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Outline

Routing: shortest path vs. back-pressure

Back-pressure for wireless multi-hop networks: interference

Back-pressure power control: complexity

Back-pressure power control: algorithms

Interference management: joint back-pressure PC and IC

Illustrative numerical results
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Multi-hop routing: shortest path

Connectivity
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Back-pressure routing
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D(2,5)=0

D(2,4)=2
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... ...

Back-pressure opposed to the desired flow of a fluid in a pipe
Favor links with low back-pressure (hence name)
Backtracking / looping possible!
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Shortest path vs. dynamic back-pressure

SP
DP: BF, FW, ...

Distributed X

Must know arrival rate
Quasi-static, slow to adapt
to

changing arrivals/load
availability/failure
fading/interference
patterns

Claim: Low delay (shortest
path)

... but only at low system
loads

BP [Tassiulas ’92]
One-hop differential backlog

Distributed X Lightweight X

Auto-adapts X

Highly dynamic, agile X

Claim: maximal stable
throughput (all paths)

... but delay can be large -
U(load), ∅ → rand walk!
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Back-pressure routing

Multiple destinations, commodities?
multiple queues per node
(max diff backlog) winner-takes-all per link

Wireline: local computation

Wireless?

Broadcast medium: interference

Link rates depend on transmission scheduling, power of other
links

Globalization - but also opportunity to shape-up playing field ...

... through appropriate scheduling, power control
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Back-pressure power control

SINR

γℓ =
Gℓℓpℓ

∑

k∈L,k 6=ℓ Gkℓpk + Vℓ

Link capacity

cℓ = log(1 + γℓ)

Diff backlog link ℓ = (i → j) @
time t

Dℓ(t) := max
{

0,Wi(t)− Wj(t)
}

BPPC

max
{pℓ}ℓ∈L

∑

ℓ∈L

Dℓ(t)cℓ

s.t. 0 ≤
∑

ℓ:Tx(ℓ)=i

pℓ ≤ Pi ,∀i ∈ N

pℓ ≤ P(ℓ), ℓ ∈ L
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Back-pressure power control

BPPC

max
{pℓ}ℓ∈L

∑

ℓ∈L

Dℓ(t)cℓ

s.t. 0 ≤
∑

ℓ:Tx(ℓ)=i

pℓ ≤ Pi ,∀i ∈ N

pℓ ≤ P(ℓ), ℓ ∈ L

Link activation / scheduling:

pℓ ∈
{

0,P(ℓ)
}

, ℓ ∈ L

[Tassiulas et al, ’92 →]
Max stable throughput X

Countable control actions:
random, adopt if > current

Still throughput-opt! [Tass’98]
- but D ↑
Continuous opt vars? -
non-convex due to
cℓ ∼ log(1+γℓ) - diff of
concave
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Reminiscent of ...

DSL: sum-rate maximization

Tx

Rx 1

Rx 2

Rx 3

Single-hop DSL
Listen-while-talk X

Dedicated (Tx,Rx)

Free choice of Gk ,ℓ’s

NP-hard [Luo, Zhang]

BPPC

Multi-hop network
No listen-while-talk X

Shared Tx, Rx ⇒
Restricted Gk ,ℓ’s

NP-hard?
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Peel off

Generic backlogs Choosing backlogs

Backlog reduction → BPPC contains DSL → also NP-hard
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Algorithms

Good news: can adopt (weighted) sum rate maximization
algorithms from the PHY literature, originally developed for DSL
and single-hop wireless networks
Successive convex approximation from below: SCALE
[Papandriopoulos and Evans, 2006]

α log(z) + β ≤ log(1 + z) for
{

α = zo
1+zo

β = log(1 + zo)− zo
1+zo

log(zo)

Start from high SINR, tighten bound at interim solution steps
WMMSE [Christensen et al 2008; Shi et al 2011] - more on
WMMSE later
SCALE cumbersome; WMMSE relatively lightweight, faster X
Monotonic WSR improvement X, stationary point X
No global opt in general ⊠
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Key difference with DSL

BPPC problem must be solved repeatedly for every slot

Batch algorithms: prohibitive complexity

Need adaptive, lightweight solutions (to the extent possible)

Normally, one would init using solution of previous slot; take
refinement step

Doesn’t work ...

Why?
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Proper warm-start

No listen-while-talk, shared Tx/Rx

Push-pull ‘wave’ propagation

Solution from previous slot very different from one for present slot

Even going back a few slots

(Quasi-)periodic behavior emerges
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Proper warm-start

(Quasi-)periodic behavior emerges

Idea: hold record of solutions for W previous slots. W > upper
bound on period

W evaluations of present objective function (cheap!)

Pick the best to warm-start present slot

Needs few steps to converge
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Quality of approximation?

Max lower bound ⇒ link rates attainable

Sims indicate solutions far outperform prior art in networking in
terms of key network metrics: throughput, delay, stability margin

OK, but upper bound?

Normally, dual problem

Here computing dual function is also NP-hard :-(
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Simulation setup
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N = 6 nodes, low-left = s, top-right = d, L = 21 links
Gℓ,k ∼ 1/d4, G = 128, no-listen-while-talk 1/eps
Vℓ = 10−12, P(ℓ) = 5, ∀ℓ
Deterministic (periodic) arrivals
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Successive Approximation
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Successive Approximation
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Best Response
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Interference Mitigation: Next Steps

Interference Cancellation vs. Interference Alignment

CSIT, signaling overhead, complexity, practical impairments
(synchronization, fading, ...)

PHY-layer IC @ Rx can boost NET throughput

... provided interfering signal can be reliably decoded

Power control can help ensure this!

=⇒ PC and IC problems intertwined

Consider joint BPPC-IC problem
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System Model

SINR at Rx of link ℓ when decoding data from link k is

Γℓk =
Gℓkpk

1
Gsg

∑L
m=1
m 6=k

Gℓmpm + σ2
ℓ

∀k ∈ L\{ℓ}, ∀ℓ ∈ L

Γℓk ≥ T =⇒ Rx of link ℓ can reliably decode Tx of link k .

Define Lℓ− = {0} ⋃ {L\{ℓ}}
{{cℓk}k ∈L

ℓ−
}ℓ∈L = interference cancellation coefficients.

For k 6= 0,

cℓk =

{

1, if link ℓ cancels link k
0, if link ℓ does not cancel link k

For k = 0,

cℓ0 =

{

1, if cℓk = 0, ∀ k ∈ Lℓ−\{0}, ∀ ℓ ∈ L
0, otherwise
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System Model

Rx of link ℓ ∈ L can cancel at most one interfering link
L
∑

k=0
k 6=ℓ

cℓk = 1, ∀ ℓ ∈ L

Maximum achievable rate for link ℓ ∈ L is

Rℓ =
∑L

m=0
m 6=ℓ

log (1 + cℓmγℓm)

where γℓm = Gℓℓpℓ

1
Gsg

∑L
k=1

k 6=ℓ,m
Gℓk pk+σ2

ℓ

γℓm = SINR at Rx of link ℓ after cancelling link m
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Joint BPPC-IC Problem Formulation

Π1 max
{pℓ}ℓ∈L

{{cℓm}m∈L
ℓ−

}ℓ∈L

L
∑

ℓ=1

D(t)
ℓ

L
∑

m=0
m 6=ℓ

log (1 + cℓmγℓm)

s.t. 0 ≤ pℓ ≤ P ∀ℓ ∈ L,
cℓk ∈ {0,1} ∀k ∈ Lℓ− ∀ℓ ∈ L,

L
∑

k=0
k 6=ℓ

cℓk = 1 ∀ℓ ∈ L

Γℓk ≥ Tcℓk ∀k ∈ Lℓ−\ {0}, ∀ℓ ∈ L

NP-hard - contains BPPC [BG & NS, IEEE TWC, ’13]
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Interval Relaxation

Consider IC constraints in Π1 for ℓ ∈ L and candidates
m,n ∈ Lℓ− ,m 6= n

Gℓmpm
1

Gsg

∑L
j=1
j 6=m

Gℓjpj + σ2
ℓ

≥ Tcℓm,
Gℓnpn

1
Gsg

∑L
j=1
j 6=n

Gℓjpj + σ2
ℓ

≥ Tcℓn

⇒ Tcℓm
Gsg

≤ Gℓmpm

Gℓnpn
≤ Gsg

Tcℓn
∴ cℓm cℓn ≤

G2
sg

T 2 (1)

If cℓm > 0, cℓn ≤ G2
sg

T 2cℓm
∀n ∈ Lℓ−\{0,m}

For high T , for every ℓ ∈ L, at most one
{cℓk}k ∈L

ℓ−
\{0} can be significant.

Motivates relaxing cℓk ∈ {0,1} to
cℓk ∈ [0,1] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
ln

c lm

Feasible region of two cancellation coefficients for G
sg
2 /T2 = 10−2

Nikos Sidiropoulos (Dept. ECE, UMN) Joint Back-pressure Power Control and IC IEEE GlobalSIP, Dec. 3, 2013 25 / 40



Extended WMMSE (E-WMMSE) for BPPC-IC

WMMSE algorithm - Turns WSR maximization to WMSE
minimization admitting simple block coordinate updates
[Christensen et al.’08, Shi et al.’11]

E-WMMSE - extension to BPPC-IC setup, which includes IC
coefficients

Define vℓ =
√

pℓ, ∀ ℓ ∈ L and Hℓk =
√

Gℓk ∀ k , ℓ ∈ L,
v = [v1, v2, . . . , vL]

T
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E-WMMSE Problem Formulation

Π3

min
u,v,w,c

∑

ℓ∈L

D(t)
ℓ

∑

m∈L
ℓ−

(wℓm eℓm(uℓm, cℓm,v)− log wℓm)

s.t. 0 ≤ v2
ℓ ≤ P ∀ℓ ∈ L, (2a)

cℓk ∈ [0,1] ∀k ∈ Lℓ−, ∀ℓ ∈ L, (2b)
∑

k∈L
ℓ−

cℓk = 1 ∀ℓ ∈ L, (2c)

H2
ℓkv2

k
1

Gsg

∑L
m=1
m 6=k

H2
ℓmv2

m + σ2
ℓ

≥ Tcℓk ∀k ∈ Lℓ−\ {0}, ∀ℓ ∈ L. (2d)
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E- WMMSE Problem Formulation cont’d...

Here

eℓm(uℓm, cℓm,v) =
(

uℓmHℓℓ

√
cℓmvℓ − 1

)2
+

1
Gsg

L
∑

k=1
k 6=l ,m

(uℓmHℓkvk )
2 + σ2

ℓ u2
ℓm, ∀m ∈ Lℓ− ∀ℓ ∈ L (3)

wℓm ∈ R+ and uℓm ∈ R1 - auxiliary variables.

u = {{uℓm}m∈L
ℓ−
}ℓ∈L, w = {{wℓm}m∈L

ℓ−
}ℓ∈L and

c = {{cℓm}m∈L
ℓ−
}ℓ∈L

Since w and u do not appear in the constraints, u∗
ℓm and w∗

ℓm

obtained from ∂fwmmse(ℓ)
∂uℓm

= 0 and ∂fwmmse(ℓ)
∂wℓm

= 0
where

fwmmse(ℓ) =
∑

m∈L
ℓ−

(wℓm eℓm(uℓm, cℓm,v)− log wℓm)
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Equivalence of E-WMMSE formulation and BPPC-IC

∂fwmmse
∂uℓm

= 0 ,∂fwmmse
∂wℓm

= 0 ⇒

u∗
ℓm =

Hℓℓ

√
cℓmvℓ

(Hℓℓ

√
cℓmvℓ)

2 + 1
Gsg

∑L
k=1

k 6=ℓ,m
(Hℓkvk )

2 + σ2
ℓ

, (4)

w∗
ℓm = (eℓm(u

∗
ℓm, cℓm,v))−1 =

(

1 − u∗
ℓmHℓℓ

√
cℓmvℓ

)−1

eℓm(u∗
ℓm, cℓm,v) =






1 +

H2
ℓℓv

2
ℓ cℓm

1
Gsg

∑L
k=1

k 6=l ,m
H2
ℓkv2

k + σ2
ℓ







−1

=
(

1 − u∗
ℓmHℓℓ

√
cℓmvℓ

)

= (w∗
ℓm)

−1 (5)

Substituting (4) and (5) into (3) and Π3, we get the BPPC-IC
problem
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Block Coordinate Descent: v-update

Treating w, u and c as constants in Π3, we get

Π5 min
v

L
∑

ℓ=1

D(t)
ℓ

∑

m∈L
ℓ−

(

w∗
ℓmeℓm(u∗

ℓm, cℓm,v)
)

s.t. v2
ℓ ≤ P ∀ℓ ∈ L, (6a)

Gℓkv2
k

1
Gsg

∑L
j 6=k , j=1 Gℓjv2

j + σ2
ℓ

≥ Tcℓk ∀k ∈ Lℓ−, ∀ℓ ∈ L. (6b)

Π5 - non-convex formulation ((6b) - non-convex in v)
But eℓm(u∗

ℓm, cℓm,v) and constraints - functions of {v2
ℓ }ℓ∈L

Hence can introduce restriction vℓ ≥ 0, ∀ℓ ∈ L
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v-update cont’d.

Π6 min
v

L
∑

ℓ=1

D(t)
ℓ

∑

m∈L
ℓ−

wℓmeℓm(u
∗
ℓm, cℓm,v)

s.t. v2
ℓ ≤ P ∀ℓ ∈ L, (7a)

vℓ ≥ 0 ∀ℓ ∈ L, (7b)

‖vℓk
t ‖ ≤

(
√

Gℓk +
TGℓkcℓk

Gsg

)

vk ∀k ∈ Lℓ− ∀ℓ ∈ L. (7c)

where vℓk
t =

[

{
√

GℓmTcℓk
Gsg

vm}m∈L,
√

σ2
ℓ Tcℓk

]T

Π6 is convex in v - quadratic obj. with cone constraints.
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Block Coordinate Descent: c-update

Fix w, u, v and update c. With pℓ = (v∗
ℓ )

2,∀ℓ ∈ L.

Π7

max
{{cℓm}m∈L

ℓ−
}ℓ∈L

L
∑

ℓ=1

D(t)
ℓ

∑

m∈L
ℓ−

log

(

1 +
Gℓℓpℓcℓm

1
Gsg

∑

k 6=ℓ,m Gℓkpk + σ2
ℓ

)

s.t. cℓm ∈ [0,1] ∀m ∈ Lℓ− ∀ℓ ∈ L, (8a)
∑

m∈L
ℓ−

cℓm = 1 ∀ℓ ∈ L, (8b)

cℓk ≤ 1
T

Gℓkpk
1

Gsg

∑L
j 6=k , j=1 Gℓjpj + σ2

ℓ

, ∀k ∈ Lℓ−, ∀ℓ ∈ L. (8c)
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Block Coordinate Descent: c-update

c-update - Waterfilling problem with spectral mask constraints
[Nguyen et al.’10], with c’s playing the role of powers. Solution is

c∗
ℓ0 =

[

1
µ∗
ℓ

− 1
γℓ0

]1

0

,∀ℓ ∈ L (9)

c∗
ℓm =

[

1
µ∗
ℓ

− 1
γℓm

]min
(

Γℓm
T ,1

)

0

,∀m ∈ Lℓ− , ∀ℓ ∈ L

(10)

where µ∗
ℓ can be found using bisection to ensure that

∑

m∈
ℓ−

c∗
ℓm = min

(

1,
∑

m∈
ℓ−

\{0} min
(

Γℓm
T ,1

))
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E-WMMSE Algorithm

1 Initialization - For each time slot t , calculate the differential
backlogs, reset iteration counter n = 1, and set
v (n)
ℓ =

√
P, ∀ℓ ∈ L, c(n)

ℓ0 = 1, c(n)
ℓm = 0 ∀m ∈ Lℓ− , ∀ℓ ∈ L.

2 repeat

3 u-update and w-update - using (4)

4 v-update - Solve Π6 to obtain the updated {pℓ}ℓ∈L.

5 c-update - Solve Π7 to obtain the updated {{cℓm}m∈L
ℓ−
}ℓ∈L.

6 n = n+1

7 until | log(w (n)
ℓm )− log(w (n−1)

ℓm )| ≤ ǫ, ∀m ∈ Lℓ− , ∀ℓ ∈ L.
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Simulation Results

Channel: path-loss only, Gij = d−α
ij , dij - distance between node

Rx(i) and node Tx(j), α - path-loss exponent

Deterministic periodic input traffic λ pkts/slot into source node at
the beginning of each time slot.

Table : Simulation Parameters

Symbol Description Value
N Number of nodes 4 / 5
P Max. power per link 5 W
V Noise variance 10−12 W

Gsg Spreading / Beam-forming gain 128
T SINR threshold for decoding 1000(30 dB)
ε Tolerance parameter 0.1

Performance Metrics: throughput, backlogs (delays)
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Network stabilization property of BPPC-IC policy for
N = 4 and λ = 10
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BPPC-IC stabilizes the network (bounded queues) unlike BPPC
where the backlogs were increasing with time
Average network throughput increases when BPPC-IC is
introduced
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Comparison of Network stabilization property of
BPPC-IC and BPPC-RIC policies for N = 5 and λ = 11
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BPPC-IC and BPPC-RIC policies stabilize the network.
Average source backlog is lower for BPPC-IC.
BPPC-IC policy takes less time to stabilize the network than
BPPC-RIC policy.
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Max. Stable-Throughput Comparison

Table : Maximum Stable-Throughput

IC policy 4-node network 5-node network
BPPC 7 8

BPPC-RIC 9 12
BPPC-IC 10 14

Significant gain in maximum stable throughput with interference
cancellation

Up to 42.8% increase for N = 4 and 75% increase for N = 5

% increase in maximum stable throughput increases with the
number of nodes

BPPC-IC superior performance compared to BPPC-RIC
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Max. stable throughput comparison of BPPC-IC and
BPPC-RIC policies for N = 5 and λ = 14
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Source node backlogs increase with time for BPPC-RIC and
remains bounded for BPPC-IC
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Take-home points & future research

PHY-layer optimization critical for enhancing NET-layer
performance

∃ simple randomized back-pressure policy attaining max stable
throughput for finite control spaces

∄ for continuous control spaces: BPPC is NP-hard

So (what!) are most problems in cross-layer network operations ...

... but take-home point is recent advances in SP and OPT enable
much better performance than previously attainable!

Many challenges remain, such as lightweight distributed
implementation, with low signaling overhead ... and how to

Cross-leverage w/ recent paradigm shifts, e.g., network coding
and interference alignment?
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