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Quasi-ML Period Estimation From
Incomplete Timing Data
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Abstract—Given a noisy sequence of (possibly shifted) integer multiples
of a certain period, it is often of interest to accurately estimate the period.
With known integer regressors, the problem is classical linear regression.
In many applications, however, the regressors are unknown integers, and
only loose bounds on the period are available. Examples include hop pe-
riod and timing estimation, wherein hopsmay bemissed at the output of the
frequency discriminator or the emitter may hop out of band; Pulse Repeti-
tion Interval (PRI) analysis; and passive rotating-beam radio scanning. We
study several pertinent period estimators. Our emphasis is on aQuasi-Max-
imum Likelihood approach developed herein and an earlier method based
on the Fourier Transform of a Dirac delta train representation of the data.
Surprisingly, both are capable of attaining the clairvoyant Cramér–Rao
Bound at moderate signal-to-noise ratios (SNRs), even for short (e.g., 10)
samples. We carefully address parameter identifiability issues and corrob-
orate our findings with extensive simulations.
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I. INTRODUCTION

Consider the following observation model:

�(n) = �+ �(n)T + w(n); n = 1; . . . ; N (1)

where � is an unknown shift, �(n) 2 is a generally unknown se-
quence of ordered integers, T is the unknown period, and w(n) is ad-
ditive white Gaussian (AWG) noise, with variance �2w . The problem is
to estimate � and T from f�(n)g. In practice, there are many situations
wherein the only information that can be assumed about the regressors
is that �(n) 2 , and perhaps also loose upper and lower bounds on
T , or qualitative information of the type “lengthy gaps are rather rare.”

The model in (1) is reminiscent of two well-known problems. In the
special case that �(n) = n; n = 1; . . .N , the problem is classical line
regression; if the integers f�(n)gNn=1 are known, then a standard linear
regression problem appears. If the regressors f�(n)gNn=1 are unknown
integers, then a nonstandard regression problem emerges.

On the other hand, the problem in (1) is closely related to harmonic
retrieval. That is, raising the data in (1) to the exponent yields

x(n) := e
j�(n) = e

jw(n)
e
j(�+�(n)T )

; n = 1; . . . ; N

which is a harmonic retrieval problem with missing samples in non-
Gaussian multiplicative noise. Note, however, that raising the data to
the exponent is not a reversible operation; hence, the problems are gen-
erally not equivalent.

The classical (single-) harmonic retrieval problem has been thor-
oughly investigated in the literature, including optimal (periodogram)
and suboptimal linear-complexity solutions. The latter achieve near-
optimal performance at moderate signal-to-noise ratio (SNR) or mod-
erate samples and above. Interestingly, Tretter [13] has shown that a
computationally attractive solution can be obtained by casting the fre-
quency estimation problem as a line regression problem in the phase
domain. At high SNR, phase noise can be approximated by AWG noise,
and the problems become essentially equivalent [13]. Another related
approach to the problem of frequency estimation involves working with
zero-crossings or higher order zero crossings of the observation [6],
[11].

The harmonic retrieval problem with missing samples has also been
considered [8]. Early approaches were periodogram-based (the peri-
odogram often works reasonably well with mild multiplicative noise),
but parametric techniques have also been developed [9]. In most cases,
a simple Bernoulli miss model is adopted [9], [12]; otherwise it is
assumed that missing samples occur periodically with known outage
period. Harmonic retrieval in multiplicative noise has been dealt with
(see, e.g., [4]), but to the best of our knowledge, harmonic retrieval in
multiplicative noise and a deterministic unknown model for the missing
samples has not been addressed in the literature.

The baseline for the present research is mostly the work of Fogel and
Gavish [3], Sadler and Casey [1], [10], and Clarkson et al. [2], who
also considered period estimation from the model in (1) with missing
observations.

Fogel and Gavish [3] considered Maximum Likelihood (ML) period
estimation from incomplete data for a certain convenient choice of the
noise probability density function (pdf) that explicitly depends on the
sought period. The said pdf is compactly supported, and hence, non-
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Gaussian, but can approximate a Gaussian at high SNR. For this par-
ticular noise pdf, Fogel and Gavish [3] claimed that the Fourier Trans-
form (FT) of the Dirac delta train representation of the data N

n=1
�(t�

� (n)) yields the ML estimate of the sought period. Proof of this claim
was not included in [3]. The claim reappeared in [10, App.], but the
argument therein is incomplete.

The work of Sadler and Casey [1], [10] is based on modifications of
the Euclidean algorithm for the computation of the greatest common di-
visor. Following Sadler and Casey, Clarkson et al. [2] also considered
the same problem. Clarkson’s joint ML method requires multidimen-
sional nonlinear optimization, which is computationally demanding
and subject to local minima. Relative efficiency has not been consid-
ered in [2], which, however, sheds some light into the properties of
the associated joint likelihood function. In particular, [2] showed that
without a lower bound on the sought period, there are either infinitely
many ML estimates or none.

Several years after Fogel and Gavish [3], Clarkson et al. [2] also
proposed the FT of the delta train representation of the data as a means
of period estimation. Section 5 of [2] shows that there exist finitely
many points of the aforementioned spectrum that approximate, in a
certain sense, respective values of the ML criterion for Gaussian noise.
The link, as exposed in [2], is weak: It ignores the denominator of the
ML criterion, and what happens at other points is left open. In [2], no
claim is made regarding efficiency of the FT method by analysis or
simulation1. In [2] (and [3]), parameter identifiability issues were not
considered.

Our contributions can be summarized as follows. We study the model
in (1) with respect to parameter identifiability, develop a new quasi-ML
period estimation algorithm, and benchmark it against several earlier
algorithms and the pertinent Cramér–Rao Bound (CRB). Our simula-
tions show that both the new quasi-ML algorithm and the algorithm
proposed by Fogel and Gavish [3], when used with a proper lower
bound on the search range, guarantee identifiability and are capable
of attaining the clairvoyant CRB. This is remarkable because the clair-
voyant CRB assumes knowledge of the unknown regressors.

Our particular motivating application is hop period estimation in
the context of Frequency-Hopped (FH) radios. Therein, one may often
observe only part of the spread FH bandwidth because the true FH
band may be unknown or noncontiguous, as well as for noise con-
siderations (opening up the receiver bandwidth includes more noise
energy). Another application with missing observations is passive ro-
tating-beam radio scanning. In this case, observations (period multi-
ples) are periodically missing only if the scan period is harmonically
related to the sought period. In addition, the exact scan period may
be unknown. Another situation wherein deterministic unknown mod-
eling of missed observations may be appropriate could be a multitasked
best-effort surveillance processor.

II. BASIC ALGORITHM

Given estimates of T and f�(n)gNn=1, the estimation of the shift
� is straightforward. As a first step toward simplifying the problem,
we may take pairwise differences, which eliminates the offset �. We

can take up to (
N

2
) such differences; this produces many more data

points, at the expense of coloring the noise sequence, which is analo-
gous to smoothing for line spectrum estimation. Here, we begin with
simple adjacent-sample differences of nonoverlapping pairs of sam-
ples. This yields a model that is independent of the shift � at the cost
of halving the available sample size and a 3–dB loss in terms of noise

1Recall that efficiency implies ML but not vice-versa.

amplification (note that in this case, the noise is still white): t(n) =
k(n)T + v(n); n = 1; . . . ;M := b(N=2)c, where t(n) := � (2n)�
� (2n� 1); k(n) := �(2n)� �(2n� 1) 2 , and v(n) := w(2n)�
w(2n � 1). In vector form and with obvious notation, t = kT + v.
If the only assumption on fk(n)gMn=1 is that k(n) 2 , and the noise
after taking differences is AWG, then the maximum-likelihood (ML)
principle yields the least-squares (LS) problem min~T2 ;k2 kt�

k ~Tk22. This problem is linearly separable, and the cost function can be
concentrated with respect to k; this yields

min
~T2

kt� ~T round(t= ~T )k22:

This latter minimization can be accomplished via simple line search
over T .

It is important to note that, in the noiseless case, if a certain T̂ is a
zero-cost solution, so is T̂ divided by an arbitrary integer. This is be-
cause one may counter-scale the k(n) sequence. This yields infinitely
many solutions to the problem in the noiseless case. In the noisy case,
smaller T̂ corresponding to T divided by a large integer yields finer
granularity, which results in increasingly deeper minima as one moves
closer to zero. These issues arise because the problem is not well-posed.
The ambiguity is analogous to aliasing in the context of frequency es-
timation or scale ambiguity in blind system identification. In order to
have a well-posed problem, we need to impose a lower bound L on ~T ,
just like we need to impose an upper bound on frequency in order to pre-
vent aliasing in the context of frequency estimation. This lower bound
must clearly satisfy (T=2) < L < T ; this yields T < 2L < 2T , and
thus, we can search for

min
L<~T<2L

kt� ~T round(t= ~T )k22 (2)

which can be solved by line search over (L; 2L). We will refer to this
as the Separable Least Squares Line Search (SLS2) algorithm.

III. IDENTIFIABILITY

In the noiseless case, t = kT , and the question is whether or not
one can uniquely determine T > 0 (positivity is needed to avoid
the trivial “reflection” ambiguity) and k 2 M from t. We have al-
ready seen that a bound L with (T=2) < L < T is needed for
identifiability, and this means that we search for solutions in the range
(L; 2L) � ((T=2);2T ). Therefore, let `̀̀T 0 = kT with `̀̀ 2 M and
(T=2) < T 0 < 2T be another factorization of the data. It follows
that (`(i)=k(i)) = (T=T 0); i = 1; . . . ;M , and therefore, (1=2) <
(`(i))=(k(i)) < 2 and k(i)`(j) � k(j)`(i) = 0, for all i and j in
f1; . . . ;Mg. Consider, for example

k(1)`(2)� k(2)`(1) = 0

which is a homogeneous linear Diophantine equation in two integer
variables (`(1); `(2)),whose complete set of solutions is given by (e.g.,
[7])

`(1) =
rk(1)

gcd(k(1); k(2))
; `(2) =

rk(2)

gcd(k(1); k(2))

parameterized by r 2 ; here, gcd(k(1); k(2)) stands for the greatest
common divisor of k(1) and k(2). If k(1) and k(2) are relatively
prime, then it follows that `(1) = rk(1); `(2) = rk(2); r 2 . For
r = 1, we recover the desired solution (recall that (`(i))=(k(i)) =
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(`(1))=(k(1)), and it thus follows that `(i) = k(i); 8i). All
other possibilities for r are precluded by virtue of the inequality
(1=2) < (`(i))=(k(i))< 2. There is nothing special about the choice
of the first two sample indices; we therefore arrive at the following
result.

Theorem 1: If k contains a pair of relatively prime elements, then
there is a unique factorization t = `̀̀T 0 with (T=2) < T 0 < 2T ,
namely, kT .

Note that the condition provided in the above result is sufficient but,
in general, not necessary for uniqueness. To arrive at a necessary and

sufficient condition, we must jointly consider all (
M

2
) equations im-

plied by the relation k(i)`(j)�k(j)`(i) = 0; i; j 2 f1; . . . ;Mg. This
yields a homogeneous linear system of Diophantine equations in M
variables, and identifiability is tantamount to uniqueness of solution of
this system under the inequality constraints (1=2) < (`(i))=(k(i)) <
2. The system under consideration has special structure‘ in the sense
that the system matrix is sparse (every row has two nonzero entries).
A lot of progress has been made on various aspects of problems of this
type, including algorithms for computing a basis that generates all so-
lutions, checking for bounds, etc. This path leads straight into number
theory and is beyond the scope of this paper, particularly in light of the
fact that the sufficient condition already provided will likely be satis-
fied in all practical scenarios of interest. Note that if 1 2 fk(i)gMi=1,
then the condition is trivially satisfied. In addition, the probability that
two integers picked at random are relatively prime is 6=�2 (e.g., see
[1] and references therein); hence, even for M = 10, the probability
that the sufficient condition will be violated is very small (strictly less
than 10�2).

IV. FURTHER ALGORITHMIC ASPECTS

Smoothing Considerations: If overlapping pair differences are used
to extend the available sample size, then noise whitening is needed in
order to maintain ML optimality of LS. Note that if the original additive
noise is AWG, then the color of the noise after differencing is known,
because it is induced by our processing of the data. Hence, we end up
with a modified data model after differencing and whitening, which
reads t = W�kT + AWGN, where W is the whitening matrix, and
the abbreviation AWGN stands for Additive White Gaussian Noise.
For this model, however, the integer vector parameter �k is no longer
linearly separable, due to the premultiplication by the whitening matrix
W; hence, the cost function cannot be concentrated with respect to �k.
We therefore opt to ignore noise color and use plain LS. This will not
matter much at high SNR [5].

Estimation of � and Iterative Least Squares: Once T has been es-
timated, we can go back to the original data and estimate � via an-
other LS line search. Specifically, conditioned on a given estimate T̂ ,
the conditional LS estimate of � is given by �̂CLS = argmin� k((��� �
�1)=(T̂ ))�round((�����1)=(T̂ ))k22, where1 is a vector of unit entries.
Having obtained an estimate of �; T can now be re-estimated via line
search from the original data (without differencing). This procedure
can then be repeated till convergence. Convergence in fit is assured,
because each step is an LS line search. However, we note that the first
estimate of � is very sensitive to mismatch in the original estimate of T .
This can be appreciated by considering the much simpler case wherein
k is known. Given an estimate T̂ of T , define � := T � T̂ . Given
T̂ and k, for AWGN, � is estimated using �̂ = mean(t � kT̂ ). This
yields a systematic error term (bias) equal to (�=M)sum(k), where M
is the length of k. Without missing observations, this is already equal to
((M+1)=2)�; the situation is further aggravated with missing observa-
tions, for then, sum(k) grows faster with M . When k is unknown, the

task of estimating � is further compounded. The net result is that itera-
tive LS estimation only makes sense in terms of improving the quality
of the estimates at very high SNR. In that regime, the improvement is
probably not worth the associated complexity unless very accurate es-
timates are required. For this reason, we do not pursue this further.

V. SIMULATIONS

Choosing Pairs: SLS2 can be applied to nonoverlapping adja-
cent-pair differences (getting rid of � but reducing the sample size
by one half), overlapping adjacent-pair differences (preserving the

sample size), or even to data comprising all (
N

2
) pairwise differences

that can be extracted from the available sample, thus quadratically
expanding the sample size. We will refer to these three options as
SLS2-NOVLP, SLS2-ADJ, and SLS2-ALL, respectively. The SLS2
line search has complexity O(((U � L)=�)M), where M is the
SLS2-input sample size, and � is the desired step-size accuracy. Aside
from noise coloring considerations, SLS2-ALL has M = O(N2),
which makes complexity quadratic in the original sample size. As
we will see, SLS2-ALL is well worth this additional computational
effort, especially for small sample sizes, which is the norm in many
applications. As a sneak preview, we note that SLS2-ALL vastly
outperforms SLS2-ADJ, which in turn outperforms SLS2-NOVLP,
despite ignoring noise color.
Implementation of Line Search: Throughout our experiments,

the SLS2 line search was implemented in two steps. The first was a
“coarse” uniform grid search over 104 points spanning lower bound L
to upper bound U [see (2)]. L was set to 0:55T or an estimate thereof,
as noted on each experiment. U is less important. We could have used
U = 2L (since L > T=2 implies 2L > T ), but we have observed
that setting U to the maximum value in the input sample does not
degrade performance. The reason is that the likelihood function is
roughly increasing at the macroscopic level. This means that a higher
U typically does not throw off the estimate, whereas a lower L opens
up the possibility of selecting T divided by some integer. The first
coarse localization search was followed by a refined search in the
optimum bin. In this second step, quadratic interpolation of the cost
function (finely sampled over 104 equispaced bin points) was used to
localize the minimum.
SNR Considerations: Defining an appropriate measure of SNR

turns out to be unexpectedly complicated for the simple model in
(1). We skip the details due to space considerations, and state our
chosen measure (cf. [1], [10]): SNR := 20 log

10
(T=(�w)), which is

a measure of “jitter.” Here, �2w denotes the variance of the AWGN in
(1). In the simulations, we have chosen to parameterize performance
via percent jitter, which is defined as ((3�w)=T )� 100% because this
measures the essential support of the error density over the period to
be estimated.
Clairvoyant CRB: Consider the vector model ��� = ���T +�1+w of

(1), with obvious notation. The conditional CRB for T , assuming that
��� is known (� is unknown) is [5] CRB(T ) = ((�2w)=(N��2�)), where

��2� :=
1

N

N

n=1

�2(n)�
1

N

N

n=1

�(n)

2

is the “sample variance of �.” We remark that adjacent-sample differ-
encing does not affect this CRB. To see this, let D denote the (N �
1) � N matrix with ones on the diagonal and �1 on the super-diag-
onal. Then, t = D��� represents the differencing operation. Based on
t, the LS estimator of T , with prewhitening, (i.e., ML based on t) has
variance given by var(T̂t) = [���0D0(DRwD

0)�1D���]�1, where Rw
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Fig. 1. Simulation results for N = 10: MSE.

Fig. 2. Simulation results for N = 10: Absolute Bias.

is the noise covariance matrix for the model in (1). For AWGN as in
(1), Rw = �2

w
I, and we have

var(T̂y) = �2
w
[���0D0(DD0)�1D���]�1

= �2
w

���0 I�
1

N
11

0 ���
�1

= �2
w

���0����
1

N
(10���)2

�1

=
�2
w

N ��2
�

which is the same as the CRB(T ) in the joint estimation of (T; �) based
on the original data.

Comprehensive Monte Carlo (MC) Experiments: In all of our MC
simulations, ��� was drawn from a simple Bernoulli miss model with
miss probability pmiss = 0:5; it was drawn once and remained fixed
for the entire MC simulation. The numerical results depend on the par-
ticular realization of���, but qualitative conclusions remain valid for dif-
ferent ���, as verified by further simulation.

Four compound plots are presented in Figs. 1 and 2 and in Figs. 3
and 4 for N = 10 and N = 30 samples, respectively. These depict

Fig. 3. Simulation results for N = 30: MSE.

Fig. 4. Simulation results for N = 30: Absolute Bias.

mean squared error (MSE) and absolute bias results for the estimation
of T . Throughout, T = 1 is used for the true value of the period. We
used 50 000 MC runs per datum reported, and the x-axis is in percent
jitter, going from smaller to higher jitters (higher SNR to lower SNR).

We compared SLS2-ALL and SLS2-ADJ with several other bench-
mark algorithms and the clairvoyant CRB. Six variants of the Mod-
ified Euclidean Algorithm (MEA) [1], [10] were evaluated. The suf-
fixes I, R, and E denote internal initialization, random initialization, and
exact initialization, respectively. LS and LSW denote the least-squares
and least-squares with whitening solutions. Internal MEA initialization
was via the gradient/clustering procedure described in [10], yielding
T̂MEA. The random initialization was based on Tinit := T (1 + 0:2�
sign(randn)). For SLS2-ADJ, L = 0:55� T̂MEA was used; for SLS2-
ALL, L = 0:55T was used. Recall that L > T=2 is necessary for
identifiability to avoid aliasing. Although not reported here, we have
observed from other simulations that SLS2-ADJ with L = 0:55T per-
forms better than with L = 0:55� T̂MEA but still considerably worse
than SLS2-ALL with L = 0:55T .
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We also included in the comparison an empirical histogram-based
(Hist) method and a Fourier transform (FT) method. These are de-
scribed next.

Consider z� (n) := rem(t(n); � )=� , where t(n) = k(n)T + v(n),
and rem(t(n); � ) stands for the remainder of the division of t(n) by
� . When T=� is integer and the noise is small, z� (n) will be clus-
tered around integer values; otherwise, its distribution will be spread
over [0; � ). In the latter case, the associated empirical distribution (ob-
tained via the histogram) will have relatively high entropy. Thus, the �
that yields minimum entropy can be taken as an estimate of T . The FT
method2 is related to the histogram approach. The FT algorithm com-
putes3

S(�) =

M

n=1

e�j2�t(n)=� =

M

n=1

e�j2�(k(n)T=�+v(n)=�)

and maximizes jS(�)j via a one-dimensional grid search. Note that
e�j2�t(n)=� = e�j2�z (n); hence, S(�) is another statistic based on
the z� (n)’s. Again, when T=� is integer (and noise is small), S(�)will
be large; for other values of � , the phase will be uniformly distributed,
and the expected value of S(�) will be zero.

The FT algorithm can be further motivated as follows. The data
ft(n)gMn=1 can be represented by the Dirac delta train

�(t) =

M

n=1

�(t� t(n))

whose (continuous-time) Fourier transform is given by

�(!) =
1

t=�1

�(t)e�j!t dt =

M

n=1

e�j!t(n)

or, setting ! = 2�=�

S(�) := �(2�=�) =

M

n=1

e�j2�t(n)=� :

Note that when using the delta train representation, additive noise man-
ifests as timing jitter (noise is no longer additive on the signal part of
�(t)). For both of the above empirical estimators, the search range for
� was limited to (0.547 25, 1.9403), and a fixed step size (0.01) was
used for the grid search. Peak picking was followed by quadratic inter-
polation, but that did not improve performance.

SLS2-ALL clearly outperforms all other algorithms by a signifi-
cant margin; for N = 30, it attains the clairvoyant CRB for jitter
� 20%. The SLS2-ALL efficiency breakpoint is a function of sample
size N—it shifts to the right (higher jitter) with increasing N , as seen
by comparing the results in Figs. 5 and 6, which depict relative effi-
ciency (RE) with respect to the clairvoyant CRB (CRB divided by es-
timator variance) for the two setups in Figs. 1–4, respectively.

VI. FT, REVISITED

During the second-round review of our manuscript, one reviewer re-
marked that the FT method based on the Dirac delta train representation

2Note that this FT-based estimator is not the same as peak-picking the Fourier
transform of the data. The latter is clearly not appropriate in our present context.

3Here, 1=� =: f plays the role of the frequency variable.

Fig. 5. Relative efficiency wrt clairvoyant CRB plots: N = 10.

Fig. 6. Relative efficiency wrt clairvoyant CRB plots: N = 30.

of the original data (instead of the pair-wise differenced data), as ad-
vocated in [2] (cf. [3]), should also provide excellent performance.

�������! ���� �������o���os (I age, perpetually being
taught, Solon, Seventh century B.C.)
Indeed, this is correct, and we are grateful to the reviewer for pointing

it out. We have simulated the FT method using the Dirac delta train rep-
resentation of the original data. The results are presented in Figs. 7–9.
Sample length N = 30 and MC = 30 000 runs were used. Two ver-
sions of FT were tested against SLS2-ALL. The first (FTwID) used
the same identifiability-induced lower bound (0:55T ) on the search
range as SLS2-ALL, whereas the second (FTnID) ignored identifia-
bility considerations. The grid search step size was set to 10�4 for
all three methods. Otherwise, the setup is as in the earlier simulations.
Summarizing the results in Figs. 7–9, we have the following.

• SLS2-ALL and FTwID are both efficient at high SNR (including
very high SNR).

• FTnID is not efficient at very high SNR. This can be understood as
follows. In the noiseless case, the criterion j N

n=1 e
�j2��(n)=� j

is maximized at all � for which T=� is integer. Without a bound
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Fig. 7. Simulation results for FT operating on the original data: MSE.

Fig. 8. Simulation results for FT operating on the original data: Absolute Bias.

that is greater than T=2, artifact modes at T=k; k integer > 1
often prevail.

• Interestingly, FTnID quickly becomes efficient as SNR decreases
(jitter increases). Noise dithers the artifacts at T=k in a way that
consistently favors the mode at T . This is illustrated in Fig. 10.
To explain this phenomenon, consider the spectrum

jS(�)j =

N

n=1

e�j2��(n)=�

at points � = T=m;m 2 . With � (n) = �(n)T +
w(n); �(n) 2

jS(T=m)j =

N

n=1

e�j2� w(n) = 	̂w �2�
m

T

where 	w(
) := E[ej
w] is the characteristic function of
the noise pdf, and 	̂w(
) is its sample estimate. This sample
estimate is consistent; hence, for sufficiently large N , it will

Fig. 9. Relative efficiency wrt clairvoyant CRB: FT operating on original data.

Fig. 10. Typical jS(�)j spectrum at 2% jitter. Notice that noise dithers the
artifacts at T=k; k integer > 1.

approximate 	w(
). For all noise pdfs that have a unimodal
characteristic function (including the Gaussian), 	w(
) is
a decreasing function of the magnitude of its argument. For
this reason, jS(T=m)j = j	̂w(�2�(m=T))j is a decreasing4

function of m 2 for large enough N . When SNR is very high
(or N is very low, roughly under N = 10), numerical accuracy
(respectively, inconsistency) problems emerge and throw off the
estimate. This also happens irrespective of N , when noise is
zero, cf. the earlier discussion on identifiability.

• All three methods depart from the clairvoyant CRB at
low-enough SNR.

• FTwID uniformly outperforms the other two estimators, re-
maining essentially on the clairvoyant CRB for a wide range of
SNR.

• SLS2-ALL appears to have slightly higher relative efficiency than
the other two at 50% jitter, but this is compensated by higher bias,

4If 	 (�2�(1=T)) = 0, then the mode of interest is also suppressed. This
is not the case for the Gaussian.
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as is evident by the MSE plots. The SLS2-ALL bias at low SNR
can be attributed to noise coloring.

Even in light of [2] and [3] (see also the discussion in Section I),
some of the above findings are puzzling. We have verified that qualita-
tive conclusions are consistent across various N and pmiss.

VII. CONCLUSION

For moderate SNR and above, and even small sample sizes (e.g.,
N = 10), SLS2-ALL turns out to be “super-efficient” in the sense that
it achieves the clairvoyant CRB. This is quite unexpected, given that
SLS2-ALL jointly detects k and estimates T and further ignores noise

color. This superefficiency can be partially attributed to using all (
N

2
)

pairwise differences and quantization effects due to the round( � ) op-
erator. These very reasons are also responsible for complicating per-
formance analysis: Due to the nonlinearity and discontinuity of the

round( � ) operator and the dependence introduced by taking all (
N

2
)

pairwise differences, theoretical analysis of SLS2-ALL performance
proved elusive, even in the asymptotic regime.

The FT of the delta train representation of the data, proposed by
Fogel and Gavish [3], when used in conjunction with the proper iden-
tifiability-induced lower bound on the search range, outperforms all
other estimators and attains the clairvoyant Gaussian CRB for a very
wide range of SNR. This is remarkable and yet far from being un-
derstood to our satisfaction. Even without the identifiability-induced
bound, the said FT method works very well, except at very high and
very low SNR. The mechanism behind this behavior of FTnID at very
high SNR has been exposed.
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