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PARCUBE: Sparse Parallelizable CANDECOMP-PARAFAC
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How can we efficiently decompose a tensor into sparse factors, when the data do not fit in memory? Tensor
decompositions have gained a steadily increasing popularity in data-mining applications; however, the cur-
rent state-of-art decomposition algorithms operate on main memory and do not scale to truly large datasets.
In this work, we propose PARCUBE, a new and highly parallelizable method for speeding up tensor decom-
positions that is well suited to produce sparse approximations. Experiments with even moderately large
data indicate over 90% sparser outputs and 14 times faster execution, with approximation error close to
the current state of the art irrespective of computation and memory requirements. We provide theoretical
guarantees for the algorithm’s correctness and we experimentally validate our claims through extensive
experiments, including four different real world datasets (ENRON, LBNL, FACEBOOK and NELL), demonstrating
its effectiveness for data-mining practitioners. In particular, we are the first to analyze the very large NELL

dataset using a sparse tensor decomposition, demonstrating that PARCUBE enables us to handle effectively
and efficiently very large datasets. Finally, we make our highly scalable parallel implementation publicly
available, enabling reproducibility of our work.
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1. INTRODUCTION

Tensors and tensor decompositions have recently attracted considerable attention in
the data-mining community. With the constantly increasing volume of today’s multidi-
mensional datasets, tensors are often the ‘native’ format in which data are stored, and
tensor decompositions the natural modeling toolset – albeit still suffering from major
scalability issues. The state-of-the-art toolboxes for tensors [Bader and Kolda 2007a;
Andersson and Bro 2000] still operate on main memory and cannot possibly handle
disk-resident tensor datasets, in the orders of millions or billions of nonzeros.
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3:2 E. E. Papalexakis et al.

Motivated by the success of random sampling-based matrix algorithms such as
[Drineas et al. 2006], it is natural to ask whether we can we use similar tools in
the case of tensors. Is it possible to randomly under-sample a tensor multiple times,
process the different samples in parallel and cleverly combine the results at the end to
obtain high approximation accuracy at low complexity and main memory costs? There
exists important work on how to use sampling in order to achieve a sparse matrix de-
composition, the CUR decomposition [Drineas et al. 2006]; this method has also been
extended in order to handle tensors [Mahoney et al. 2006]. However, both these meth-
ods are tied to a specific decomposition, while we desire to disconnect sampling from
the specific decomposition that follows.

This article introduces PARCUBE, a fast and parallelizable method for speeding up
tensor decompositions by leveraging random sampling techniques. A nice side-benefit of
our algorithm is its natural tendency to produce sparse outer-product approximations,
that is, the model-synthesized approximation of the given tensor data is naturally
very sparse, which is a desirable property in many applications. For instance, PARCUBE

produces over 90% sparser results than regular PARAFAC, while maintaining the same
approximation error.

Our core contribution is in terms of the merging algorithm that collects the different
‘punctured’ decompositions and combines them into one overall decomposition in an
efficient way. We provide theoretical guarantees for the correctness of our approach.

Furthermore, we apply PARCUBE on four different, real datasets, reporting our discov-
eries and demonstrating the remarkable flexibility and versatility of Tensor Analysis
as a data-mining tool.

An earlier version of the present work has appeared in the proceedings of ECML-
PKDD 2012 [Papalexakis et al. 2012]. In this extended version, in addition to the con-
tributions of Papalexakis et al. [2012], we provide a thorough experimental analysis of
the algorithm, investigating scalability of PARCUBE in a variety of scenarios; addition-
ally, we complement our description of PARCUBE with an intuitive explanation behind
the main idea, and finally, we provide a very efficient parallel implementation which we
make publicly available at http://www.cs.cmu.edu/∼epapalex/src/parCube.zip, enabling
reproducibility of PARCUBE.

The rest of this article is structured as follows. Section 2 provides some useful back-
ground; Section 3 describes the proposed method, and Section 4 contains experiments.
We review related work in Section 5, and conclusions are drawn in Section 6.

2. TENSOR DECOMPOSITIONS

Notation Preliminaries
A scalar is denoted by a lowercase, italic letter, for example, x. A column vector

is denoted by a lowercase, boldface letter, for example, x. A matrix is denoted by an
uppercase, boldface letter, for example, X. A three-way tensor is denoted by X. Let I
be a set of indices, for example, I = {1, 4, 7}; then, a(I) denotes {a(1), a(4), a(7)}; a(:)
spans all the elements of a. This notation naturally extends to matrices and tensors,
that is, A(I, :) comprises all columns of A restricted to rows in I. By NNZ( ), we denote
the number of nonzeros. Table I shows the symbols used, in compact form.

Tensors. A tensor of n modes (or n-way/n-mode tensor) is a structure indexed by
n variables. For example, a matrix is a two-way tensor. In this work, we focus on
three-way tensors, because they are most common; however, all results can be readily
extended to higher-way tensors. A three-way tensor X is a structure that resembles a
data cube. A detailed survey for tensors and tensor decompositions may be found in
Kolda and Bader [2009].
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Table I. Table of Symbols

Symbol Definition
X three-way tensor
A matrix
x column vector
a scalar
I index
NNZ( ) number of nonzeros

Fig. 1. The F-component PARAFAC decomposition of X.

2.1. The PARAFAC Decomposition

The PARAFAC decomposition [Harshman 1970] of X into F components is

X ≈
F∑

f =1

a f ◦ b f ◦ c f

where a ◦ b ◦ c(i, j, k) = a(i)b( j)c(k). A pictorial exaple of PARAFAC is shown in Figure 1.
Essentially, in order to obtain the PARAFAC decomposition, we need to solve the fol-

lowing optimization problem:

min
A,B,C

‖X −
F∑

f =1

a f ◦ b f ◦ c f ‖2
F (1)

The most popular algorithm for fitting the PARAFAC decomposition is the Alternating
Least Squares (ALS) [Bro 1997; Kolda and Bader 2009]. The computational complexity
of the ALS Algorithm for a I × J × K tensor and for F components is O(IJKF) per
iteration.

2.2. Tensor Compression and TUCKER3

Consider the I × J × K tensor X. Then, its {Q, R, P} TUCKER3 decomposition consists of
a P × Q× R core tensor, say, G and three assorted, unitary, matrices U, V, W with sizes
I × P, J × Q and K × R, respectively. The decomposition can be compactly written as

X ≈
P∑

p=1

Q∑

q=1

R∑

r=1

G(p, q, r)up ◦ vq ◦ wr

A pictorial representation of TUCKER3 is shown in Figure 2. TUCKER3 is very useful
for compression purposes: if we choose P � I, Q � J, and R � K, then we get a
core tensor G which is a compressed version of X. This approach is used in practice
[Bro et al. 1999] in order to speed up further operations in a tensor, since one is able
to roll-back from the compressed tensor to the original X using the factor matrices
U, V, W.
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Fig. 2. The TUCKER3 decomposition of X.

3. THE PARCUBE METHOD

In this section, we introduce PARCUBE, a new method for PARAFAC decomposition de-
signed with three main goals in mind: G1: relative simplicity, speed, and parallelizable
execution; G2: ability to yield sparse latent factors and a sparse tensor approximation,
and G3: provable correctness in merging partial results, under appropriate conditions.

3.1. Sampling for PARCUBE

The first step of PARCUBE is to sample a very high-dimensional tensor and use the
sampled tensor in lieu of the original one, bearing three important requirements in
mind: R1 the need to significantly reduce dimensionality; R2 the desire that sampling
should be decomposition-independent - we should be able to apply any decomposition
we desire after sampling, and be able to extrapolate from that; and R3: sampling should
maintain linear complexity on the number of nonzero entries.

The first thing that comes to mind in order to satisfy requirement R1 is to take a
uniform random sample of the indices of each mode, that is., take a uniform random
sample of the index sets {1 . . . I}, {1 . . . J}, and {1 . . . K}. However, this naive approach
may not adequately preserve the data distribution, since the random index samples
may correspond to entirely arbitrary rows/columns/fibers of the tensor. We performed
initial tests using this naive method, and the results were consistently worse than the
proposed method’s. We thus propose to do biased sampling: if we, somehow, determine
a measure of importance for each index of each mode, then we may sample the indices
using this measure as a sampling weight/probability. For the purposes of this work, let
us assume that our tensor X has nonnegative entries (which is the case in huge variety
of data-mining applications); if we were to deal with tensors containing real values, we
should consider the element-wise absolute value of the tensor for the notions that we
introduce in the sequel.

A reasonable measure of importance is the marginal sum of the tensor for each
mode1. Namely, the measure of importance for the indices of the first mode is defined
as: xa(i) = ∑J

j=1
∑K

k=1 X(i, j, k) for i = 1 . . . I.
Similarly, we define the following importance measures for modes 2 and 3:

xb( j) =
I∑

i=1

K∑

k=1

X(i, j, k), xc(k) =
I∑

i=1

J∑

j=1

X(i, j, k)

for j = 1 . . . J and k = 1 . . . K.

1Another reasonable alternative is the sum-of-squares of the elements of rows, columns and fibers, which is
a measure of energy. We leave this for future work.
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ALGORITHM 1: BIASEDSAMPLE

Input: Original tensor X of size I × J × K, sampling factor s.
Output: Sampled tensor Xs, index sets I,J ,N .
1: Compute

xa(i) =
J∑

j=1

K∑

k=1

X(i, j, k), xb( j) =
I∑

i=1

K∑

k=1

X(i, j, k), xc(k) =
I∑

i=1

J∑

j=1

X(i, j, k).

2: Compute set of indices I as random sample without replacement of {1 · · · I} of size I/s with

probability pI (i) = xa(i)/
I∑

i=1

xa(i). Likewise for J ,K.

3: Return Xs = X(I,J ,K).

Intuitively, if xa(i) is high for some i, then we would desire to select this specific index
i for our sample with higher probability than others (which may have lower xa value).
This is the very idea behind PARCUBE. We sample the indices of each mode of X without
replacement, using xa, xb and xc to bias the sampling probabilities.

We define s to be the sampling factor, that is, if X is of size I × J × K, then Xs derived
by PARCUBE will be of size I

s × J
s × K

s . We may also use different sampling factors for
each mode of the tensor, without loss of generality.

In order to obtain the sample we (1) compute set of indices I as random sample
without replacement of {1 . . . I} of size I/s with probability pI (i) = xa(i)/

∑I
i=1 xa(i).

2) Compute set of indices J as random sample without replacement of {1 . . . J} of
size J/s with probability pJ ( j) = xb( j)/

∑J
j=1 xb( j). 3) Compute set of indices K as

random sample without replacement of {1 . . . K} of size K/s with probability pK(k) =
xc(k)/

∑K
k=1 xc(k).

The PARCUBE method defines a means of sampling the tensor across all three modes,
without relying on a specific decomposition or a model. Therefore, it satisfies require-
ment R3. Algorithm 1 provides an outline of the sampling for PARCUBE.

LEMMA 3.1. The computational complexity of Algorithm 1 is linear in the number of
nonzero elements of X.

PROOF. Suppose we have a representation of X in quadruplets of the form (i, j, k, v)
where X(i, j, k) = v, for v �= 0 and v ∈ NNZ(X). For each of these quadruplets, we may
compute the density vectors as

xa(i) = xa(i) + v, xb( j) = xb( j) + v, xc(k) = xc(k) + v

This procedure requires 3 O(1) additions per element v; therefore, the total running
time is O(NNZ(X)).

By making use of the preceding lemma and noticing that sampling of the elements,
after having computed that the densities of each mode is a linear operation on the
number of nonzeros, we conclude that requirement R3 is met, that is, our computation
of the biases and biased sampling is linear on the number of nonzeros. Furthermore,
sampling pertains to Goal G1 which calls for a fast algorithm.

3.2. Nonnegative PARAFAC Decomposition using PARCUBE

Now, let us demonstrate how to apply PARCUBE in order to scale up the popular PARAFAC

decomposition, with nonnegativity constraints. We choose to operate under the non-
negativity regime since the vast majority of applications of interest naturally impose
this type of constraint.
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Algorithm 2 demonstrates the most basic approach in which one extracts a sample
from the original tensor, runs the PARAFAC decomposition on that (significantly) smaller
tensor and then redistributes the factor vectors to their original positions, according to
the sampled indices I,J ,K. An example of this Algorithm is shown in Figure 4. Note
that many of the coefficients of the resulting PARAFAC factor matrices will be exactly zero,
since their corresponding indices will not be included in the sample and consequently,
they will not receive an updated value. This implies that a natural by-product of our
approach is sparsity on the factors by construction, thereby satisfying Goal G2.

ALGORITHM 2: Basic PARCUBE for Nonnegative PARAFAC

Input: Tensor X of size I × J × K, number of components F, sampling factor s.
Output: Factor matrices A, B, C of size I × F, J × F, K × F respectively.
1: Run BIASEDSAMPLE (X, s) (Algorithm 1) and obtain Xs and I,J ,K.
2: Run NonNegative PARAFAC (Xs, F) and obtain As, Bs, Cs of size I/s × F, J/s × F and K/s × F.
3: A(I, :) = As, B(J , :) = Bs, C(K, :) = Cs

ALGORITHM 3: PARCUBE for Nonnegative PARAFAC with repetition
Input: Tensor X of size I × J × K, number of components F, sampling factor s, number of

repetitions r.
Output: PARAFAC factor matrices A, B, C of size I × F, J × F, K × F respectively and vector λ

of size F × 1 which contains the scale of each component.
1: Initialize A, B, C to all-zeros.
2: Randomly, using mode densities as bias, select a set of 100p% (p ∈ [0, 1]) indices Ip,Jp,Kp

to be common across all repetitions.
3: for i = 1 · · · r do
4: Run Algorithm 2 with sampling factor s, using Ip,Jp,Kp as a common reference among

all r different samples and obtain Ai, Bi, Ci. The sampling is made on the set difference of
the set of all indices and the set of common indices.

5: Calculate the �2 norm of the columns of the common part: na( f ) = ‖Ai(Ip, f )‖2,
nb( f ) = ‖Bi(Jp, f )‖2, nc( f ) = ‖Ci(Kp, f )‖2 for f = 1 · · · F. Normalize columns of Ai, Bi, Ci
using na, nb, nc and set λi( f ) = na( f )nb( f )nc( f ). Note that the common part will now be
normalized to unit norm.

6: end for
7: A =FACTORMERGE (Ai)
8: B =FACTORMERGE (Bi),C =FACTORMERGE (Ci) without computing the ordering from scratch.

Use the ordering obtained for the Ai .
9: Apply the same ordering to λi .
10: λ = average of λi .

However, Algorithm 2 relies on a sole sample of the tensor and it might be the case
that some significant portions of the data, depending on the sampling factor and the
data distribution, may be left out. To that end, we introduce Algorithm 3 which is our
main contribution. Algorithm 3 generates many samples and correctly combines them,
in order to achieve better extraction of the true latent factors of the data tensor.

The key idea behind Algorithm 3 is the method by which all the different samples are
combined in order to output the decomposition matrices; more specifically, intuitively
we enforce all the different samples to have a common set of indices Ip,Jp,Kp, where
p ∈ [0, 1] is a fraction of the sampled indices per mode. For example, for a mode of size
I and sampling factor s, the common set of indices will be of size Ip which is equal to
pI/s. This p fraction of indices is selected to be the indices with the highest density,
as indicated by the weights that we compute. After we select these common indices,
the rest of the sampling is being conducted on the remaining indices. Having this
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common basis, we are able to combine the samples using Algorithm 4. In Section 3.3,
we elaborate the proposed merging scheme and provide an illustrative example.

Note that the generation of the r distinct samples of X, as well as the PARAFAC

decomposition of each of them may be carried out in parallel, thus satisfying Goal
G1. Regarding Goal G3, note that correctness of the merge operation requires certain
conditions; it cannot be guaranteed when the individual random samples do not satisfy
PARAFAC identifiability conditions or when the common piece that is used as a reference
for merging is too small (p is too low). Proposition 3.2 provides a first correctness result
for our merging algorithm.

3.3. Merging Explained

Suppose we want to merge the partial factor matrices Ai i = 1 . . . r into the full-sized
factor matrix A. The ordering of the PARAFAC components is arbitrary, since the PARAFAC

decomposition is unique up to scaling and component permutations. Since any ordering
is good, we have to, arbitrarily, agree on an ordering for the components/columns of A.
A problem that arises when we are about to merge the partial factors Ai into A is the
fact that each Ai has its own arbitrary ordering of columns which, sometimes, is not
consistent for all i. We, thus, have to first agree on a single ordering, and then permute
the columns of all Ai such that they obey that ordering.

Key to identifying the correct correspondence of columns between different Ai is the
common set of sampled indices Ip,Jp,Kp. By fixing these indices, we force the rows of
matrices Ai that correspond to indices Ip to be approximately the same, and accordingly
for the rows of Bi and Jp, as well as Ci and Kp. We will elaborate more in Section 3.4
about the conditions that need to be met, in order for the rows that correspond to
the same subset of indices to be approximately equal, but we may assume that this
is the case, for the purposes of explaining the merging algorithm (Algorithm 4). It is
important to note here that we normalize every column of Ai in such a way that the
‖A(Ip, j)‖F = 1 for j = 1 . . . F (we do the same for Bi and Ci).

The basic idea of Algorithm 4 is the following: we arbitrarily choose the columns of
A1 as the reference ordering. After doing that we update the columns of A (the final
matrix), which originally contains all zero values, using the values of Ai. The way we
update is described in Algorithm 2. In the next iteration of Algorithm 4, we first need to
permute the columns of A2 so that they match the (arbitrary) ordering of the columns of
A1 that we decided on. In order to do that we take the inner products of combinations of
the common parts of the columns of A1 and A2. Because of the way we have normalized,
the parts of the matrices that correspond to the common set of indices will have unit
norm; thus, for the matching pair, the inner product will be approximately equal to 1,
whereas for the rest of the pairs it will be close to 0. We prove this claim in Section 3.4.
After we establish the correct ordering, we update only the nonzero coefficients of A
using A2. We choose to update only the nonzero values, since averaging values that
happen to correspond to different samples were not retaining the correct scaling of the
factors.

After we establish the correct correspondence for the columns of Ai, we can apply the
same permutation to the columns of Bi and Ci, instead of computing the correspondence
separately. In addition to the factor matrices, we have to also reorder the λi vector at
every merging step.

An illustrative example of our merging scheme, for two partial factor matrices, is
shown in Figure 3. Here, we describe the merging procedure. Say that the small ma-
trices shown on the leftmost part of the figure are the Ai i = 1 . . . r matrices (where
r = 2 in the example). Each color corresponds to a distinct latent component; different
shades of the same color denote the fact that two vectors belong to the same rank-one
component of the nonsampled tensor; however, they correspond to a different set of
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Fig. 3. Example of merging two partial factor matrices to the final matrix, while accounting for potential
column permutations. (Best viewed in color)

sampled indices. Notice that there are component permutations across matrices which
need to be resolved in order to merge correctly. Without loss of generality, assume that
the upper part of each component is the common part, defined by the shared sample of
indices. The common part is denoted by a dark shade of the color of each component, in
Figure 3. Then, Algorithm 4 will do the following steps: starting from A1, it will redis-
tribute the values of the factors to the original index space. The ordering of components
imposed by A1 (shown in different colors in Figure 3) is the order that Algorithm 4 will
impose to the rest of the partial results. In Figure 3, the second partial factor matrix
A2 has a different ordering of the last two components; therefore, the algorithm will
use the common part in order to identify this discrepancy and reorder the columns of
A2 before merging its values to the final result. The algorithm proceeds this way, until
all partial matrix columns have been reordered to match the ordering of A1.

A fairly subtle issue that arises is how to overcome scaling disparities between factors
coming from two different samples. Key here, as described in line 5 of Algorithm 3, is
to counterscale the two merge candidates, using only the norms of the common parts
indexed by Ip,Jp,Kp; by doing so, the common parts will be scaled to unit norm, and
the rest of the vectors will also refer to the correct, same scaling, thereby effectively
resolving scaling correspondence.

Finally, we must note that our merging scheme is very similar to the very well-known
Hungarian Algorithm [Kuhn 1955], used to efficiently solve combinatorial assignment
problems.

ALGORITHM 4: FACTORMERGE

Input: Factor matrices Ai of size I × F each, where i = 1 · · · r, and r is the number of
repetitions, Ip: set of common indices.

Output: Factor matrix A of size I × F.
1: Set A = A1
2: for i = 2 · · · r do
3: for f1 = 1 · · · F do
4: for f2 = 1 · · · F do
5: Compute similarity v( f2) = (A(Ip, f2))T (Ai(Ip, f1)))
6: end for
7: c = arg maxc′ v(c′)
8: Update only the zero entries of A(:, c) using vector Ai(:, f1).
9: end for
10: end for
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Fig. 4. Example of rank-1 PARAFAC using PARCUBE (Algorithm 3). The procedure described is as follows:
create r independent samples of X, using Algorithm 1. Run the PARAFAC- ALS algorithm for K = 1 and obtain
r triplets of vectors, corresponding to the first component of X. As a final step, combine those r triplets, by
distributing their values to the original sized triplets, as indicated in Algorithm 3.

3.4. Correctness

In the following lines, we prove that when we have multiple repetitions, the FACTOR-
MERGE Algorithm is going to find the right correspondence between the components of
the intermediate results, and thus, improve the approximation of the original data.

PROPOSITION 3.2. Let (A, B, C) be the PARAFAC decomposition of X and assume that
A(Ip, :) (A restricted to the common I-mode reference rows) is such that any two of
its columns are linearly independent, and likewise for B(Jp, :) and C(Kp, :). Note that
if A(Ip, :) has as few as 2 rows (|Ip| ≥ 2) and is drawn from a jointly continuous
distribution, this requirement on A(Ip, :) is satisfied with probability 1. Further assume
that each of the subsampled models is identifiable, and the true underlying rank-one
(punctured) factors are recovered, up to permutation and scaling, from each subsampled
dataset. Then Algorithm 4 is able to merge the factors coming from the different samples
of the tensor correctly, that is, is able to find the correct correspondence between the
columns of the factor matrices Ai, Bi, Ci .

PROOF. Considering the common part of the A-mode loadings recovered from the
different subsampled versions of X: under the foregoing assumptions, the Ai(Ip, :)
will be permuted and column-scaled versions of A(Ip, :). After scaling the common
part of each column to unit norm, Algorithm 4 seeks to match the permutations by
maximizing correlation between pairs of columns drawn from Ai(Ip, :) and A j(Ip, :).
From the Cauchy–Schwartz inequality, correlation between any two unit-norm columns
is ≤1, and equality is achieved only when the correct columns are matched, because any
two distinct columns of the underlying A(Ip, :) are linearly independent. Furthermore,
by normalizing the scales of the matched columns to equalize the norm of the common
reference part, the insertions that follow include the correct scaling too. This shows
that Algorithm 4 works correctly in this case.

The preceding proposition serves as a sanity check for correctness. In reality, there
will be noise and other imperfections that come into play, implying that the punctured
factor estimates will at best be approximate. This implies that a larger common sample
size (|Ip| ≥ 2, |Jp| ≥ 2, |Kp| ≥ 2) will generally help Algorithm 4 to correctly merge the
pieces coming from the different samples. We have carried out extensive experiments
verifying that Algorithm 4 works well in practice, under common imperfections. A
reasonable value for p is about 10–20% of the sampled indices, depending on the
application at hand. Those experiments also suggest that increasing the number of
samples, r, reduces the PARAFAC approximation error.

A good rule of thumb on selecting the number of repetitions r is to set it equal to
double the sampling factor, since this will, empirically, allow for PARCUBE to explore
most of the variation in the data. The exact values for s, r depend on the sparsity of
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the original tensor; if the tensor is highly sparse, then only a few, small samples may
suffice. In Sidiropoulos et al. [2014a, 2014b] we propose a formal extension of PARCUBE,
where we are able to prove identifiability of the decomposition, as well as give precise
guidelines on the size of the sample and the number of repetitions.

3.5. Parallel Algorithm

A great advantage of the proposed PARCUBE method is the fact that on its first phase,
it produces r independent tensors which are significantly smaller in size. Each one of
those r tensors, can be consequently decomposed independently from the rest, and as a
result, all r tensors can be decomposed in parallel (assuming that we have a machine
with r cores). In other words, in our parallel implementation of PARCUBE, lines 3–6 of
Algorithm 3 are executed entirely in parallel. In the case that a machine has less than
r cores/workers (say w), and then w decompositions are carried out in parallel at any
given point in time, until the number of repetitions is met.

3.6. On Sparsity

As we outline in Introduction as well as in the requirements for the algorithm, PARCUBE

produces factors which are sparse. In fact, at any given point in time throughout the
lifetime of the algorithm, PARCUBE operates on a subsampled portion of the data, and
therefore, operates on sparse data. This is not generally true for tensor decomposition
methods: for instance, the ALS algorithm for PARAFAC, which iteratively computes
estimates of the factor matrices, operates on dense data, even if the original data and
the true latent factors are sparse, since least-squares estimates tend to be dense.

Typically, sparsity in the factors is obtained through regularization using the �1
norm (e.g., Papalexakis et al. [2013]), as a convex relaxation of the �0 norm. Contrary
to this line of work, PARCUBE achieves sparsity in a more direct way, by ignoring a
portion of the parameters altogether: if an index is not sampled by PARCUBE, then the
corresponding value of any factor for that index will be zero.

The nature of PARCUBE’s sparsity is approximate, and it comes as a side benefit of
the sampling that PARCUBE uses. We must note that if the number of sampled tensors
is rather small, in the sense that they capture only a small part of the variation of the
data, then there will be parameters in the factors that will be left zero, even though the
optimal solution to the problem (minimizing the �0 norm of the factors) would possibly
yield a nonzero value for them. However, if we increase the number of independent
sampled tensors that we decompose (i.e., parameter r), as we empirically demonstrate
in Section 4.2, PARCUBE’s solution will converge to the solution that directly optimizes
for sparsity.

3.7. Extension to Other Models

Even though the focus of the present article is the PARAFAC decomposition, the same
methodology can be applied in order to accelerate and parallelize other tensor decom-
position models. For instance, in Papalexakis et al. [2014], we illustrate how the same
principles can help accelerate the Coupled Matrix-Tensor Factorization (CMTF). The
CMTF model is very similar to the PARAFAC model, and thus, our algorithms can
carry through without loosing the correctness guarantees.

On the other hand, extending PARCUBE to models such as TUCKER3 is not straight-
forward. In Section 3.4, we invoke the uniqueness of the PARAFAC factors in order
to show that the merging will be correct; however, TUCKER3 is highly nonunique, and
therefore, we cannot apply the same claim that PARCUBE will work correctly. This is not
to say, however, that the key concepts behind PARCUBE cannot be used for TUCKER3, but
simply that this needs to be done carefully, in light of the differences of TUCKER3 from
PARAFAC.

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 1, Article 3, Publication date: July 2015.
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Table II. Datasets Analyzed

Name Description Dimensions NNZ Sparsity ( NNZ
I JK )

ENRON [ENR 2014] (sender, recipient, month) 186 × 186 × 44 9838 0.0065
LBNL [Pang et al. 2005] (src, dst, port #) 65170 × 65170 × 65327 27269 10−10

FACEBOOK [Viswanath
et al. 2009]

(wall owner, poster, day) 63891 × 63890 × 1847 737778 10−7

NELL [RTW 2014] (noun-phrase,
noun-phrase, context)

14545 × 14545 × 28818 76879419 10−5

4. EXPERIMENTS AND DISCOVERIES

In this section, we provide experimental evaluation of our proposed method. First,
we evaluate the performance of PARCUBE, compared to the current state of the art for
handling sparse tensors in Matlab, that is, the Tensor Toolbox for Matlab [Bader and
Kolda 2007a]. Since our algorithm, by construction, tends to output sparse factors, we
also evaluate the validity of that claim by comparing the degree of sparsity of the output
to the one given by the Tensor Toolbox and the one given by PARAFAC SLF [Papalexakis
and Sidiropoulos 2011], which is the state of the art for PARAFAC decompositions with
sparsity on the latent factors. The results of Section 4.1 were measured on a 2.7 GHz
Intel Core i5 with 4GB of RAM.

Additionally, we evaluate how PARCUBE scales as the input and the parameter size
grows, the benefits of executing PARCUBE in parallel, as well as how PARCUBE compares
against TUCKER3 compression accelerated PARAFAC decomposition. The aforemen-
tioned experiments correspond to Sections 4.3–4.6 and were carried out on a machine
with 4 Intel Xeon E74850 2.00GHz, and 512Gb of RAM.

Finally, in Section 4.7 we apply our approach in order to analyze real datasets pre-
sented in Table II.

We implemented PARCUBE in Matlab and Java, and we make it publicly available2.
We furthermore use the Tensor Toolbox for Matlab [Bader and Kolda 2007a] as our
core PARAFAC decomposition implementation.

4.1. Performance and Speedup Evaluation

In the following lines, we evaluate the performance of PARAFAC using PARCUBE

(Algorithm 2). As a performance metric, we use the relative cost of the PARAFAC model,
that is, the cost of the model using our sampling approach, divided by the cost of fit-
ting a PARAFAC model using the original tensor. As a reminder, we refer the reader
to Equation (1) for the approximation cost of PARAFAC. In Figure 5, we measure the
relative cost as a function of the speedup incurred by using our PARCUBE, for different
values of the sampling factor; this experiment was carried out on 100 × 100 × 100 ran-
domly generated, synthetic tensors, as we required full control over the true number
of components and the degree of sparsity for each component. We did 50 iterations of
the experiment, and we report the means. We observe that even for a relatively high
sampling factor, the relative cost is very good, and can be further improved using more
parallel repetitions which will not harm the speedup achieved.

In Figure 6, we show the relative cost using the ENRON dataset, for various numbers of
repetitions (i.e., distinct samples). We see, in this case, that as the number of repetitions
increases, the approximation improves, as expected, from our theoretical result. In
both cases of Figure 6, the approximation error improves as the number of repetitions
r increases, as expected from our theoretical analysis of Section 3.4.

2Download PARCUBE at www.cs.cmu.edu/∼epapalex/src/parCube.zip.
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Fig. 5. PARCUBE is faster than ALS-PARAFAC: Speedup versus Relative cost (PARCUBE/ ALS-PARAFAC) for 1
repetition, for varying sampling factor and different degrees of sparsity. We observe that even for a relatively
high sampling factor, we get relatively good relative cost, which may be further improved using repetition.
Key here is that by using repetition, because this procedure may be carried out in parallel, we may improve
the accuracy and maintain similar speedup.
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Fig. 6. PARCUBE reduces the PARAFAC approximation cost. (a) Approximation cost versus the number of
repetitions for varying s, where r = 2s. (b) Approximation cost versus number of repetitions for varying F
and fixed s = 5. In both cases, the approximation improves as r increases, as expected.

4.2. Factor Sparsity Assessment

In Figure 7, we measure the relative output size (i.e., the relative degree of sparsity)
between PARCUBE and Tensor Toolbox nonnegative PARAFAC. As before, we carried out 50
iterations of the experiment and report mean values. The output size is simply defined
as NNZ(A) + NNZ(B) + NNZ(C), which clearly reflects the degree of sparsity in the
decomposition factors. We observe that PARCUBE yields 90% sparser results than plain
PARAFAC, while maintaining the same approximation error. This empirically shows that
sparsity introduced by sampling in PARCUBE, albeit unconventional, produces mean-
ingful representations of the data.

In Figure 8, we measure the relative output size between PARCUBE and PARAFAC SLF,
as a function of the sampling factor s, for different values of the sparsifying parameter
λ used by PARAFAC SLF [Papalexakis and Sidiropoulos 2011; Papalexakis et al. 2013]3.
This further provides evidence on the validity of the sparsity introduced by PARCUBE.

4.3. Parallelizability

As we discuss earlier, PARCUBE is inherently a parallel algorithm. Here we investigate
the speedup gained through parallelism, as a function of the data size (measured in
number of nonzeros) and the number of cores/parallel workers. We set the number of
repetitions r to be equal to the number of parallel workers.

Figure 9 shows our results: Figure 9(a) contains the speedup for different number
of parallel workers, as the number of nonzeros increases. We observe that when as
the number of nonzeros increases, the speedup due to parallelizability becomes more

3Code is available at http://www.cs.cmu.edu/∼epapalex/src/PARAFAC_SLF.zip.
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Fig. 7. PARCUBE outputs sparse factors: relative output size (PARCUBE/ ALS-PARAFAC) versus relative cost.
We see that the results of PARCUBE are more than 90% sparser than the ones from Tensor Toolbox, while
maintaining the same approximation error.
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F

Fig. 8. PARCUBE outputs sparse factors: relative output size (PARCUBE/ PARAFAC SLF) versus sampling factor
s (in which no. of repetitions is r = 2s.

pronounced; intuitively, this result makes sense, since the more dense the original
data are, the more dense the samples will be, and therefore, the longer it takes for the
PARAFAC decomposition to be computed for each sample. For this particular test case,
we observe a monotonic increase of the speedup as the number of nonzeros increases.

Figure 9(b) shows the speedup as a function of the parallel workers for a fixed number
of nonzeros (the largest one we used for this particular experiment). Here we observe
near linear speedup, indicating that the overhead induced by the serial part of the
parallel version of PARCUBE is not a bottleneck, and therefore the parallel version of
PARCUBE scales very well, especially for large input data.

4.4. Scalability in Terms of Data and Parameter Size

In addition to measuring PARCUBE’s performance with respect to speeding up a state-
of-the-art solver for PARAFAC, we also measure PARCUBE’s ability to scale in three axes:

(1) Input data size (measured in number of nonzeros): in Figure 10, we see how
PARCUBE scales as the number of nonzeros grows. We have r = 4 repetitions, and
equal number of cores, I = J = K = 107, and the sampling factor is 104, essentially
resulting in the parallel decomposition of 4 103 ×103 ×103 tensors. We can see that
PARCUBE scales near-linearly with the number of nonzeros.

(2) Input dimensionality (measured in the mode sizes of the tensor): in Figure 11,
we test how can PARCUBE scale as the dimensions of the tensor grow. In order to
keep other things constant, we keep the number of nonzeros equal to 106; as I =
J = K grow, this results in increasingly sparser tensors, which from a data analysis
point of view might not offer useful information. However, from the viewpoint of
testing PARCUBE’s scalability, this experiment provides an insight on how PARCUBE

behaves on very high-dimensional tensors. Indeed, PARCUBE scales near-linearly as
the dimensionality of the tensor grows.

(3) Decomposition rank: Figure 12 demonstrates how PARCUBE scales as the rank
of the decomposition increases. In scenarios in which the tensor dimensions are in
the orders of 107 (as in Figure 12) it is reasonable to seek a decomposition of rank
larger than, say, 10 or 20. As the figure shows, PARCUBE is able to handle the growth
of the rank without experiencing a significant increase in the execution time, thus
being scalable in the decomposition rank.

We ran the preceding experiments five independent times, and as the errorbars
indicate, the variability of the results is minimal; thus PARCUBE is consistent in terms
of scalability.

4.5. Accuracy as a Function of Tensor Density

Here, we experimentally demonstrate that PARCUBE’s performance is consistent for
tensors of varying density. In particular, we created a series of randomly generated
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Fig. 9. Serial versus Parallel PARCUBE

102 × 102 × 102 tensors, with varying number of nonzeros, ranging from fully dense
(i.e., 106 nonzeros) to 0.99% sparse (104 nonzeros). In order to estimate the stability
of our results, we ran 50 independent iterations of this experiment, for all different
tensors. In Figure 13, we present the results of this experiment (where F = 3, the
sampling factor is s = 2 and the number of repetitions were r = 10). We observe that
the relative cost remains very close to 1 for all different densities that we examined,
and the results seem to be very consistent, as indicated by the small error-bars around
each point of the figure. Therefore, PARCUBE is able to perform well in a wide range of

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 1, Article 3, Publication date: July 2015.
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Fig. 10. Scalability with respect to the number of nonzeros.

Fig. 11. Scalability with respect to the tensor dimensions I = J = K.

scenarios, from fully dense tensors, to very sparse ones, as well as for tensors within
that spectrum.

4.6. Comparison against TUCKER3 Compression

As we highlighted in Section 2.2, an alternative approach of reducing the size of the
tensor into a smaller, compressed version is via the TUCKER3 decomposition. We com-
pare against the method introduced in Bro et al. [1999], in which the tensor is first
compressed using TUCKER3, PARAFAC is fitted in the compressed data and the factor ma-
trices of the TUCKER3 model are used to decompress the results. In order to compute the
TUCKER3 decomposition, we use the highly optimized memory efficient tucker (MET)
algorithm [Kolda and Sun 2008], included in the Tensor Toolbox for Matlab.
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Fig. 12. Scalability with respect to the decomposition rank.

Fig. 13. Relative errors as a function of the density of the tensor, for F = 3, sampling factor s = 2 and r = 10
repetitions. The density d is defined as NNZ(X) = dI JK.

In order to ensure a fair comparison, we chose the parameters of both algorithms so
that we have the same size for the reduced-size tensor(s). More specifically, we choose
s = 100 for PARCUBE, and P = Q = R = 100 for TUCKER3, while the original tensor is of
dimensions 104 × 104 × 104.

Figure 14 clearly shows that PARCUBE is orders of magnitude faster than TUCKER3
compression. The reason why this behavior is observed is because computing the
TUCKER3 decomposition on the full data entails a similar alternating least squares
algorithm such as the one used for PARAFAC; therefore, it suffers from similar issues,
becoming the bottleneck, even when using a highly optimized algorithm such as MET.
On the other hand, the sampling step of PARCUBE is, in practice, much faster than com-
puting the TUCKER3 decomposition on the full data, and thus PARCUBE ends up being
significantly faster.
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Fig. 14. Parallel PARCUBE against TUCKER3 compression accelerated PARAFAC. PARCUBE is orders of magnitude
faster.

Fig. 15. Temporal evolution of four groups in the ENRON dataset. We have labelled the groups, according
to the position of the participants in the company. The labels of the extracted groups are consistent with
other works in the literature albeit they have been extracted with somewhat different order. We have also
discovered two Legal groups that behave slightly differently over time, a fact probably stemming from the
different people involved in each group.

4.7. PARCUBE at Work

In this section, we present interesting patterns and anomalies that we were able to
discover in the datasets of Table II, demonstrating that our proposed algorithm PARCUBE

is both practical and effective for data-mining practitioners. So far, we don’t have an
automated method for the selection of parameters s, r, and p, but we leave this for
future work; the choice is now made empirically.

4.7.1. ENRON. This very well-known dataset contains records for 44 months (between
1998 and 2002) of the number of emails exchanged between the 186 employees of the
company, forming a 186 × 186 × 44 of 9838 nonzero entries. We executed Algorithm 3
using s = 2 and r = 4 and we applied similar analysis to the resulting factors as the one
applied in Bader et al. [2006] and Papalexakis and Sidiropoulos [2011]. In Figure 15,
we illustrate the temporal evolution of the four most prevailing groups in our analysis
for every month, having annotated the figure with important events, corresponding
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Fig. 16. Anomaly on the LBNL data: we have one source address (addr. 29571), contacting one destination
address (addr. 30483) using a wide range of near-consecutive ports, possibly indicating a port scanning
attack.

to peaks in the communication activity. Labelling of the groups was done manually;
because the factors were not very sparse, we filtered out very low values on each factor.
This issue most certainly stems from the fact that this dataset is not particularly large
and therefore by applying the regular ALS-PARAFAC algorithm to the samples (which is
known to yield dense factors), we end up with dense sample factors, which eventually,
due to repetition, tend to cover most of the data points. This, however, was not the case
for larger datasets analyzed in the following lines, for which the factors turned out to
be extremely sparse.

4.7.2. LBNL Network Traffic. This dataset consists of (source, destination, port #) triplets,
in which each value of the corresponding tensor is the number of packets sent. The
snapshot of the dataset we used formed a 65170 × 65170 × 65327 tensor of 27269
nonzeros. We ran Algorithm 3 using s = 5 and r = 10 and we were able to identify
what appears to be a port-scanning attack: the component shown in Figure 16 con-
tains only one source address (addr. 29571), contacting one destination address (addr.
30483) using a wide range of near-consecutive ports (while sending the same amount
of packets to each port), a behavior which should certainly raise a flag to the network
administrator, indicating a possible port-scanning attack.

4.7.3. FACEBOOK Wall Posts. This dataset4 first appeared in Viswanath et al. [2009]; the
specific part of the dataset we used consists of triplets of the form (Wall owner, Poster,
day), in which the Poster created a post on the Wall owner’s Wall on the specified
timestamp. By choosing daily granularity, we formed a 63891 × 63890 × 1847 tensor,
comprised of 737778 nonzero entries; subsequently, we ran Algorithm 3 using s = 100
and r = 10. In Figure 17, we present our most surprising findings: on the left subfigure,
we demonstrate what appears to be the Wall owner’s birthday, since many posters
posted on a single day on this person’s Wall; this event may be well characterized as an
“anomaly”. On the right subfigure, we demonstrate what “normal” FACEBOOK activity
looks like.

4.7.4. NELL. This dataset consists of triplets of the form (noun-phrase, noun-phrase,
and context), which form a tensor with assorted modes of size 14545 × 14545 × 28818
and 76879419 nonzeros and as values the number of occurrences of each triplet. The

4Download FACEBOOK at http://socialnetworks.mpi-sws.org/data-wosn2009.html.
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Fig. 17. Results for FACEBOOK using s = 100, r = 10, F = 15. Subfigure (a): FACEBOOK “anomaly”: One Wall,
many posters and only one day. This possibly indicates the birthday of the Wall owner. Subfigure (b): FACEBOOK

“normal” activity: many users post on many users’ Walls, having a continuous daily activity

context phrase may be just a verb or a whole sentence. The PARAFAC decomposition is
able to give us latent concepts of noun-phrases that are contextually similar. We used
PARCUBE to compute an F = 50 component PARAFAC decomposition of this dataset. The
sampling factor was set to s = 50 and the number of repetitions r = 20, and we used
12 workers. Since this dataset is significantly larger than the other three we analyzed,
it is worth mentioning that the total running time was 86min. The factors produced
were very sparse, with their relative sparsity being:

NNZ(A) + NNZ(B) + NNZ(C)
IF + JF + KF

= 0.2

We were not able to compute the exact PARAFAC decomposition on a single machine,
and thus, we estimate the number of nonzeros of a fully dense matrix A as IF (and
accordingly for the remaining factors).

After computing the PARAFAC decomposition, we computed the noun-phrase similarity
matrix AAT + BBT and out of that we were able to discover contextual synonyms to
noun-phrases that we report in Table III; the relationship between the words in that
table can be viewed as being contextually similar. Additionally, in Table IV, we show
10 out of the 50 components that we extracted (in particular, we show the top-3 noun-
phrases and context terms). Each row of the table corresponds to a single concept, and
the way to interpret it is the following: the first column shows the top-3 noun-phrases
in the first position, the second column contains the second noun-phrase, and the third
column contains the context phrase that connects these two noun-phrases. We observe
that the concepts extracted are coherent and meaningful.
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Table III. NELL: Potential Synonym Discovery

Noun-phrase Potential Contextual Synonyms
computer development
period day, life
months life
facilities families, people, communities
rooms facilities
legs people
communities facilities, families, students
company community, life, family
groups people, companies, men
life experience, day, home
data information, life, business
people members, companies, children
countries people, areas, companies
details part, information, end
clients people, children, customers
ability order, life, opportunity

Table IV. NELL: Concepts of Noun-Phrases and Context Words

Noun-phrase 1 (np1) Noun-phrase 2 (np2) Context between np1 & np2
day, time, events year, month, week np1 throughout np2, np1

during np2, np1 last np2
information, data, details site, program, research np2 and contact np1, np1 on

our np2, np1 provided by np2
information, services, data use, value, variety np1 through np2, np2 of

their np1, p1 to make np2
family, friend, company support, home, one np2 of my np1, np2 of their

np1, np2 of her np1
areas, countries,
communities

services, work, people np2 in various np1, np2
within np1, np1 such as np2

knowledge, development,
needs

students, members, users np1 of our np2, np1 of their
np2, np1 of his np2

business, internet, data information, system, services np1 management np2, np1
software np2, np2 including
np1

access, changes, information services, site, students np1 to our np2, np1 to my
np2, np1 through np2

customers, clients, members quality, value, success np2 of their np1, np2 of our
np1, np2 of my np1

community, country,
company

information, services, issue np2 within np1, np2 in our
np1, np2 across np1

5. RELATED WORK

5.1. Tensor Applications

Tensors and tensor decompositions have gained increasing popularity in the last few
years, in the data-mining community [Kolda and Bader 2009]. The list of tensor ap-
plications in data mining is long; however, we single out a few that we deemed repre-
sentative: in Kolda and Bader [2006], the authors extend the well-known link analysis
algorithm HITS, incorporating textual/topical information. In Bader et al. [2006] and
Bader et al. [2008], the authors use tensors for social network analysis on the ENRON

dataset. In Sun et al. [2009], the authors propose a sampling-based TUCKER3 decompo-
sition in order to perform content-based network analysis and visualization. The list
continues, including applications such as Cross-language Information Retrieval [Chew
et al. 2007], Anomaly Detection [Maruhashi et al. 2011], Brain Signal Analysis and
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detection of Epilepsy [Acar et al. 2007], Machine Vision [Vasilescu and Terzopoulos
2002], Web Search [Sun et al. 2005], and Bioinformatics [Li and Ngom 2011], to name
a few. Apart from Data Mining, tensors have been and are still being applied in a mul-
titude of fields such as Chemometrics [Bro 1997] and Signal Processing [Sidiropoulos
et al. 2000].

5.2. State-of-the-Art Toolboxes

The standard framework for working with tensors is Matlab; there exist two toolboxes,
both of very high quality: the Tensor Toolbox for Matlab [Bader and Kolda 2007a,
2007b] (specializing in sparse tensors) and the N-Way Toolbox for Matlab [Andersson
and Bro 2000] (specializing in dense tensors).

5.3. Fast and Scalable Tensor Decompositions

The authors of Bro et al. [1999] introduce an algorithm that compresses the tensor
using TUCKER3 and decomposes the core tensor, which is significantly smaller. In Phan
and Cichocki [2009]; Huy Phan and Cichocki [2011], the authors propose a partition-
and-merge scheme for the PARAFAC decomposition which, however, does not offer factor
sparsity. In Papalexakis and Sidiropoulos [2011], the authors introduce a PARAFAC de-
composition with latent factor sparsity. In Nion and Sidiropoulos [2009] and Sun et al.
[2006], we find two interesting approaches, in which a tensor is viewed as a stream and
the challenge is to track the decomposition. In terms of parallel algorithms, Zhang et al.
[2009] introduces a parallel nonnegative tensor factorization. In Tsourakakis [2009]
and Sun et al. [2009], the authors propose randomized, sampling-based TUCKER3 de-
compositions. In Kang et al. [2012], the authors introduce a highly scalable alternating
least squares implementation of PARAFAC for Hadoop, whereas in Beutel et al. [2014],
the authors provide a versatile and highly scalable distributed Stochastic Gradient
Descent Hadoop implementation which, among others, is able to perform PARAFAC
decomposition. In Kim and Candan [2011] and Kim and Candan [2012], the authors
introduce a very interesting, alternative viewpoint of scaling up tensor decomposi-
tions, employing relational algebra. The authors of De Almeida et al. [2014] provide
an alternative framework of parallelizing tensor decompositions, based on partitioning
the problem and distributing the computation using a multilayer graph in order to
represent the machines that operate on the problem. In Papalexakis et al. [2014], the
authors build on the present method in order to speed up the related problem of coupled
matrix-tensor factorization, achieving a speedup factor of 200. In Sidiropoulos et al.
[2014a, 2014b], following a similar approach of reducing the dimensions of the tensor
and decomposing smaller instances of the problem in parallel, the authors introduce
an algorithm that uses random projections and they provide identifiability guarantees.

6. CONCLUSION

In this work, we have introduced PARCUBE, a novel, fast, parallelizable tensor de-
composition which produces sparse factors by construction. Furthermore, it enables
processing of large tensors that may not fit in memory. We provide theoretical results
that indicate correctness of our algorithm; one of our core contributions pertains to
the correct merging of the individual samples. We have demonstrated its merits with
respect to sparsity and speedup, compared to the current state of the art, through exten-
sive experimentation. Moreover, we provide a highly scalable parallel implementation
(which is publicly available) that scales for very large tensors. Finally, we highlight the
practicality of PARCUBE by analyzing four different real datasets, discovering patterns
and anomalies.
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