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Almost Sure Identifiability of Constant Modulus
Multidimensional Harmonic Retrieval

Xiangqian Liu and Nicholas D. Sidiropoulos

Abstract—In a recent paper by Jiang et al. in this Transactions,
it has been shown that up to 2 2 two-dimensional (2-D)
exponentials are almost surely identifiable from a mixture,
assuming regular sampling at or above Nyquist in both dimensions.
This holds for damped or undamped exponentials. As a complement,
in this correspondence, we show that up to 2 2 undamped
exponentials can be uniquely recovered almost surely. Multidimensional
conjugate folding is used to achieve this improvement. The main result
is then generalized to 2 dimensions. The gain is interesting
from a theoretical standpoint but also for small 2-D sensor arrays or
higher dimensions and odd sample sizes.

Index Terms—Array signal processing, frequency estimation, harmonic
analysis, multidimensional signal processing, spectral analysis.

I. INTRODUCTION

Constant modulus two-dimensional (2-D) and more generally multi-
dimensional harmonic retrieval (HR) has a wide range of applications,
e.g., in sensor array processing [9], wireless communication [4],
and radar [2], [5]. An important issue is to determine the maximum
number of harmonics that can be resolved for a given sample size.
In the one-dimensional (1-D) case, the answer can be traced to
Carathéodory [1] (see also [8]). A generalization of Carathéodory’s
uniqueness to theN -D case has been given in [6]. For the 2-D
case, the result of [6] indicates that(K +L� 1)=2 harmonics are
deterministically identifiable, whereK is the number of (equis-
paced) samples along one dimension, andL likewise for the other
dimension. In follow-up work, [3] showed that up tobK=2c dL=2e

exponentials are uniquely resolvable almost surely (a.s.). This is
the most relaxed identifiability result regarding 2-D HR to date.
It holds for damped or undamped exponentials. In this paper, we
derive an improved stochastic identifiability result for undamped
multidimensional exponentials. In particular, we show that up to
dK=2e dL=2e undamped 2-D exponentials can be uniquely recov-
ered almost surely. The main result is then generalized toN > 2

dimensions.
Throughout the paper, uppercase (or lowercase) boldface letters will

be used for matrices (column vectors). SuperscriptH will denote Her-
mitian,� conjugate,T transpose, andy matrix pseudo-inverse. We will
use� for Khatri-Rao (column-wise Kronecker) product,d�e for integer
ceiling, andb�c for integer floor.
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II. PROBLEM FORMULATION

In general terms, the 2-D harmonic retrieval problem can be stated
as follows: Given a mixture ofF 2-D exponentials

xk;l =

F

f=1

cfa
k�1
f bl�1

f (1)

for k = 1; . . . ; K andl = 1; . . . ; L, whereaf ; bf ; cf 2 , find the
parameter triples(af ; bf ; cf ) for f = 1; . . . ; F . In the case of constant
modulus exponentials, i.e.,af = ej! andbf = ej� , (1) yields

xk;l =

F

f=1

cfe
j! (k�1)ej� (l�1) (2)

where!f , �f 2 �, and the set� := (��; �]. DefineX 2 K�L with
X(k; l) = xk;l,A 2

K�F withA(k; f) = ej! (k�1),B 2 L�F

with B(l; f) = ej! (l�1), and a diagonal matrixC 2
F�F with

C(f; f) = cf . Then, the 2-D harmonic mixture in (2) can be written
in matrix form as

X = ACBT
: (3)

A. Preliminaries

The following result will be used in our derivation.
Theorem 1 (a.s. Full Rank of Khatri-Rao Product of Vandermonde

Matrices [3]): For a pair of Vandermonde matricesA 2 K�F and
B 2

L�F , with generators on the unit circle

rank(A�B) = min(KL;F ); PL(
2F )-a.s. (4)

where is the unit circle, andPL( 2F ) is the distribution used to
draw the2F generators forA andB, which is assumed continuous
with respect to the Lebesgue measure in2F .

A recently obtained stochastic identifiability result regarding 2-D
harmonic retrieval [3] is reproduced next.

Theorem 2 (a.s. Identifiability of 2-D Harmonic Retrieval [3]):
Given a sum ofF 2-D exponentials as in (1) withK � 4 andL � 4, if

F �
K

2

L

2
(5)

and the distribution used to draw the2F complex exponential parame-
ters(af ; bf), f = 1; . . . ; F , which is denoted byPL( 2F ), is contin-
uous with respect to the Lebesgue measure in2F , then the parameter
triples(af ; bf ; cf), f = 1; . . . ; F arePL( 2F )-a.s. unique. Note that
switchingK andL in (5) yields an alternative sufficient condition.

III. I DENTIFIABILITY OF CONSTANT MODULUS 2-D HR

Theorem 3: Given a sum ofF 2-D undamped exponentials

xk;l =

F

f=1

cfe
j! (k�1)

e
j� (l�1) (6)

for k = 1; . . . ; K � 3 andl = 1; . . . ; L � 3, if

F �
K

2

L

2
(7)
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and the distribution used to draw the2F frequencies(!f ; �f ), f =

1; . . . ; F , which is denoted byPL(�2F ), is continuous with respect to
the Lebesgue measure in�2F , then the parameter triples(!f ; �f ; cf),
f = 1; . . . ; F arePL(�2F )-a.s. unique.

Proof: See the Appendix.
Compared with Theorem 2, the improvement of Theorem 3 is

nontrivial. For example, whenK = L = 5, the maximum number of
identifiable 2-D harmonics given by Theorem 3 is 9 [cf. (7)], whereas
Theorem 2 indicates only 6. In addition, our identifiability condition
allows as few as three measurements along both dimensions, in
which case, it yields four identifiable 2-D harmonics, which is a
case with which [3] cannot deal. This is important when one is
constrained in the number of measurements that can be taken along
certain dimensions, usually due to hardware and/or cost limitations,
e.g., in spatial sampling for direction-of-arrival estimation using a
uniform rectangular array.

IV. I DENTIFIABILITY OF CONSTANT MODULUSN -D HR

The result in Theorem 3 can be generalized to theN -D case, as stated
in the following.

Theorem 4: Given a sum ofF N -D undamped exponentials

xi ;...;i =

F

f=1

cf

N

n=1

ej! (i �1) (8)

for in = 1; . . . ; In � 3, n = 1; . . . ; N , if

F �

N

n=1

In
2

(9)

and the distribution used to draw theNF frequencies(!f;1;
. . . ; !f;N), for f = 1; . . . ; F , which is denoted byPL(�NF ),
is continuous with respect to Lebesgue measure in�NF , then the
parameter(N + 1)-tuples(!f;1; . . . ; !f;N ; cf), f = 1; . . . ; F are
PL(�

NF )-a.s. unique.
The idea of the associated proof is similar to the 2-D case. First, one

can extend the givenN -way array to a2N -way array and then nest
the 2N -way to a matrix~X = GCH

T by recursive dimensionality
embedding1 in such a way thatG andH are Khatri–Rao products ofN
matrices. The same procedure can be carried out for the conjugate of the
N -way data to form a matrix~Y. Finally, theN -D harmonic retrieval
problem can be reduced to an eigenvalue decomposition problem that
is similar to (19), and consequently, (9) is obtained.

V. CONCLUSION

Using multidimensional conjugate folding, it has been shown that
up todK=2e dL=2e undampedexponentials can be uniquely recovered
a.s. from a 2-D harmonic mixture. The result has also been general-
ized toN > 2 dimensions. The gain is interesting from a theoretical
standpoint but is also nontrivial for small 2-D sensor arrays or higher
dimensions and odd sample sizes.

1A similar detailed mathematical argument can be found in [3], where the
givenN -way array is first extended to a(2N + 1)-way array and then nested
to a three-way array by recursive dimensionality embedding.

APPENDIX

PROOF OFTHEOREM 3

A. Proof

GivenX [cf. (6)], define a four-way arraŷX with typical element

x̂k ;k ;l ;l :=xk +k �1;l +l �1

=

F

f=1

cfe
j! (k �1)

e
j! (k �1)

e
j� (l �1)

e
j� (l �1)

(10)

whereki = 1; . . . ; Ki � 2, li = 1; . . . ; Li � 2, for i = 1; 2, and

K1 +K2 = K + 1; L1 + L2 = L+ 1: (11)

Sincemin(K;L) � 3 has been assumed, such extension to a four-way
array is always feasible. Fori = 1; 2, define matrices

Ai :=(ej! (k �1)) 2 K �F

Bi :=(ej� (l �1)) 2 L �F
:

Then, nest the four-way arraŷX into a matrix ~X 2
K L �K L by

collapsing two pairs of dimensions such that

~xp;q :=x̂dp=L e;dq=L e;p�(dp=L e�1)L ;q�(dq=L e�1)L

=

F

f=1

cfgp;fhq;f (12)

where

gp;f :=e
j! (dp=L e�1)

e
j� (p�(dp=L e�1)L �1)

hq;f :=e
j! (dq=L e�1)

e
j� (q�(dq=L e�1)L �1)

for p = 1; . . . ; K1L1, andq = 1; . . . ; K2L2. Define

G :=(gp;f ) 2
K L �F

H :=(hq;f) 2
K L �F

:

It can be verified that

G = A1 �B1; H = A2 �B2: (13)

Hence, (12) can be written in compact matrix form as

~X = GCHT
: (14)

This is important because under the premise of Theorem 1,G andH
are guaranteed to be full column rank a.s. ifK1L1 � F andK2L2 �

F , and consequently,~X is of rankF .
Next, taking the conjugate ofxk;l in (6), we obtain

x
�
k;l =

F

f=1

~cfe
j! (K�k)

e
j� (L�l)

where~cf := c�fe
�j! (K�1)�j� (L�1). Define

yk;l :=x
�
K�k+1;L�l+1

=

F

f=1

~cfe
j! (k�1)

e
j� (l�1) (15)
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for k = 1; . . . ; K, l = 1; . . . ; L and, correspondingly, the matrixY :=
(yk;l) 2

K�L. This means that by conjugation and folding2 of the
lower-left quadrant, we obtain another harmonic mixture with the same
harmonics asX but different proportions. This is key. Following the
same procedure as in the construction of~X fromX, we can construct
a matrix ~Y 2

K L �K L fromY such that

~yp;q =

F

f=1

~cfgp;fhq;f (16)

i.e.,

~Y = G ~CHT (17)

where ~C = diag(~c1; . . . ; ~cF ).
Invoking Theorem 1, ifK1L1 � F andK2L2 � F , then bothG

andH in (13) are a.s. full column rank. Hence,~X and ~Y are of rank
F , and the singular value decomposition of the stacked data yields

~X
~Y

=
GC

G ~C
H

T = U2K L �F�F�FV
H
K L �F

whereU hasF columns, which, together, span the column space

of ~XT ~YT
T

. Since the same space is spanned by the columns of

(GC)T (G ~C)T
T

, there exists anF � F nonsingular matrixT
such that

U =
U1

U2

=
GC

G ~C
T: (18)

It then follows that

U
y
1U2 = T�1C�1 ~CT (19)

which is an eigenvalue decomposition problem.T�1 contains the
eigenvectors ofUy1U2 (scaled to unit norm). Other parameters are
given by

GC =U1T
�1 (20)

H
T =(GC)y ~X: (21)

Notice that the first row of the productGC is the diagonal ofC,
i.e., [c1; . . . ; cF ]. Now, the (!f ; �f ) can be readily recovered from
G and/orH, for example, the second and(L2 + 1)th rows ofH
are [ej� ; . . . ; ej� ] and [ej! ; . . . ; ej! ], respectively. Note that no
pairing issue exists, i.e.,(!f ; �f ; cf) are paired up automatically.

Hence, we have shown that the parameter triples(!f ; �f ; cf), f =
1; . . . ; F can be uniquely recovered a.s., provided there exist positive
integersK1, K2, L1, L2 such that

K1L1 � F; K2L2 � F (22)

subject to (11). If the integers are chosen such that

if K is odd; pickK1 = K2 = K+1

2

if K is even; pickK1 = K

2
, K2 = K+2

2

(23)

and similarly forL1 andL2, then (11) is satisfied. Once we pick four in-
tegers following the rules in (23), (7) assures that inequality (22) holds
for those particular integers. This completes the proof.

2Similar to the well-known “forward-backward averaging” trick used in the
context of 1-D harmonic retrieval (see, e.g., [7, pp. 165–167]). In the context of
multidimensional harmonic retrieval, this trick has been used by Harrdt [4] in a
similar fashion.
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Limitations on SNR Estimator Accuracy

Christopher J. Zarowski

Abstract—We consider the samples of a pure tone in additive white
Gaussian noise (AWGN) for which we wish to determine the signal-to-noise
ratio (SNR) defined here to be = ( 2 ), where is the tone
amplitude, and is the noise variance. and are assumed to
be deterministic but unknown a priori. If the variance of an unbiased
estimator of is , we show that at high SNR, the normalized standard
deviation satisfies the Cramér-Rao lower bound (CRLB) according to

2 , where is the number of independent observables
used to obtain the SNR estimatê .

Index Terms—Cramér-Rao bound (CRB), sinusoid signal-to-noise ratio
(SNR) estimator.

I. INTRODUCTION

The need to estimate the parameters of a pure tone in additive white
Gaussian noise (AWGN) arises in many places. The present work is
motivated by the problem of estimating the velocity of a fluid by pro-
cessing laser velocimetry data (LVD) [1]. In this instance, we assume
the instantaneous frequency of the data (which gives fluid velocity in-
formation) is constant overN samples. In this case, we might consider
applying the frequency estimators in, for example, either [2], [3, Sec.
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