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Abstract. We consider binary digital images as realizations of a uniformly bounded discrete random
set, a mathematical object that can be defined directly on a finite lattice. In this setting we
show that it is possible to move between two equivalent probabilistic model specifications. We
formulate a restricted version of the discrete-case analog of a Boolean random-set model, obtain its
probability mass function, and use some methods of morphological image analysis to derive tools for
its statistical inference.
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1 Introduction

The Boolean random set is arguably the most
important random-set model to date. It has
received considerable attention in the literature
(for example, see [2], [S], {6], [10], [11], [25],
[26], [32] and the references therein), in terms
of both theory and practice. Typical applica-
tions include, but are not limited to, random
clumping of dust or powder particles; modeling
of geological structures, bomb fields, patterns in
photographic emulsion, colloids in gel form, and
structural inhomogeneities in amorphous matter
[32, p. 68]; tumor growth [5]; and the spatial
pattern of heather [6]. Other potential applica-
tions include particle counting and size analysis
in images of cell cultures and modeling of clutter
in infrared imaging.

Informally, a Boolean random set is con-
structed by centering a simple random shape
(set), such as a disc of random size, at each

*This research was partially supported by National Sci-
ence Foundation grant NSFD CDR 8803012 through the
Engineering Research Centers program.

point of a Poisson field of points in the plane
and then taking the union of the resulting sets.
Random shapes centered at different points of
the Poisson field are assumed to be independent
and statistically equivalent. The points of the
Poisson field are known as the germs, and the
Poisson field itself is sometimes called the germ
process. The random shapes are known as the
primary grains.

When it comes to modeling, random-set
recipes are hard to come by. To quote Cressie
and Laslett [5], “The choice of mathematical
models available to the data analyst is often

-governed by their tractability, rather than their

applicability. When the data are sets, this lean-
ing is even more profound.” The Boolean model
is important because it is one of the precious
few random-set models that are both tractable
and applicable. In many applications there ex-
ists no physical interpretation of the germ-grain
construction; in others there is strong evidence
that the germs and the grains correspond to
actual physical entities (e.g., modeling of bomb
fields, where the germs correspond to the points
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of impact and the primary grains model random
dispersion). In the former case, the Boolean
model is simply used as a device to generate
and analyze randomness; in the latter, it also
provides some insight into the mechanism of
image-data generation.

The transition from continuous-domain ran-
dom sets to discrete-domain random sets is trou-
blesome [26]. In practice, one usually deals with
finitely many samples of a portion of a binary im-
age that is contained within a fixed window (i.e.,
a realization of a uniformly bounded discrete
random set). Most automated image-analysis
systems operate on finite spaces. Given the
current rate of advances in digital computers,
it seems fair to say that this trend will only
continue to grow in the foreseeable future.

There are essentially three ways to introduce
discrete random sets. Before we present our
choice, let us discuss the alternatives. The first is
through sampling (discretization) of continuous-
domain random sets [20]. This poses several
technical problems. For example, sampling with
a regular lattice introduces lattice-dependent ar-
tifacts (e.g., the sampling does not preserve the
Euler-Poincare characteristic [25]). In general,
it is impossible to say anything about several
important features (e.g., convexity) of the un-
derlying continuous-domain structure, solely on
the basis of its sampled realizations. The sec-
ond approach is based on the theory of random
point fields [22]. A special class of random point
fields, namely, Markov random fields (MRFs),
has been successfully used to model random
texture. However, these models cannot easily
describe complicated geometrical structure; i.e.,
they generally fail to capture the morphologi-
cal aspects of image data.! Random-set theory,
on the other hand, is closely related to mathe-
matical morphology, a nonlinear image algebra
that specifically addresses the problem of quan-
titative shape description. As a result of this
connection, random-set theory provides a uni-
fied framework that allows the modeling of both
morphological (syntactical) and statistical char-
acteristics of images. Thus the need to develop
a theory for discrete random sets along the lines
of the corresponding continuous-domain theory
becomes apparent.

We have chosen to define uniformly bounded
discrete random sets directly on a finite lattice
and to base subsequent developments on this
definition. This axiomatic approach has many
advantages. It avoids technicalities and enables
us to focus on problems that are important in
practice. In particular, it allows us to talk about
probability mass and inference. Certain impor-
tant results of random-set theory can be sig-
nificantly strengthened in the case of uniformly
bounded discrete random sets. Of course, these
benefits come at a certain price. In this case we
ignore the details of the underlying continuous
physical structure that fall beneath our resolu-
tion. However, at any rate, this loss of detail
is forced on us by the limitations of the digital
imaging system; we might as well accept it and
live with it. Our findings suggest that, from the
point of view of applications, such an axiomatic
approach is significantly more flexible.?

The cornerstone of statistical image analy-
sis is the development of models that summa-
rize the most important characteristics of images
by a few parameters. Once we have a bagful
of discrete random-set models at our disposal,
the obvious next step is to fit the models to
the data. Parametric models whose parame-
ters cannot be fitted to the data are useless for
image analysis (although they can be of some
use in image synthesis and computer graphics).
Thus enters the need for statistical inference.
Statistical-inference techniques are very scarce
in random-set theory. Most of the existing lit-
erature is concerned with parameter estimation
for the Boolean model, based on some variant
of the method of moments [S], [6], [11], [23],
[25], [26].% This can be partially attributed to the
lack of a total set ordering, which makes for an
extremely complicated “distribution function.”
The method of moments, although well known
and widely practiced, is largely considered to be
a last resort, when maximum-likelihood (ML)
or maximum-a-posteriori (MAP) inference is not
possible. We will show that within a uniformly
bounded discrete-random-set framework we can
make some progress towards the ML inference
of the Boolean model. We develop an axiomatic
formulation of uniformly bounded, discrete ran-
dom sets, strengthen a general characterization
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theorem of Choquet, Kendall, and Matheron,
and consider a restricted version of the discrete
case analog of the Boolean random set and de-
velop some tools for its statistical inference.

2 Fundamentals of Discrete Random Sets

DEFINITION 1. Let B be a bounded subset of
Z?, Assume that B contains the origin. Let
X(£2) denote the o-algebra on 2. Let X(B)
denote the power set (i.c., the set of all subsets)
of B, and let Z(X'(B)) denote the power set of
X(B). A uniformly bounded discrete random
set, or, for brevity, discrete random set (DRS), X
on B is a measurable mapping of a probability
space (§2, X(§2), P) into the measurable space
(X(B), Z(X(B))). A DRS X on B induces a
unique probability measure Px on X(X(B)).

DEFINITION 2. The functional
Tx(K) = Px(XNK #0), K e 5(B),
is called the capacity functional of the DRS X.

DEFINITION 3. The functional

Qx(K) = Px(XNK =0) =1 -Tx(K),
K ¢ X(B),

is called the generating functional of the DRS X.

The generating functional is to the DRS what
the cumulative distribution function (cdf) is to
scalar discrete random variables. The following
lemma will be useful.

LEMMA 1 (variant of Mobius inversion for
Boolean algebras; see [1] for basic Mébius in-
version). Let v be a function on X(B). Then v
can be represented as

v(4) = Y w(S);

SCA°

“external decomposition.”

The function v is uniquely determined by v;
namely,

w(S) = Y _(-1)u($°uC);

ccs

“inversion.”

where the superscript ¢ denotes complement
with respect to B.

Proof. Uniqueness: Assume that the external
decomposition formula holds. The right-hand
side of the inversion formula may be written

Y (-1)flu(scuc)
ccs
=S 3 wp)

ccs DCsnee

= > (-1 > wD)

ccs DCS\C

=Y > (-)(D)

CCS DCS\C

=2 2 (=)D
DCSCCS\D

=Y uD) ¥ (-1 =u(s)

DCS CCS\D

since
S # 0,
S =90

> ={

ccs

Existence: Assume that the inversion formula
holds. The right-hand side of the external de-
composition formula may be written

Y uws) =) > (-0)%(S°u0)

SCA* SCA°CCS
=Y S (-1)((s\C))
SCAcCCS
=3 > (D)D)
DCAc CCAN\D
=2 uD) 3 (-1
DCAe CCA\D

= v((4°)°) = v(4),
as for the uniqueness part.

THEOREM 1. Given Qx(K),VK € X(B),
Px(A), YA € X(X(B)), is uniquely determined
and, in fact, can be recovered by using the
measure-reconstruction formulas

Px(4) = Y Px(X = K),
KeA
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with
Px(X =K)= Y (-)*¥Qx(K°UK’).

?

CK
Proof. The functional @Qx can be expressed in
terms of Px as

Qx(K) = Y Px(X =K.

Kngc

This observation, along with Lemma 1, estab-
lishes the validity of the theorem.

The uniqueness part of this theorem, origi-
nally due to Choquet [4], has been indepen-
dently introduced in the context of continuous-
domain random-set theory by Kendall [16] and
Matheron [19], [20]. Related results were also
obtained by Ripley [22]. However, the measure-
reconstruction formulas are essentially applica-
ble only within a uniformly bounded DRS for-
mulation. In the case of (uncountably or count-
ably) infinite observation sites, the uniqueness
result relies heavily on Kolmogorov’s extension
theorem, which is nonconstructive.

3 Mathematical Morphology

Let H be a small, primitive subset of B, which
contains the origin, {0}. In the terminology of
mathematical morphology* H is called a structur-
ing element. For our purposes H will be assumed
to be convex.’ Let X, denote the translate of
X by the vector h, and let

H" = {-h|h e H}.

DEFINITION 4, The erosion X © H® of a set
X C Z? by a structuring element H is defined
as

XoH' =()X,={z€Z|H CX}
heH

DEFINITION S. The dilation X & H* of a set
X C Z? by a structuring element H is defined
as
XoH =] X
heH
={z€Z*|H,NX # 0}.

DEFINITION 6. The opening X o H of a set
X C Z? by a structuring element H is defined as

XoH=(XoH)oH

= U H.

z€Z?|H.CX

The opening is an idempotent (stable) oper-
ation in the sense that (X o H)o H = X o H.
A set X C Z? is said to be H-open if and only
if XoH = X. The set X is H-open if and
only if it can be written as X = L& H for some
L cZ? [20].

4 DRS Analog of the Boolean Model

Let us now define the Boolean DRS. In doing
so, we proceed by analogy with the continuous
case. We first define the class of germ-grain
DRSs. Then we refine this class to derive the
Boolean DRS. Our work focuses on a particu-
lar class of Boolean DRS models and is closely
related to the morphological analysis of shape
and the associated theory of shape-size distri-
butions [19], [20].

PROPOSITION 1. Let {X;}2, be a sequence
of (not necessarily independent) DRSs on B.
Then for any finite N, Uf;o X; is a DRS on B
and, furthermore, the limit | Ji2, X; always exists
and is a DRS on B.

Proof. Observe that the space of realizations
Z(B) is itself a o-algebra. The resuit fol-
lows easily.

DEFINITION 7. Let ¥ be a DRS on B, and
let {G;, Gz, ...} be a set of nonempty inde-
pendent and identically distributed DRSs on B,
characterized by the generating functional Qg.

Define
X = U Gi ©® {yl'})
i=1,2, ..

where ¥ = {y;, 2, ...}. Then X will be called
a germ-grain DRS. The points {y, 2, ...} will
be called the germs, and the DRSs {G, G, ...}
will be called the primary grains of the germ-
grain DRS X.



P

Generating Functional for Discrete Random Sets 277

Remark. For brevity, we assume from this point
on that the result of a & operation is automat-
ically restricted to B. Therefore since {y;} is a
singleton, G; @ {y;} is simply the translate of G;
by the vector y;, restricted to B. Also, by con-
vention, the superscript ¢ denotes complement
with respect to B.

In general, we cannot compute the generat-
ing functional Qx of the germ-grain DRS X
in terms of the generating functional Qg, which
characterizes the primary grains. This is a signif-
icant drawback. Nevertheless, this computation
is possible for a restricted class of germ-grain
DRS models.

DEFINITION 8. Let ¥ be a generalized Bernoulli
lattice process (or Bernoulli DRS or binary
Bernoulli random field) on B, constructively
defined in the following manner: each point
z € B is contained in ¥ with probability A,(z),
independently of all others. Let {Gy, G, ...}
be a set of nonempty independent and identi-
cally distributed DRSs on B, characterized by
the generating functional Qg. Define

X=J Ge{y}

i=1,2,..

where ¥ = {yy, y2, ...}. Then X will be called a
discrete Boolean random set (DBRS) and will be
denoted by (A, Q¢)-DBRS. The function A, will
be called the intensity function (or simply the
intensity) of both the DBRS and the underlying
Bernoulli lattice process.

PROPOSITION 2. Let {X;, X3,..., Xy} be
an independent sequence of nonempty DRSs,

characterized by the generating functional Qy,,
.., Qxy, respectively. Define

N
Y= U X,'.
i=1
Then

N
Qr(K) = [[ex(K) VK € 5(B).

i=1

Proof.

Qr(K)=Pr(Y NK = 0)
=Pr(X;NnK=90,..., XyNK = 0)
=Pr(X;NK =0)---Pr(Xy N K = 0)

N
= [Texx),

i=1

and the proof is complete.

PROPOSITION 3. The generating functional of a
(As, Q)-DBRS X is given by

Qx(K) = [][1 = X(2) + A(2)Qeo:) (K)]
z€B

= [I[1 - (@) + M(2)Qe(K ® {~2})).

zeB

Proof. The proof follows from independence
and from Proposition 2. ‘

In the discrete case the notion of size of a
convex structuring element can be normalized
through the operation of set dilation:

{OleHoH®. . --0H

rH = { (v times)

{03}, r=0.

DEFINITION 9. Let ¥ be a generalized Bernoulli
lattice process on B, of intensity A,(z). Let
{G1, Gz, ...} be a set of nonempty, convex, in-
dependent and identically distributed DRSs on
B, each given by G; = R;H, where {Ry, Ry, ...}
form an sequence of Z.-valued random vari-
ables that is independent of ¥ and each R; is
distributed according to a probability mass func-
tion (pmf) fr(r) that is compactly supported on
{0, 1, ..., R}. Define

x= | Gioul

i=1,2,..

where ¥ = {yi, 2, ...} Then X will be called
a discrete radial Boolean random set (DRBRS)
and will be denoted by (), H, fgr)-DRBRS.
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We now proceed to compute the generating
functional of a (\,, H, fr)-DRBRS. Define

H = minll, —
d (Zv K)—Igél}g"z k"H’

where
|z = kllg = min{n > 0| ({2} & nH) N {k} # 0}.

Observe that for z € K, d¥(z, K) = 0, since H
contains the origin. By independence of the
germs and the grains it follows that a DRBRS
X is a union of independent DRSs. Thus by
Proposition 3 it follows that Qx(K) is of prod-
uct form, the product index ranging over all
primary grains that can hit K, i.e., grains that
are centered at z € K ® RH’ (observe that
{z}®rHNK # 0 if and only if z € K@®rH" and
that R is the maximum possible grain radius).
For each such z the corresponding product term
is the probability that the primary grain centered
at z does not hit K. This probability is equal to
the sum of two terms: the probability that the
particular grain does not appear at all (1 - As(2))
plus the probability of it appearing but not hit-
ting K, i.., appearing with a smaller radius than
is needed to hit K(\,(2)Fr(d?(z, K) - 1)). It
follows that,

ex(®)= ]I

zeK®RH?

[(1 = (=)

+,(2)Fr(d(z, K) - 1)],
where m
FR(m) = Zfﬂ(l)
1=0

and Fr(-1) = 0 by convention.
We can now use Theorem 1 to compute
Px(X = K) in terms of the model parameters.

Px(X = K)
=S (-pF I (A=)
K'CK ze(K°UK"\@RH"

+X,(2)Fr(d¥(z, K°UK") - 1)].

5 Statistical Inference of the DRBRS Model

Even though we have been able to write down
an expression for the likelihood function, we

are still faced will a complicated formula that
is difficult to work with. In particular, largely
because of the highly oscillatory Mobius kernel
(=1)¥, it is not directly amenable to optimiza-
tion, which immediately rules out direct ML
parameter estimation. Furthermore, the com-
putational complexity associated with a brute-
force calculation of the likelihood is exponen-
tial in |[K|. One would therefore be interested
in obtaining tight bounds on Px(X = K). To
be useful these bounds must be reasonably well
behaved and relatively easy to compute. For
the simple case of a DRBRS model of constant
intensity A,(z) =p = 1—¢ Vz € B, and of pri-
mary grains of fixed size (one, by convention),
the generating functional is simply given by

Qx(K) = e
We have the following result for this model.

PROPOSITION 4. For all ¢ € [0,1] and all
realizable® K € £(B), K # 0, B,

Lq(K) < Px(X = K) < Uq(K)v
with

L(K) = ¢F"®(1 - ) Ko
and

1 'C
U(K) = 5071 [+ 9" + (1 - 9]
_plkI-1 qIK“eH'IHKeH‘I_

Both bounds are polynomials in g, they are equal

to zero at the endpoints ¢ = 0, 1, they are strictly
positive for all g € (0, 1), and they are unimodal

in (0,1). The mode of the lower bound is
located at K@ HY|

i(K) = ———.

2(K) B

Proof. See appendix A.

The measurements |K|, |K & H*|, and |K* &
H?*| can be interpreted as crude statistical sum-
maries of the observation. Bounds of this type
can be used to obtain a feasible region of the ML
estimate of ¢, given the observation K. Since
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Uy K)

Lq (K)

Feasible region
for the true
ML-estimate of q.

Fig. 1. The concept of the feasible region.

these bounds are typically very-high-degree poly-
nomials; their (unique) modes are very sharp,
leading to very accurate localization of the true
ML estimate of g. Specifically, since the bounds
are unimodal polynomials, the ML estimate of
g must be within the closed interval of g-values
delimited by the two g-values at which the up-
per bound is equal to the peak of the lower
bound. This situation is illustrated in figure 1.
The same technique can also be used for binary
hypothesis testing between two values of ¢. If
these two values are sufficiently far apart, the
bounds will indicate that the corresponding like-
lihoods are in disjoint regions, in which case a
decision procedure based on these bounds is as
good as one based on the exact likelihood but
is much faster. We will return to hypothesis
testing later.

The mode G(K) of the lower bound L.(K)
underestimates g; i.e., (X) is a biased estimator
of ¢ on the basis of the observation X. This
can be seen as follows.

E|X®® H*|

FIX) =~

Let L denote the germ-point process. Then
X°® H® C L°. Thus

|X<® H'| < |L°|
and
E|X°® H’| < E|L°|.
S° E|L¢ B

The computation of the exact bias of the mode
of the lower bound is difficult because of enu-
meration problems. However, this bias can be
learned in an unbiased and consistent manner
from an independent and identically distributed
sequence of training samples of the DRBRS
under consideration. In any case, and exactly
because of this nonnegative bias, the mode of
the lower bound per se is not a good estimator of
g. It underestimates ¢ in a manner analogous to
that in which the so-called connected-component
estimator (CCE) overestimates g (i.c., the for-
mer estimator overfits grains to the data, just as
the later estimator underfits grains to the data).
The resulting bias in g is small in absolute terms,
but it can be significant in relative terms. This is
why we prefer the fuzzy answer provided by the
feasible region, rather than choosing a particular
representative value (e.g., q) for ¢. The CCE of
q on the basis of X is explicitly given by

1B = CC(X).

a0 = B2

where CC(X) is the number of connected com-
ponents of X. Obviously, this estimator overes-
timates g, because the number of germs (points)
of any particular realization of L is always
greater than or equal to the number of con-
nected components of the corresponding real-
ization of X = L @ H. Similarly, the mode of
the lower bound provides an estimate of g based
on the maximum number of germs that can be
fit into the data (this can be easily seen from
the explicit formula for the mode of the lower
bound). Thus all reasonable estimates of g must
remain essentially within the region delimited by
the mode of the lower bound g and the estimate
produced by the CCE, i.e., ¢. This knowledge
may at times permit better g-localization by re-
ducing the size of the feasible region. Note that
the feasible region provides g-localization based
on an entirely different principle, i.e., contain-
ing the ML estimate of ¢ on the basis of X.
The ML estimator of ¢ on the basis of X is
not guaranteed to be unbiased, and thus the
two criteria cannot be easily related. In par-
ticular, even though 7 is known to be within

the feasible region, the location of 7 relative
to the right endpoint of the feasible region can
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Fig. 2. Realization of a Boolean model of constant intensity
and fixed primary grain.

not be a priori known (see figure 1). However,
the two criteria can be heuristically combined
to improve localization.

In practice, for typical observations all these
estimates are close to each other. As an exam-
ple, figure 2 depicts a realization of a DRBRS
of constant intensity and fixed primary grain.
For this example, ¢ = 0.999, and the computed
estimates are § = ~ 998, 7 = 0.99918, whereas
the feasible region s [0.9978, 0.9992].

5.1 Noisy Observations

Quite often we do not have the luxury of observ-
ing a noise-free realization of X. In practice,
images are typically corrupted by sensor noise,
sampling errors, and transmission errors. There-
fore it is of interest to investigate the robustness
of estimation tools in a noisy environment. To
do so we need to assume a reasonable degra-
dation mechanism and to get a grasp on the
sensitivity of the relevant statistics as a function
of a suitable parameterization of the noise.
One particular degradation model is the in-
dependent union noise model. It assumes that
the observable DRS Y is the union of the sig-

nal DRS X with a noise DRS N, which is
independent of X. The statistics of N can be
arbitrary. If N can be modeled as another
DRBRS of constant intensity and fixed primary
grain (different from that of X), then we can
work out similar bounds on the probability of
the observation. However, in this case the up-
per bound is not unimodal. Alternatively, we
can try to break up the solution into a signal-
estimation step and a parameter-estimation step.
The signal-estimation step provides an estimate,
X(Y) of the signal X on the basis of the ob-
servation Y, whereas the parameter-estimation
step computes the necessary statistics on the
estimate X(Y). This approach is clearly subop-
timal. However, if the estimate of X remains
reasonable close to X, then we expect the over-
all procedure to be nearly optimal. Since our
approach is essentially ML-based, it makes sense
to use an ML estimator to perform the signal-
estimation step. Towards this end, we have the
following lemma.’

LEMMA 2. Let Og(B) denote the collection of
all H-open subsets of B. Assume that the signal
DRS X on B induces a probability mass function
on Z(B) that has the following property:

Px(X = K) #0 iff K € On(B).

This assumption means that the signal is al-
most surely (a.s.) H-open; i.e., with probability
one, the signal is a union of translates of H.
Furthermore, assume that the observable DRS
is Y = XUN, where N is a homogeneous
Bernoulli lattice process of intensity r € [0, 1)
(i.e., each point z € B is included in N with
probability r independently of all other points),
which is independent of X. Then Y o H is the
unique ML estimate of X on the basis of Y,
regardless of the specific value of .

Proof Let XyL(Y) denote the ML estimate of
X on the basis of Y. Then by definition

Xu(Y) = P(Y|X =K
mL(Y) argxer%%’((a){ (Y| )}
= Pr(Y|X =K
arg xeo,?&?)’.‘xgy{ (Y| )}
{rY-IKi(y - r)BI-¥1}

= arg max
KeOu(B),KCY
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-1l
ar max T
& Keou(B), KCY { }

=ar max K|},
gKeOu(B),KgY{' 1}

So Xmu(Y) is the largest H-open subset of Y,
which is by definition the opening of Y by H, i.e.,

XuL(Y) =Y o H,

and the proof is complete.

Observe that the proof crucially depends on
|B| being finite. Now it can be readily seen
that (modulo some unavoidable edge effects) a
DRBRS X of constant intensity and fixed pri-
mary grain H satisfies the condition of lemma 2.
Thus if the observable DRS Y can be modeled
as the union of the signal DRS X with an inde-
pendent realization of a homogeneous Bernoulli
lattice process (an assumption that is often rea-
sonable), then the ML estimate of X on the
basis of Y is simply Y o H. It is worth not-
ing that this ML signal-estimation step does not
assume knowledge of r; i.e., it is independent of
the noise level. Although this is hardly surpris-
ing to the seasoned field veteran, it is pleasant
and rather useful: it means that to estimate the
signal we need not bother to measure the noise
level; thus we avoid a potentially difficult task,
given that we do not assume availability of a
separate training sequence of the noise process.
Note that this opening (ML) estimator is biased,
in that X C (X UN)o H,VX € Og(B), and a
theoretical analysis of the behavior of the size
of this bias as a function of r (the intensity of
the noise process) seems difficult (it is currently
under investigation). However, in practice the
opening (ML) estimate remains very close to X,
even when the intensity = of the noise process
is high (e.g., r = 0.5). Moreover, simulation ex-
periments have demonstrated that the statistics
R (Y), 1 X (Y) @ '), and |(Xu(Y))* ® H'|
are very robust; ie., they remain very close to
|X|, |X ® H*|, and |X° @ H?*|, respectively, for
up to 80% noise, i.e., for r = 0.8. The modes
of the bounds themselves are rather insensitive
to small perturbations of the statistics. For ex-
ample, the mode of the lower bound

- _ IXC @ Hvl
1= "3

Fig. 3. The realization of figure 2, corrupted by i.i.d. union
noise of intensity 0.3.

is robust under small perturbations of | X°® H*|.
Let us illustrate this approach.  Consider
figure 3, which depicts a realization of the ob-
servable DRS Y obtained by taking the union
of the signal DRS X, depicted in figure 2, with
an independent realization of a homogencous
Bernoulli lattice process of intensity » = 0.5.
The ML estimate of X on the basis of the re-
alization of figure 3 is depicted in figure 4. As
can be seen, there is hardly any discernible dif-
ference between the realizations of figure 2 and
4. The statistics |XmL(Y)], | XmL(Y) ® H*|, and
(XmL(Y))* © H?| all differ by less than 0.4%
from their nominal values, ie., |X|, |X ® H°|,
and |X°® H?*|, respectively.

5.2 Nonconstant Radii

These bounds can be extended to the case of
a DRBRS model of constant intensity, A,(z) =
p = 1—gq, Vz € B, and primary grains of random
size by using the following approximation of the
corresponding generating functional.

LEMMA 3. For a DRBRS X of constant inten-
sity, p = 1 — ¢, and ¢ sufficiently close to 1, the
following approximation is valid:
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Fig. 4. The ML estimate of the signal of figure 2, on the
basis of the observation depicted in figure 3.

Qx(K) & oFIKORHE,

where the expectation is taken with respect to
the probability mass function fz of the radii.

Proof. See appendix A.

Using this approximation, which is asymptot-
ically good as g goes to 1, and Theorem 1, we
can obtain the same upper bound, but this time
on the approximate (instead of the actual) prob-
ability. In this case, H in the expression for
the upper bound is replaced by RH, where R
is the maximum possible radius. A unimodal
lower bound for this case can be obtained by
using the morphological skeleton transform.

5.3 Morphological Skeletonization as a Method
of Obtaining a Consistent Realization of the Em-
bedded Marked-Point Process

Another approach to the problem of estimating
the probability of a given observation is sug-
gested by looking at it from the viewpoint of
shape analysis. The idea is that we can use cer-
tain morphological shape-description schemes to
obtain one realization of the underlying marked-
point process (i.e., the germ points marked by

their corresponding radii), which can give rise
to the observed realization K of the DRBRS
X. Then we can obtain a lower bound on
Px(X = K) simply by computing the probability
of this realization of the marked-point process.
If the grains of K are disconnected® and are con-
tained in B, then there exists a unique realization
of the underlying marked-point process that can
give rise to K. In this case the unique realiza-
tion can be recovered and the exact probability
Px(X = K) can be computed. This approach
can lead to good estimation and hypothesis-
testing procedures if the data are sufficiently
sparse. As an example, let us consider the
simple-versus-simple hypothesis-testing problem

Ho: X ~ (0O, H, f©)-DRBRS
versus
. ) (1)
H: X ~O0, H, f)-DRBRS.

In principle, given any observation K € Z(B),
the probability of this observation under each
one of the two hypotheses can be computed
by using Theorem 1, and the Bayesian rule of
choice can be implemented. In practice, the
computational cost associated with this brute-
force method limits its applicability. We there-
fore pursue an alternative approach. The key
idea is the following. Suppose that instead of
the DRBRS realization K, we were given the
realization of the germ points {yi, ¥2, ...} and
the associated radii {Ry, Rz, ...} that produced
K. Let these data be represented by an or-
dered list of collections of sites {Lg, ..., Lz},
corresponding to radii {0, ..., R}, respectively.
Note that, for one or more n € {0, ..., B}, Ln
may be empty. The log-likelihood-ratio test for
these data is simply given by

g Prl{Lo, veey LR}
PI‘(){L(), ceey LR}

1-21(2)
- E =(i5w0)

z€B|2¢uR L,

R
+ 3 Lallog (f;p(n))

lo

)
R (68} H
A5 (z) O

£ Tge By
n=0z€L, 8 (z Hp
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where the optimal threshold ¢t is a function of the
prior probabilities of the two hypotheses and the
losses incurred when different kinds of decision
errors are made. Therefore we can easily classify
the observation, according to Bayesian decision
theory. However, the recovery of marked-point-
process data from the observation K is an ill-
posed problem.

Simply put, the morphological skeleton [13],
[18] of a binary shape K with respect to a
structuring element H is the locus of the centers
of all maximal inscribable replicas of H in K.}
A replica of H is a scaled and shifted version
of H. A replica of H is maximal in K if and
only if it cannot be properly contained in any
other replica of H that can be inscribed in K.
The morphological-skeleton function (MSF) of K
with respect to H is the function whose support
is the morphological skeleton of K with respect
to H, and its value at each skeleton point is
equal to the radius of the corresponding maximal
inscribable replica of H. The morphological
skeleton is explicitly given by

N
SK(K) = | Sa(K)
n=0
U (K ©nH*) — (K ©nH*) 0 H],
where

N = max{n|K e nH*® # 0}.

The set S,(K) is the locus of centers of maximal
inscribable replicas of size n, and it is called the
nth skeleton subset of K. Given all the skeleton
subsets, K can be reconstructed by means of

N
K = | S.(K)®nH. ()

n=0

Given all the skeleton subsets, the MSF is
uniquely determined. Conversely, given the
MSE, all the skeleton subsets are uniquely
determined.

From (2) it is clear that the MSF provides
one realization of the germ points (the sup-
port set of the MSF), along with their asso-
ciated radii (the values of the MSF), which

can give rise to K. We propose the appli-
cation of the log-likelihood-ratio test (1) to
these data (ie, L, = S,,n = 0,..., N, and
L, = 0, N <n < R) as a decision rule for
the simple hypothesis-testing problem under
consideration.!® If the grains of K are discon-
nected (a situation that arises with high prob-
ability if the intensity of the germ process is
uniformly low and R is small) and contained
in B, then the true (unique) realization of the
underlying marked-point process is actually re-
covered and the proposed decision rule is exact
maximum likelihood. The reason is that the nth
skeleton subset of a union of disconnected sets
with respect to a convex structuring element is
the union of the nth skeleton subsets of the dis-
connected sets and the MSF of nH & {z} with
respect to H is equal to n at z and is zero else-
where. The overall procedure can be efficiently
implemented (in polynomial time) thanks to the
existence of fast morphological skeletonization
algorithms [18]. Figure 5 depicts a realization of
a DRBRS and its skeleton. Simulation results
have been very encouraging, even when the pri-
mary grains overlap substantially. These sim-
ulations suggested that for hypothesis testing
between two DRBRS models of different inten-
sities, the size of the skeleton is an important
statistic in the sense of possessing high discrim-
inatory power. This prompted us to investigate
whether it is possible to make ML decisions
between DRBRS models of different intensities
(but otherwise identical) based solely on the size
of the skeleton. As it turns out, this is a move
in the right direction. In fact, the important
statistic is the size of a superset of the skeleton.
This is the subject of the following theorem.

THEOREM 2. Consider the simple-versus-simple
hypothesis-testing problem

Hy: X ~ (po, H, fr)-DRBRS
VErsus
H] X ~ (plv H, fR)-DRBRS,

where pg, p; are constants in (0, 1), p; > po,
and fr(r) (the common size distribution) is zero
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Fig. 5. Realization of a DRBRS and its skeleton. The
skeleton points are the white points highlighted within the
primary grains.

outside {R, ..., R}, where R > 0. Define

& Lo B

Let K be the observation, and let Py(X = K)
and P;(X = K) denote the probability of the
observation under the null and alternative hy-
potheses, respectively. If

Y(K) < U(po, p1)
A log(1—py) - log(1 — po)
log(po(1 — p1)) — log(pr(1 — po))’

then Py(X = K) > Pi(X = K).

Proof. Let L be a realization of the germ
points that can give rise to the observation K.
The probability of this realization under pq is
Pro(L) = pi(1 — po)/Bl-1H!, whereas under p; it
is Pri(L) = pi''(1 — py)BI-1H, 1t is easy to see
that

Pro(L) > Pry(L) <= ;-g-', < I(po, p1).

[

But any L that can give rise to K necessarily
satisfies

L g (KE@EHJ)C,
thus

12 () <1on, 1) by assumption.
Therefore Pry(L) > Pri(L) uniformly over all L
that can give rise to K. Hence since the two
models have the same primary grain and size
distribution, we conclude that Py(X = K) >
P] (X = K)

Some remarks are in order. This theorem
states that if v(K) < l(po, p1), then we can safely
decide in favor of the null hypothesis Hy in the
sense that our decision, coincides with the ML
decision. That is, if y(K) < l(pg, p1), then we
make a computationally cheap decision, which
also happens to be statistically sound. This
technique may have potential for application in
the automated screening of cell samples, where
the alternative hypothesis corresponds to an ab-
normally high average number of cells per unit
area. Then most of the observed samples can
be classified with minimal effort whereas the
few samples that do not meet the criterion of
Theorem 2 can be examined in greater detail
by either a machine or a human expert.

By symmetry, if the size of the smallest L
that can give rise to the observation K satisfies
|L}/|1B| > U(po, p1), then we can conclude that
P(X = K) > P(X = K) and we can safely
decide in favor of the alternative hypothesis
H,. However, there exists no known efficient
(polynomial-time) algorithm that can determine
the size of the smallest L that can give rise to
K. The only way we know how to do this is
by exhaustive search, whose complexity is expo-
nential in |K|. In this case we might as well
compute the exact likelihoods of the observation
under the two hypotheses and compare them.

The behavior of [ as a function of pg, py is of
considerable interest because it determines the
rate at which Theorem 2 can be used to simplify
ML decisions. It can be shown that [ is roughly
halfway between py and p; i.e.,

_p+
i(po, pr) = 22 > 2y
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Let Egy(X) denote the expectation of v(X)
under pg. It can be proved, along the lines
of proof of Proposition 1, that Egv(X) > po.
In practice, we can estimate both Egy(X) and
the standard deviation of v(X) under py from
a set of training data. Denote these by 7, and
o, respectively. Then, as a rule of thumb, if
p1 > 2(50 + o) — po, we will be able to classify
most of the normal samples optimally and with
minimal effort.

6 Conclusions

In this paper we have taken the approach of
modeling binary digital image data as realiza-
tions of a uniformly bounded discrete random
set, a mathematical object that can be axiomat-
ically defined directly on a finite sample space.
We have argued the merits of such an approach,
most notably the ability to recover the associated
probability measure by means of a Mdbius-type
transformation and knowledge of the generating
functional. On the basis of this result and some
tools of morphological shape analysis, we have
developed a restricted version of the discrete-
case analog of the Boolean random set, obtained
its complete probabilistic specification, and pro-
vided various tools for its statistical inference.
Although, in reality, binary digital image data
are sampled versions of an underlying physical
process, which lives in a continuum, the data
per se can assume only a finite number of real-
izations. This is the case in many applications,
in which physical barriers limit the available
resolution. Although a discrete random-set ap-
proach may ignore the fine letter of the underly-
ing physical structure, it provides a useful, and,
most importantly, tractable idealization, which,
as demonstrated, can lead to practical infer-
ence procedures.

Appendix A
A.1 Proof of Proposition 4
Upper bound:

Px(X = K) = Z (=) QK UKNRH|
K'CK

= Z g KRR
K'CK,|K'|=even
q|K°uK’)e;H'|

K'CK, |K'|=o0dd

Observe that, by distributivity of dilation over
union and by using the union bound,

(K°UKY® H'|=|(K°® H)U(K'® H")|
<|K°e@ H*|+ |K'® H'|.
Furthermore, since H is assumed to contain the
origin,
(K°UK')® H| > |K°UK'| = |[K°| + |K'|.
Therefore, since ¢ is a probability,
Px(X = K)

>

K'CK,|K'|=even

>

K'CK,|K'|=o0dd

= qIK“I z

K'CK,|K'|=even
K'@H*|
x 3 d
K'CK,|K'|=0dd
K* K’ K°®H*
< ql | Z ql I = ql !
K'CK, |K'|=even
x Z qIKeH‘I
K'CK,|K'|=0dd
— AK® K' K°®H*|+|KeH"
= q{ | Z ql - ql [+ |
K'CK,|K'|=even

X Z 1.

K'CK,|K'|=0dd

qIK‘I+IK'i
qlK°oH'|+|K'eH'x

qlK’I - qlK‘QH‘I

Thus

£ (%))

Px(X = K) < ¢*" (
i=even

_qlK"GBH‘HIK@H‘I

. (X,,.;d ("E')) .

Using the fundamental identity
[K|

> (“f'> d=1+2) vzec

i=0
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and successively setting z = —1, 1, we obtain
> (”z'ﬂ> = KT,
i=odd

Similarly, replacing z by ¢z and then setting
z = -1, 1, we obtain

IK|

> (t)q"=%[(1+q)"“+(1—q)""],

i=even

from which we finally obtain the expression for
the upper bound.
We will need the following lemma.

LEMMA 4 (Descartes’ rule of signs [21, pp. 36—
43]). Let p(z) be a polynomial of a real variable
with real coefficients

p(z) = ag + oz + oz’ + - + apz”

Let C denote the number of changes of sign of
the sequence of its coefficients (for each m > 1,
if apo10m < 0, then (a,-1, an) constitute a
change of sign). Let Z be the number of positive
real zeros of p(z) (a zero of multiplicity % is
counted as k zeros). Then

C-Z22>20
and C — Z is an even number.

By using once more the identity

K]

KN\ .
Z (’i') Z=1+2)% vzec,

i=0
it can be seen that Uy(K) can be written as

|K| K| ]
U(K) = Z ( i ) gri+
i=even

__lel—lqlK”eH‘HlK@H‘l.

Since all the coefficients of this polynomial are
strictly positive except for the coefficient of
the highest degree, which is strictly negative,
Descartes’ rule of signs leads us to conclude
that U,(K) has at most one zero in (0, cc). But
Uy(K) = 0, and, therefore, this is the unique
zero in (0, oo). Hence U,(K) >0, Vg € (0, 1).

.

Next, consider the derivative of the upper
bound with respect to g. After some algebraic
manipulation it can be written as

d
— = glK-1
LUK =

X1

LY NI
x [|K°|+ > [( i ) (|K°|+z)]q
i=2,i=even
—2¥-1[|K @ H*| + |K ® H'|]

x qlK"@H"|+|K@H‘|—|K‘|jI .

Again, since all the coefficients of this polyno-
mial are strictly positive except for the coef-
ficient of the highest degree, which is strictly
negative, by using Descartes’ rule of signs we
conclude that (d/dq)U,(K) has at most one zero
in (0, o). But

d
—U,(K ={,
dq q( )q=0
d
—U/(K =0,
dq Q( )q20+
and

d

—U/(K

dq Q( )q=1

= |KcI21K]—1 + lKilel—Z
_2K- Ko @ HY| + |K @ H*|] < 0
VK # 0.

Therefore by continuity, we conclude that
(d/dg)U,(K) has at least one zero in (0, 1), which
must also be unique. Hence since its derivative
has only one zero crossing in (0, 1), U,(K) must
be unimodal in (0, 1).

Lower bound: 1t can be easily seen that one
possible germ configuration that can give rise
to the observation K is given by the set of
points (K° & H*)°. In particular, let L denote
the germ-point process (which is itself a DRS).
Then X can be written as X = L®H. By simple
geometric arguments (X°@® H*)°® H = X and
LC(X°® H")"; i.e.,, X°® H* C L°. Hence

Px(X = K) > qlK‘eH’I(l - q)IK‘eH')"l.
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The lower bound is strictly positive for all
q € (0, 1) (by inspection). One can show that
it is unimodal by looking at its derivative and
using Descartes’ rule of signs. After some
d IK@H"Y|
L= 3

manipulation
K ®H" )|
i
i=

(_l)i('Kc ® Ha' + i)qlKCQH'I'H—l'

Since K # @ and K is realizable (meaning that
it can be written as K = L & H for some
L € Z(B)), it follows that |(K°® H*)| > 1
and |K°@ H*| > 1, in which case the corre-
sponding sequence of coefficients of the poly-
nomial (d/dg)L,(K) has exactly [(K°@® H*)|
sign changes and, therefore, C = I(K°® & H*)e|.
Hence the number of positive zeros is Z < C =
[(K° @ H*)|. However, (d/dg)Ly(K) can also
be written as

d e, A
—_ = — MK ®H ¥|-1
S LR = (1-9)
x (17 o HPlgor-1(1 _ g)
_chQHAIKKc ® H')cl]v

from which it is obvious that it has a zero of mul-
tiplicity [(K°@H*)°|-1 at ¢ = 1. Therefore since
C — Z must be an even number, there remains
one more positive zero to be accounted for. By
inspection of the last formula, (d/dg)L,(K) # 0
for ¢ > 1. Hence this last zero is in (0,1). Since
the derivative has one and only one zero cross-
ing in (0,1), we have established unimodality of
L,(K) in (0,1). The mode location is obtained
by simple differentiation of the logarithm of the
lower bound.

A.2 Proof of Lemma 3

. A .
For convenience, let § = RH denote the generic
primary grain, centered at the origin. Then

x(K)= ] (1-pTsKe{-2}),
ze KQRH"
with
Ts(K) = 1 - Fr(a"({(0, 0)}, K) - 1).

By definition of the distance metric d¥, we can
extend the product domain to the entire base
frame B:

Qx(K) = [T(1 - pTs(K & {-2})).

z€B

Thus
log Qx(K) = ) log(1 - pT5(K & {~z})).

z€B

Taking the derivative with respect to p and eval-
uating at p = 0, we obtain

d
— lo K
™ g Qx(K) -

= - Z;TS(K ® {~z})
—%Pr(Sn(KGB {-2}) #0)
—§E1(SH(KGB {-2}) #0)
-;% (SN(K @ {-2} # 0)
—ElzIE{B@ 5.

Since
p=0—Qx(K)=1w logQx(K) =0,

we have the following first-order Taylor-series
approximation of the logarithm of Qx(K).
ie.,

) D
p=0
log Qx(K) = —pE|K @ §°|
Qx(K) X e PEIKSS' - (,-p) EIKOS"
= qEIKes-|

log Qx(K) = ( % log Qx(K)

since, for p close to 0, e? ¥ (1 -p) = q.
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Notes

10.

. Some preliminary work on modeling simple geometrical

structure by using MRFs has been recently reported
in [3]. The basic idea is to incorporate geometrical
constraints into the MRF clique structure in a suitable
approximate sense. This idea may prove promising.

. A similar idea has been concurrently and independently

developed in [19] and [15]. There is a fundamental
difference between the two formulations: we consider
uniformly bounded discrete random sets, whereas Gout-
sias et al. consider discrete random sets on the infinite
lattice Z2. In a recent paper [12] Goutsias has reconciled
the two approaches by looking at finite observations of
discrete random sets defined on Z2 and using certain key
elements of our analysis in {28] to develop some tools for
the morphological analysis of discrete random shapes.

. The exception is an approximate ML approach proposed

in [10]. However, there are problems with this approach,
as pointed out in [2].

. Refer to {26] for a thorough introduction to the principles

of mathematical morphology. Here we merely reproduce
some basic definitions.

. In digital topology [14], [17], [26] the convex huil of a

bounded set, H C 22, is defined as the intersection of
the convex hull of H in the topology of R? with Z%. A
bounded set, H C Z2, is convex if it is identical to its
convex hull.

. Being realizable means that K can be written as K =

L& H for some L € ¥(B). If K cannot be written
this way, then it is not a realization of the DRBRS
model under consideration and, therefore, its probability
is zero.

. This is a statistical signal-filtering result for a particular

class of DRS models. See [27] for a recent survey
of morphological filtering, and see [9] for a tutorial
overview of the field. Statistical approaches have also
been investigated; for a sample see [7], [8], [24], [28],
[29], {30}, {31].

. Here, “disconnected”™ refers to the chessboard-block, or

nearest-neighbor, sense.

. Many other related notions of skeleton exist. However,

the definition given is sufficient for our purposes.
This idea has been concurrently and independently devel-
oped in [15] as a means of performing shape-size analysis
and synthesis of a different class of DRS models.
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