)µf (k).

Note that, due to symmetry and the fact that πf ≥ 0, there is no
ambiguity regarding the sign of µf ; but we can still set e.g.,

µ
′
1 = ρ

1
3µ1, π

′
1 = 1

ρπ1, π
′
2 = π1 + π2 − π

′
1 = ρ−1

ρ π1 + π2, 1
γ =

π
′
2
π2

,

and µ
′
2 = γ

1
3µ2, for some ρ > 0.

However, we must further ensure that π
′
2 > 0, and π

′
1 < π1 + π2;

both require ρ > π1
π1+π2

.
We see that scaling ambiguity remains, and is important to resolve
it here, otherwise we will obtain the wrong means and mixture
probabilities.
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Gaussian mixture parameter estimation

Towards this end, consider lower-order statistics, namely E [xmxT
m]

and E [xm]. Note that,

(M�M�M)π = ((MD1/3)� (MD1/3)� (MD1/3))D−1π

but
E [xm] = Mπ 6= (MD1/3)D−1π,

E [xmxT
m]− σ̄2I = MDiag(π)MT

vec(·)→ (M�M)π 6= ((MD1/3)� (MD1/3))D−1π.

This shows that no scaling ambiguity remains when we jointly fit
third and second (or third and first) order statistics.

For the general case, when the variances
{
σ2

f

}F
f =1 are unknown

and possibly different, see [Hsu, 2013]. A simpler work-around is
to treat “diagonal slabs” (e.g., corresponding to j = k ) as missing,
fit the model, then use it to estimate

{
σ2

f

}F
f =1 and repeat.
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Topic Mining

Topic 1: Clinton, White 
House, Scandal, 

Lewinsky, grand jury…

Topic 2: Utah, Chicago, 
NBA, Jordan, Carl, jazz, 
bull, basketball, final,…

Topic 3: NASA, Columbia, 
shuttle, space, 
experiments, …
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Topic Mining

Table: Mined topics from 5 classes of (1,683) articles of the TDT2 corpus.

FastAnchor (classic) AnchorFree (proposed)
allegations poll columbia gm bulls lewinsky gm shuttle bulls jonesboro
lewinsky cnnusa shuttle motors jazz monica motors space jazz arkansas
clinton gallup space plants nba starr plants columbia nba school
lady allegations crew workers utah grand flint astronauts chicago shooting
white clinton astronauts michigan finals white workers nasa game boys
hillary presidents nasa flint game jury michigan crew utah teacher

monica rating experiments strikes chicago house auto experiments finals students
starr lewinsky mission auto jordan clinton plant rats jordan westside

house president stories plant series counsel strikes mission malone middle
husband approval fix strike malone intern gms nervous michael 11year
dissipate starr repair gms michael independent strike brain series fire
president white rats idled championship president union aboard championship girls

intern monica unit production tonight investigation idled system karl mitchell
affair house aboard walkouts lakers affair assembly weightlessness pippen shootings

infidelity hurting brain north win lewinskys production earth basketball suspects
grand slipping system union karl relationship north mice win funerals
jury americans broken assembly lewinsky sexual shut animals night children

sexual public nervous talks games ken talks fish sixth killed
justice sexual cleansing shut basketball former autoworkers neurological games 13year

obstruction affair dioxide striking night starrs walkouts seven title johnson

K. Huang∗, X. Fu∗ and N.D. Sidiropoulos, “Anchor-Free Correlated Topic
Modeling: Identifiability and Algorithm”, NIPS 2016. (∗equal contribution)
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Topic Mining

Given a dictionary D = {w1, · · · ,wI} comprising I possible words,
a topic is a probability mass function (pmf) over D.
Assume there are F topics overall, let pf := Pr(wi |f ) be the pmf
associated with topic f , πf be the probability that one may
encounter a document associated with topic f , and
π := [π1, · · · , πf ]T .
We begin our discussion of topic modeling by assuming that each
document is related to one and only one topic (or, document
“type”).
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Topic Mining

Consider the following experiment:
1) Draw a document at random;
2) Sample m words from it, independently, and at random (with
replacement – the order in which words are drawn does not
matter);
3) Repeat (until you collect “enough samples” – to be qualified
later).
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Topic Mining

Assume for the moment that F is known. Goal is to estimate
{pf , πf}Ff =1.

Clearly, Pr(wi) =
∑F

f =1 Pr(wi |f )πf .
Furthermore, the word co-occurrence probabilities
Pr(wi ,wj) :=Pr(word i and word j are drawn from the same
document) satisfy

Pr(wi ,wj) =
F∑

f =1

Pr(wi ,wj |f )πf =
F∑

f =1

pf (i)pf (j)πf ,

since the words are independently drawn from the document.
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Topic Mining

Define the matrix of word co-occurrence probabilities P(2) with
elements P(2)(i , j) := Pr(wi ,wj), and the matrix of conditional pmfs
C := [p1, · · · ,pF ]. Then

P(2) = CDiag(π)CT .

Next, consider “trigrams” – i.e., probabilities of triples of words
being drawn from the same document

Pr(wi ,wj ,wk )=
F∑

f =1

Pr(wi ,wj ,wk |f )πf =
F∑

f =1

pf (i)pf (j)pf (k)πf .

Define tensor P(3) with elements P(3)(i ,j ,k) :=Pr(wi ,wj ,wk ). Then
P(3) admits a symmetric non-negative CPD model of rank (at
most) F :

P(3) = (C� C� C)π.
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Topic Mining

Similar to but in fact simpler from the case of Gaussian mixture
parameter estimation, since here, due to independent sampling
with replacement, the same expression holds even if two or three
indices i , j , k are the same.
We can estimate C and π from the tensor P(3) and the matrix P(2).
In reality, we will use empirical word co-occurrence counts to
estimate P(3) and P(2), and for this we need to sample enough
triples (“enough samples”).
Once we have C, we can classify any document by estimating
(part of) its conditional word pmf and comparing it to the columns
of C.
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Topic Mining

Next, consider the more realistic situation where each document
is a mixture of topics, modeled by a pmf q (F × 1) that is itself
drawn from a distribution δ(·) over the (F − 1)-dimensional
probability simplex.
Our working experiment is now modified as follows:

1) For every document we sample, we draw q ∼ δ(·);
2) For every word we sample from the given document, we first
draw a topic t from q – i.e., topic f is selected with probability q(f );
3) Next, we draw a word ∼ pt ;
4) Goto 2, until you have sampled the desired number of words
(e.g., three) from the given document;
5) Goto 1, until you have collected enough samples (e.g., enough
triples of words).

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 207 / 222



Topic Mining

Then,

Pr(wi ,wj |t1, t2,q) = pt1(i)pt2(j) =⇒

Pr(wi ,wj |q) =
F∑

t1=1

F∑

t2=1

pt1(i)pt2(j)q(t1)q(t2) =⇒

Pr(wi ,wj) =
F∑

t1=1

F∑

t2=1

pt1(i)pt2(j)E [q(t1)q(t2)] ,

where we notice that what comes into play is the second-order
statistics E [q(t1)q(t2)] (the correlation) of δ(·).
The I × I matrix Q with elements Q(i , j) := Pr(wi ,wj) admits the
decomposition Q = CECT , where E(t1, t2) := E [q(t1)q(t2)].
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Topic Mining

Likewise, it follows that, for the trigrams

Pr(wi ,wj ,wk ) =
F∑

t1=1

F∑

t2=1

F∑

t3=1

pt1(i)pt2(j)pt3(k)E [q(t1)q(t2)q(t3)] ,

which involves the third-order statistics tensor G of δ(·) with
elements G(t1, t2, t3) := E [q(t1)q(t2)q(t3)].
Defining the I × I × I tensor P with elements
P(i , j , k) := Pr(wi ,wj ,wk ), it follows that P admits a symmetric
Tucker decomposition:

P = Tucker(C,C,C,G), with C = [p1, · · · ,pF ].
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Topic Mining

P = Tucker(C,C,C,G), with C = [p1, · · · ,pF ].

Note that C is element-wise non-negative, but in principle G may
have negative elements.
As we know, Tucker models are not identifiable in general – there
is linear transformation freedom.
This can be alleviated when one can assume sparsity in C
[Anandkumar, 2013], G, or both (intuitively, this is because linear
transformations generally do not preserve sparsity).
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Topic Mining

Recall: pairwise co-occurrence probability matrix Q with elements
Q(i , j) := Pr(wi ,wj) admits the decomposition Q = CECT , where
E(t1, t2) := E [q(t1)q(t2)] is the topic correlation matrix.
Interestingly, Q = CECT is already identifiable under mild
conditions if one uses the correct (VolMin) criterion:
K. Huang∗, X. Fu∗ and N.D. Sidiropoulos, “Anchor-Free
Correlated Topic Modeling: Identifiability and Algorithm”,
NIPS 2016. (∗equal contribution)
Implies slab-by-slab identifiability of P = Tucker(C,C,C,G). More
work in this direction currently underway.
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Discriminative Subspace Learning

Given X = [x1, · · · ,xM ] (N ×M) and associated class labels
z = [z1, · · · , zM ] (1×M) for the columns of X.
Find a dimensionality-reducing linear transformation U of size
N × F , F < N (usually F � N) such that

min
U|UT U=I

M∑

m=1



(1− λ)

M∑

`=1|z`=zm

||UT xm − UT x`||22−

λ

M∑

`=1|z` 6=zm

||UT xm − UT x`||22



 ,

where the first (second) term measures the within-class
(across-class) distance in reduced dimension space.
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Discriminative Subspace Learning

Interpretation: find a dimensionality-reducing transformation that
will map points close to each other in terms of Euclidean distance
if they have the same class label, far otherwise.
Find a subspace to project onto where we can easily visualize (if
F = 2 or 3) the point clouds of the different classes.
Upon defining

wm,` := (1− λ)1(z`=zm)(−λ)1−1(z`=zm),

where 1(z` = zm) = 1 if z` = zm, 0 otherwise, we can compactly
write the problem as follows

min
U|UT U=I

M∑

m=1

M∑

`=1

||UT xm − UT x`||22wm,`.
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Discriminative Subspace Learning

Expanding the squared norm and using properties of Tr(·), we can
write the cost function as

M∑

m=1

M∑

`=1

||UT xm − UT x`||22wm,` = Tr(UUT Y),

where

Y :=
M∑

m=1

M∑

`=1

wm,`(xm − x`)(xm − x`)T .

Notice that wm,` = w`,m by definition, and Y is symmetric. Let
Y = VΛVT be the eigendecomposition of Y, and note that
Tr(UUT Y) = Tr(UT YU). Clearly, Uopt = F minor eigenvectors of Y
(columns of V corresponding to the F smallest elements on the
diagonal of Λ).
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Multilinear Subspace Learning

Now, suppose that the columns in X are in fact vectorized tensors.
As an example, suppose that there exist common bases U (I × r1),
V (J × r2), W (K × r3), such that

xm ≈ (U⊗ V⊗W)gm, ∀m ∈ {1, · · · ,M} ,

i.e., each xm can be modeled using a ⊥-Tucker model with
common mode bases, but different cores for different m.
Think of (U⊗ V⊗W)T (r1r2r3 × IJK ) as a (Kronecker) structured
dimensionality reducing transformation;
Think of the vectorized core array gm as the low-dimensional
(r1r2r3 × 1) representation of xm.
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Multilinear Subspace Learning

Want to find U, V, W such that the g’s corresponding to x’s in the
same (different) class are close (far) from each other.
Following the same development as before, using

ĝm = (U⊗ V⊗W)T xm

as the projection of xm in reduced-dimension space, we arrive at

min
U,V,W

Tr
(

(U⊗ V⊗W)(U⊗ V⊗W)T Y
)
,

subject to: UT U = I, VT V = I, WT W = I,
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Multilinear Subspace Learning

Equivalently,

min
U,V,W

Tr
(

((UUT )⊗ (VVT )⊗ (WWT ))Y
)
,

subject to: UT U = I, VT V = I, WT W = I,

It is now clear that, conditioned on, say, U and V, the update with
respect to W boils down to

min
W|WT W=I

Tr
(

WWT Z
)
,

for some matrix Z that depends on the values of U and V.

Sidiropoulos, De Lathauwer, Fu, Papalexakis ICASSP’17 T#12: TD for SP & ML February 3, 2017 217 / 222



References I

James Alexander and André Hirschowitz.
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