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D. Proof of Theorem 3

From regularity condition (3.1), the asymptotic behaviors of
� ����

and � �� � are directly related. The standard result on regular functions
of asymptotically normal statistics (see, e.g., [12, Theorem, p. 22])
applies. So (3.3) with � ������
			���
 ������ � �� ��� 	 		���
 ���������� . Furthermore, this
closed-form expression simplifies if (1) and (2) are taken into account

� �� ������� �!   � � �� � �!" ""$#&% " "" �    � � � �� � # ��')( #&% ')( ��* ** * ** � �
� � �� # 	 		���
 ������,+.-)/ �0   � � �� � % " ""    � � � �� � #&% ' ( * ** * ** � � #21 � % " "" � #31 � % ' ( �
� � �� # 	 		���
 ������

4
57698 %�:<;5 ��= == �

� 5 ��>�? = == � � � 5 �@� #&% ' ( +�-)/ � * ** * ** � �
#&1 � % " "" � #31 � % ')( � (A9)

where

+A-)/ ��= == � � 5 � = == � � � 5 �@� � = == � � 5 �B>�? = == � � � 5 �
is used in the third equality. Therefore, the following constraints upon	 		 ��
 ������ hold:

	 		 ��
 �������C = == � � 5 ��>�? = == � � � 5 �0D ��EGF H2�JIKFGLMLMLMFBN
and 	 		���
 ������9+A-)/ � * ** * ** � � ��E (A10)

and using (2.8), the proof follows.
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Generalizing Carathéodory’s Uniqueness of Harmonic
Parameterization to Dimensions
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Abstract—Consider a sum of exponentials in dimensions, and let
be the number of equispaced samples taken along the th dimension. It

is shown that if the frequencies or decays along every dimension are distinct
and O PRQ SUT , then the parameterization in terms
of frequencies, decays, amplitudes, and phases is unique. The result can be
viewed as generalizing a classic result of Carathéodory to dimensions.
The proof relies on a recent result regarding the uniqueness of low-rank
decomposition of -way arrays.

Index Terms—Multidimensional harmonic retrieval, multiway analysis,
PARAllel FACtor (PARAFAC) analysis, spectral analysis, uniqueness.

I. INTRODUCTION

The problem of harmonic retrieval and, more generally, exponen-
tial retrieval permeates the applied sciences and engineering. Although
one-dimensional (1-D) exponential retrieval is most common (e.g., see
[17] and references therein), the multidimensional case appears in a va-
riety of important applications like joint azimuth, elevation, delay, and
Doppler estimation in antenna array processing for communications
[3]–[6], synthetic aperture radar (e.g., [7], [10] and references therein),
and also certain signal separation problems in chemistry.

A wide variety of nonparametric and parametric techniques have
been developed for the harmonic retrieval problem in one or more di-
mensions. Underpinning technique and practice of harmonic retrieval is
the issue of identifiability, i.e., uniqueness of model parameterization.
Owing to the work of Carathéodory [1] and later Pisarenko [11], this
issue is well understood for the case of 1-D harmonics. In the case of
multidimensional harmonics (and, more generally, exponentials), one
can apply the 1-D result separately in each dimension, but this has two
serious drawbacks. First, this approach does not reap the benefits of the
rich multidimensional structure, leading to uniqueness conditions that
are unnecessarily strict. Second, the association problem (i.e., whether
the “pairing” of frequencies along different dimensions is unique) re-
mains.

The uniqueness problem is hard for harmonics in two or higher
dimensions. Only partial results are known for the two–dimensional
(2-D) case [8], [10]. For example, [10] considers one possible formu-
lation of the 2-D harmonic retrieval problem wherein the frequencies
are assumed to occur at the intersections of certain unknown grid lines
in the 2-D frequency domain, and provides sufficient conditions for
identifiability. In the case of a single realization of the 2-D harmonic
mixture, the conditions in [10] require that one has sufficiently many
samples in each dimension for the 1-D result of Carathéodory to kick
in.

The contribution of this correspondence is a general uniqueness re-
sult for V -dimensional exponential mixtures that is valid for any V and
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improves with increasing � . The adopted formulation is tailored to-
ward arbitrary1 distribution of the unknown � -dimensional exponen-
tial parameters, as in [3]. The proof relies on—and actually improves
for the special case of mixtures of � -dimensional exponentials—a re-
cent result [12], [13] regarding uniqueness of low-rank decomposition
of � -way arrays. Low-rank decomposition of � -way arrays is known
under the common name PARAllel FACtor analysis, or PARAFAC for
short.

A. Organization

The rest of this correspondence is structured as follows. Following
a brief discussion of notation and other preliminaries, Section II sum-
marizes the basic theorem of [12], [13] on the uniqueness of low-rank
decomposition of � -way arrays. Section III contains a brief statement
of the Carathéodory parameterization result. Section IV is a 1-D pre-
amble to Section V, which contains the main result on the uniqueness
of parameterization of exponential mixtures in � dimensions. Conclu-
sions are drawn in Section VI.

B. Notation and Some Preliminaries

stands for the set of real numbers, and denotes the set of complex
numbers. Matrices (vectors) are denoted by boldface capital (lower
case) letters.

�
,
�

stand for transpose and Hermitian transpose, respec-
tively. The symbol � is reserved for � ��� . � denotes the number of
dimensions, whereas 	�
 denotes the number of (equispaced) samples
along the � th dimension. An � -dimensional (also known as � -way)
array is a data set that is indexed by � indexes: 
�� ��� � ����� , where

� 
�����������������	 
�!"� �$#&%'�(�)���*�(��+
The rank of a matrix is the smallest number of rank-one matrices

needed to decompose the given matrix into a sum of rank-one fac-
tors. Each rank-one factor is the outer product of two vectors. Simi-
larly, the rank of an � -way array is defined as the smallest number
of rank-one � -way factors needed to decompose it [9]. Each rank-one� -way factor is the “outer product” of � vectors, meaning that its, ��- �.�*����� �0/21

th element is given by 354 � - �0� 6�6�67354 � / �8� , where 9 is a
factor index. Thus, an � -way array of rank : can be written as


�� �;� � ���<� #
=
4)> -@? 4

/

A> - 3�4��0
5�8� +

A constant-envelope 1-D discrete-time exponential is written as
 � # ?*B C7D�E �<F
-;G � � #H%������)�*�I	 , where ? � absorbs both amplitude

and phase. A nonconstant-envelope 1-D exponential is written as
 � # ? 3 ��F
-
,
� #J%'���*���)�5	 , where 3K� absorbs both decay (or

growth) rate and frequency. A 2-D exponential is simply the product of
two 1-D exponentials indexed by different independent variables, i.e.,


�� �8� # ? 3 � F -- 3 � F -L + ��- #&%'�����*���I	 - � � L #M%�����������	 L
and so on and so forth in higher dimensions.

II. PARAFAC

Definition 1: The N -rank of a matrix O OO (denoted by NAP PP ) is Q iff everyQ columns of O OO are linearly independent, and either O OO has Q columns orO OO contains a set of QSRT% linearly dependent columns. Note that N -rank
is always less than or equal to rank.

1See [10] for a discussion of “grid” versus “nongrid” 2-D harmonic retrieval
problem formulations.

Remark 1: An UWVYX Vandermonde matrix

Z ZZ&[ #

% % 6�6�6 %\ - \ L 6�6�6 \^]
\ L - \ LL 6�6�6 \ L ]
...

...
...

...\`_ F -- \S_ F -L 6�6�6 \ _ F -]
with distinct nonzero generators \ - � \ L �.������� \ ] � is full N -rank:Nba aa #KQ)a aa #Kcedgf , U���X 1 [16].

Theorem 1 (Uniqueness of Low-Rank Decomposition of � -Way Ar-
rays [12], [13]): Consider the : -component � -linear model


�� �;� � ���<� #
=
4)> -@? 4

/

'> - 3�4��0
5�8�

for
� 
 #K%'����������	 
Yhji , �k#K%����������l� , with ? 4 � , 3 4��8
��8� � ,

and suppose that it is irreducible ( m the rank of the � -way array with
typical element 
 � ��� � ����� is : ). Let O OO E 
 G

denote the 	 
 Vn: matrix
with

, � 
I�l9 1 element 3 4��8
5�8� . If/

A> - N P PP hoi :pR , �q�r% 1

then given the � -way array 
�� �;� � �s��� ,
� 
t# %������)�*�I	 
 , �u#%'�������*�(� , its : rank-one � -way factors

? 4
/

'> - 3 4��8
��<� � 9�#&%'���������l:

are unique.
A basic precursor result for �v#xw and array elements drawn from

is due to Kruskal [9]. Kruskal’s result was subsequently generalized to
the complex case in [15] (again for �y#xw ); see also [14] for additional
results in the context of sensor array processing.

III. CARATHÉODORY’S UNIQUENESS RESULT

The Carathéodory parameterization result [1] (see also [11]; [17] is
a readily accessible general reference) states that any positive semidef-
inite 	$V$	 Toeplitz matrix z zz of rank :q{o	 can be uniquely decom-
posed as

z zz # Z ZZ�| || Z ZZ �
where

Z ZZ
is 	$V}: with 9 th column~ ~~ 4 #��s% B
C�D 6)6*6 B

C�D E�� F -�G<� � ��9�#�%'�����*�)�l:���� � 4 ���s���S��� 1 ! =4)> -
are distinct, and

| ||
is a diagonal matrix containing positive reals along

its diagonal. This result is the basis behind subspace line spectra estima-
tion: cf. [11], [17], and references therein. An important ramification of
the uniqueness part of Carthéodory’s parameterization is the following
result.

Theorem 2 (Carathéodory’s Uniqueness Result): Given


���#
=
4)> -�� ? 4 �

L B
C�D E �gF -;G � � #&%'�������*�I	I�

if 	 h :�RY% , then � 4 ���s�@�^��� 1 and � ? 4 � L , 9�#&%'�����*���(: are unique.

A proof can be readily derived by constructing a positive semidefi-
nite 	�V`	 Toeplitz matrix whose first column is � 
 - 6�6�6�
 � � � , noting that
it admits a decomposition of the form

Z ZZ | || Z ZZ �
for the true frequencies

and powers, and invoking the uniqueness part of Carthéodory’s param-
eterization.

Theorem 2 applies to zero-phase, constant-envelope exponentials.
As a first step toward extending it to multidimensional exponentials, it
is instructive to consider the case of nonzero-phase and nonconstant-
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envelope 1-D exponentials, and derive a uniqueness result based on
Theorem 1.

IV. 1-D EXPONENTIALS

Theorem 2: Given

�����
�
���
	

� �
� ��� 	��� � ��� �������������

with � ��� and � ��� , if ���! 
" then � � and � � , # �$� ���������%"
are unique.

Proof: We may assume without loss of generality that the � � ’s are
nonzero and the � � ’s are distinct, for otherwise the number of compo-
nents can obviously be reduced to "'&)(*" . Define the + -way array

� � ,.- - - ,/� 0 �1� � 24353 3 2�� 6�798:6 	<;
�
�
���)	

� �
� � 243 3 3 2�� 6=8�

�
�
���)	

� �
� � 6 	� >�>�> � � 6 	� �

for � 	 ��� �=���?����� 	
...� 8 ��� �=���?����� 8

�@� 	4A >�>�> A � 8 � � A +CB �ED

From Theorem 1, and the fact that Vandermonde matrices have fullF
-rank, it follows that the rank-one factors � � � � 6 	� >�>�> � � 6 	� and

hence2 � � and � � , # �G� ���?�����%" are unique provided that8
H �)	

IKJML�N � H �%"POQ�* R" A N +SB � O D

Pick + � � B � and � H �  for all T (this choice actually maximizes8 H �)	 IKJML�N � H �%"PO for all "�U � ). Then the identifiability condition
becomes

 N � B � OV�* R" A N � B  RO
or, equivalently,

�W�* R"
and thus the proof is complete.

Remark 2: Note that the (deterministic) identifiability requirement
of Theorem 3 meets the equations-versus-unknowns bound ( � complex
data for  R" complex unknowns). A generic (almost sure) identifiability
result for the case of nonzero phase, constant-envelope 1-D exponen-
tials can be found in [18].

V. X –DIMENSIONAL EXPONENTIALS

Next, consider a sum of " exponentials in X dimensions. For X �ZY[�
uniqueness of parameterization can be claimed by means of Theorem 1,
however, a better result3 is possible which also holds for X �  .

Theorem 4: Given a sum of " exponentials in X dimensions

� � ,\- - -5,�� �
�
���)	

� �
]
^ �)	

� � 6 	� , ^
2 _ can be determined from the corresponding rank-one factor by dividing

the second element by the first element along any dimension; ` is equal to the
value of the said rank-one factor at a bdcecfcgbha b*i .

3In order to see this, suppose jlknmporq ktsRo
q ktsRogq k$i�s?u
o andvxw i�s�u . Then Theorem 1 indicates that only two exponentials can be resolved;
whereas Theorem 4 shows that up to 65 exponentials can be resolved.

for � ^ �G� ���?������� ^ �d , y �G� ��������� X , with � �:� and � � , ^ �
such that �[� , ^{z� �r� , ^ , |}# 	 z� #�~ and all y , if]

^ �)	
� ^ �h 
" A N X$B � O

then there exist unique �[� , ^ , y ��� ��������� X and � � , # ��� ���������%"
that give rise to � � ,\- - - ,/� .

Proof: Define the extended multiway array� � ,\- - - ,/� ,.- - -5,�� ,.- - -5,��
0 ��� � 243 3 3 2�� 6�7�� 6 ~ ; ,\- - - ,/� 24353 3 2�� 6�7�� 6 ~ ;
�
�
���)	

� �
]
^ �)	

� � 243 353 2�� 6�79� 6 	\;� , ^

�
�
���)	

� �
]
^ �)	

� � 6 	� , ^ >?>�> � � 6 	� , ^

�
�
���)	

� �
]
^ �)	

� 6 	
H �)	

� � 6 	� , ^ � � ^ , H ��� � �� g�
� |�y � T D

From Theorem 1, and the fact that Vandermonde matrices have fullF
-rank, it follows that the rank-one factors

� �
]
^ �)	

� 6 	
H �)	

� � 6 	� , ^
and hence � � , ^ , y ��� �������?� X and � � , # ��� ���������%" are unique
provided that ]

^ �)	
� 6 	
H �)	

 K�* 
" A
]
^ �)	

N � ^ B � O B �pD
Note that the sum on the right-hand side is the total number of effective
dimensions. Equivalently, uniqueness holds provided]

�p�
�
� ���*�p�h�������h���f�

Remark 3: It is not difficult to see that if �[� ��� ���[� ��� , then
the �[� �  ¡ ¡¡ � � , and hence the ¢�£ th dimension neither contributes to
nor takes away from uniqueness: the model (including the parameters
along the ¢�£ th dimension) will still be unique, provided¤

� �)� ���%¥� �
� � �h�R�x���\�$�¦�R�§�

Generalizing, if¨ ¢ª©�« �E¬�­�­�­�¬%���¦�¯®p°R± � � ���ª²��� � ��� ¬ ¨}³ � ²� ³E´
and

¨ ¢}©�« �x�µ��®g���p¬�­?­�­�¬%��°
±e¶ ³E´ � ¢ � ²� ³ ��� ¢ �·± � � � �p .� � �W� � � �p .�<�
then ¤¹¸=¤

� �)�
� � �h�
�º�»�<�$�¦�¯®¼�h���

is sufficient for uniqueness.

Remark 4: If an additional ½ nonexponential dimensions are avail-
able

¾�¿ �.À À À5� ¿ �9Á �\À À À5�MÁ �
Â

� �)�
Ã �
¤

� �)� �
¿ ¸ ������

Ä
ÅV�)�

Æ �E� Å �9Á
for Ç Å � �p¬�­?­�­�¬%È Å �*� , É�� �p¬=­�­�­�¬ ½ , with

Æ ��� Å � � � �p¬ ¨'³ ¬ É
by convention, then it is clear from Theorem 1 and the proof of The-
orem 4 that uniqueness (including the associated component vectors
along nonexponential dimensions) holds provided that¤

� �)�
� � �

Ä
ÅV��� �pÊ ÊÊ �h�R�x���\�G� ½ �h���
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TABLE I
SAMPLE SIZE DISTRIBUTION AND MINIMUM TOTAL NUMBER OF

SAMPLES FOR �����

TABLE II
SAMPLE SIZE DISTRIBUTION AND MINIMUM TOTAL NUMBER OF

SAMPLES FOR �����

where � �� 	�

� denotes the � 
���� matrix with ��� 
������ element����� 
 ��� .
In order to illustrate the power of Theorem 4, Tables I and II provide

examples of sample size distributions that guarantee identifiability with
smallest total number of samples for various values of � in  "!�# and $!&% dimensions.

VI. CONCLUSION

The fact that Theorem 1 can be used to prove Theorem 3 seems quite
surprising—the two appear unrelated, and have very different histories.
At hindsight, it is clear that what enables this connection (and essen-
tially also Theorem 4) is nothing but the shift property of exponentials,
which allows recasting a 1-D exponential in the form of a multidimen-
sional rank-one factor.
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