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Abstract—n wireless cellular communications, accurate local andthe local mean (shadow) power. In order to fully exploit the
mean (shadow) power estimation performed at a mobile station is capacity of the wireless channel, these approaches require accu-
important for use in power control, handoff, and adaptive trans- rate shadow power estimation and prediction [8]

mission. Window-based weighted sample average shadow power A simple t fwind based estimat | iahted
estimators are commonly used due to their simplicity. In practice, Simple type orwindow-based estimators, namely weighte

the performance of these estimators degrades severely when theSample average estimators of local mean power, is currently de-
window size deviates beyond a certain range. The optimal window ployed in many commercial communication systems such as
size for window-based estimators is hard to determine and track GSM [9], and the Motorola Personal Access Communication
in practice due to the continuously changing fading environment. System (PACS) [10]. Various other window-based estimators

Based on a first-order autoregressive model of the shadow process, . . .
we propose a scalar Kalman-filter-based approach for improved have been proposed in [11] and [12]. These window-based esti-

local mean power estimation, with only slightly increased compu- Mators work well under the assumption that the shadow process
tational complexity. Our analysis and experiments show promising is constant over the duration of the averaging window, in which

results. case their performance improves as the window size increases.
Index Terms—Fading channel, handoff, Kalman filtering, local I practice, however, the shadow process varies with time (al-
mean, multipath, power estimation, shadowing. beit slowly relative to the fast-fading process), and this varia-

tion must be considered since both analysis (developed herein)
and experiment shows that the mean square error (MSE) perfor-
mance of these window-based estimators deteriorates severely
OBILITY-INDUCED fading is a serious impairment in when the window size increases beyond a certain value. There-
mobile wireless communications. Due to the motion dbre, tools for choosing the optimal window size are required
the mobile station (MS), the received signal strength fluctuatsy these window-based estimators. The optimal window size
with two multiplicative forms of fading, namely, shadowingdepends not only on the vehicle velocitybut also on the sam-
(local mean, local power) and multipath. Shadowing, a slowlling periodT, and other shadow fading characteristics. To the
varying large-scale path loss, is caused by obstacles in thst of our knowledge, no closed-form expression has been de-
propagation path between the MS and the base station (B)ed in the literature for the optimal window size as a function
The rapidly varying small-scale multipath is due to varyingf system and propagation parameters, with the exception of a
Doppler shift along the different signal paths and the timew empirical results [13], [14]. Although the analysis devel-
dispersion caused by the multipath propagation delays. Aged herein will provide a formula which can be used for com-
one primary indicator of channel quality, the power of theuting the optimal window size numerically, estimates of certain
slowly varying shadow component is important for handofey parameters (like velocity and shadow fading characteristics)
decisions and power control. For example, it has been showte needed to calculate the optimal window size. These require
that a 1-dB reduction in local power estimation error enablggparate nontrivial estimation.
accommodating five more users in a system for a fixed outagein this paper, we propose a novel Kalman-filtering
probability, under a variety of power control schemes [1]. MogKF)-based estimator for the local mean power and ex-
existing handoff algorithms [2]-[5] assume that multipath flugslore how KF compares with window-based estimators, like the
tuations can be adequately filtered and base handoff decisigasmple average (SM) estimator [13], the uniformly minimum
on local mean power estimates. variance unbiased (UMVU) estimator of [12], and the max-
Recently, several adaptive modulation techniques have bé@um likelihood (ML) estimator of [11]. It will be shown that
proposed [6], [7]. These techniques adapt the signal constelkd always meets or exceeds the performance of window-based
tion according to both the instantaneous received signal povegtimators in the MSE sense and provides a host of other side
benefits as well.
This paper is organized as follows. In Section I, we present
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The notation is as followdog(-) denotes base-10 logarithm; It can be shown [4] that the model in (3) implies that the
In(-) denotes basedogarithm; E[-] denotes the mathematicalmarginal probability density function (pdf) of the envelope of
expectation with respect to all the random variables within th&(t)| is Rayleigh, and the pdf ol (¢) is given by [12]

brackets. For a generic real stationary stochastic procg$s In(10) <ln(10) <ln(10) ))
- ——z]). (@)

we user, (1) := E[z(t)z(t + 7)] to denote its correlation func- fu(z) = 10 10 10
tion and use:,.(7) := 7.(7) — (E[z(t)])? for the covariance

function at lagr. The mean off (¢) can be computed from (4) as (cf. [13], [12])
— 10~
H:= E[H(t)] = — 5)
[l. SIGNAL MODEL AND PROBLEM STATEMENT In(10)

The widely acceptedmultiplicative model for the received Wherey = 0.577216 - - - is Euler’s constant. Using (3), the co-
powerp(t) at a mobile station in a wireless cellular radio envivariance offi () is given by (cf. [16])

ronment is given b 2 % ok
J Y cr(r)=E[H(t+7r)H(t)-H = <£) > L‘;D”
p(t) = [h(t) *s(t) (1) mmhlkw
wherelh(t)|? is the fast power fluctuation due to multipa#it) where Jy(-) is the zeroth-order Bessel function of the
is the slow power fluctuation due to shadowing, and the two prrst kind, and the variance off(t) is thus given by
cesses are assumed to be statistically independent. In generghif .—  [10/In(10)]2(x2/6). Although (6) only suggests
E[|h(t)[?] is constant, then it can be absorbed isttd), yielding  that the sampled multipath proce&&(n7) can be assumed
a scaleds(t). This scale can be accounted for via mean removghproximately uncorrelated with a relatively large sampling
inthe log domain, which is tantamount to automatic gain contrgkriod7, the following stronger assumption is usually made.
(AGC). We therefore assume thaf|h(t)|*] = 1 for simplicity. ~ Assumption A:The sampled multipath procegs(nT}) is
In digital systems, power measurements collected at thed. with a marginal pdf given by (4) and independent of the
output of a log amplifier are provided in the form of discretghadow process(nT,).

time real-valued samples in decibels (dB), since this allows One of two alternative assumptions is usually adopted for the
for a wide dynamic range of power levels. The correspondiRgadow process.
log-domain model derived from (1) is Assumption B: The shadow procestn) is constant over the
. duration of the averaging window.
P(t) = 5@) + H(®) ) Assumption C:The shadow process(n) adheres to a first-
whereP(t) := 10log[p(t)], S(t) := 10log[s(t)], andH (t) := order autoregressive (AR) model.
10 log[|h(#)|?]. The focus of this paper is on the latter model In practice, Assumption C is more realistic and subsumes As-
since most handoff algorithms, as well as various system fursttmption B, since a constafi{t) can be regarded as an extreme
tions, like channel access and power control, rely on estimat&se of the AR model correspondingdte= 1, andos = 0.
of shadow power in decibels. A first-order autoregressive [AR(1)] model for the shadow
The problem can then be stated as follows. process was suggested in [17]-[19] based on the measured au-
Given {P(t)}i2,, estimateS(t,). In the discrete-time do- tocovariance function of(t) in urban and suburban environ-
main, we are interested in estimati§gn) := S(nT;) on the ments
basis ofP(i) := P(iTs),i =0, 1, ..., n, whereT is the sam- )
pling period. cs(7) = o5 exp(—v|r|/X.) (7)
To solve this problem, the statistical propertiestbft) and whereoss denotes the shadow variance akid is the effective

5(t) are needed. In practice, the following model for the Multizrejation distance, which is a key attribute of the wireless en-
pathh(t) is usually adopted [15]: vironment. It can be shown that [18]

R D
. 1 j(wp cos p = -
h(t) = Jim 55> bpeder o) 3) A TE

=t whereep is the correlation coefficient of the shadow process
wherewp := 27v/ X is the Doppler spread, is the wavelength petween two points separated by distafceX., is usually in the
corresponding to the carrier frequencys the magnitude of the range between 10 m (urban environments) and 500 m (suburban
mobile velocity [15],R is the number of independent scatterergreas). The value ofs also depends on the environment. In
(usually, R = 20 is sufficient to provide good approximation),suburban areas, a typical value is 8 dB [15], [18], whereas in
b, are the gains{é, }|_; are the angles between the incomingirpan environments it is roughly 4 dB [18].
waves and the mobile antenna, assumed to be i.i.d., uniformlyrhe AR(1) model for the shadow process is given by [18]
distributed ove(—, 7], and{#,}_, are i.i.d. phase random

r=1
variables, also uniformly distributed over, ). S(n) = aS(n 1) + ¢(n) (8)
1Accurate measurement of the received power is a premise of most Io\é\érl].ere S(n) -, S<n2TS>’ ¢(n) 2|S Zzero mean white GaUQSSIan
power estimation approaches [6], [12], [13]. In practice, the effects of additif®0iS€ With variance; = (1 —a®)og, andS[0] ~ N(us, 0g).
measurement noise can be alleviated by averaging over a few closely spatbé coefficients is given by
power estimates and subtracting noise power, which is assumed known at the
receiver. a = exp(—vTs/X,).
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Thus, [20] this corresponds to taking the running average of the received
P(n) samples as follows:
BIS(n)] =a" s () samp
n—1 a 1 - . -
n : SSA[’I”L = == P(i1) - H (11)
cs(n+k, n) =a +k0§+aiakza217 k= 0; " Ni:n—Z]V-i-l ¥
=0
ol whereN is the window sizeP(n) is the received power mea-

Var(S(n)) = cs(n, n) = a2 + 03) Z a2l 9) sqrement, andd is given in (5). Undgr Assgmptions A and_B,
this linear sample mean estimator is unbiased and consistent,
but it does not enjoy the minimum variance property [12].

=0
Note that the mea’[S(n)] decreases monotonically as

increases. The parameter e, Ts, v, Xc) determines the g - yniformly Minimum Variance Unbiased (UMVU) Estimator
second-order statistics of the shadow process. For simplicity, we . ) )
assume thats = 0, thus With Assumptions A and B, the optimum UMVUestimator

was derived in [12] as follows:

E[S(n)] = 0. n
Asn — oo, we have Svarvu(n) = 10 [10’% < Z |p(”TS)|>
cs(n+k, n) — o2a* = cs(k) = rs(k), k>0. (10) i=n7Nl+1 § 1
_ln(l()) i:n;vﬂ E] R

I1l. L ocAL POWER ESTIMATORS

In this section, the conventional window-based estimators forlt is shown in [12] tha@um_vu(n_) is consistent and, more
the shadow proces$(t) are briefly reviewed, and some perti-importantly, the variance of this estimator is approximately 1.65

nent performance analysis is carried out. times smallgr than that Cﬁs’]\,] (n) for N > 15. Itis also proven
in [12] that Sumvu(n) is asymptotically efficient, i.e., a8 —
A. Sample Awvage Estimator o0, it approaches the Cramér—Rao bound (CRB), which is given

Due to the rapidly changing character of the multipatRY 100/[N(In 1(_])2]' [12]. Itis worth mentioning that this CRB
process7 (n), an estimate of local mean power can be obtain&@nnot be achieved by any unbiased finite-sample estimators

by averaging the sampleB(n) and removing the true meanl12]-

H in (5). Under Assumption B, several sample average-basgd .
: - . . ML Estimator

estimators [21], [22], and more generally, linear filter-base )

local power estimators have been proposed in the literaturdn [11], the ML estimatotSyy,(n) for local mean power esti-

[13], [14]. Under Assumption B, the performance of thes@ation under Assumptions A and B has been derived using the

estimators improves as the window size increases. In practigéf in (4) as

especially in the urban scenario, Assumption B is not realistic, n

andthe shadow variation must be take_n into account_. In[13], a@ML(n) =10 [10?5 ( Z |p(nT5)|> — 10%(]\7)] . (13)

integrate-and-dump (ID) filter and a first-order RC filter were i=n—N+1

investigated for the case of time-varying shadow. It is argued

in [13] that the estimation errtﬁ‘(n) — S(n) is approximately

Gaussian, and the estimation bias can be removed by proper

choice of the dc value of the filter's frequency response. The T(N):= ‘ Z (Ip(nT)[)

appropriate choice of the dc value depends on the sampling i=n=N+1

period T,, the mobile velocityv, the effective correlation is a minimal sufficient statistic fof [12] under Assumptions A

distanceX., and the shadow varianee?. Even though it is and B. .

argued in [13] that the standard deviation of the error can beBoth Sy v @and Sy, are nonlinear estimators.

kept within 3 dB over a wide range of mobile velocities and We conclude this section by illustrating the performance of

shadow fading characteristics by proper choice of the filtéhe above-mentioned estimators when Assumption B is satis-

bandwidthz only empirical guidelines were proposed in liedied, which in practice can be approximately true if is small

of an analytical result on the proper choice of filter bandwidthor X. is large.

It should also be mentioned that the worst case investigationUnder Assumption B, we show in the Appendix that the vari-

in [13] aims to design a filter that minimizes the maximunance ofSsyi(n), i.e., the MSE is given by

root mean square (RMS) error over the expected region of

Note that

n

~ 2
(os, X.). Such a filter does not minimize the RMS error for gé‘ - F |:(SSM(TL) _ S) }
each possiblérs, X,). In this paper, we adopt the ID approach o
of [13] as a representative of the conventional linear filtering e (0)

N-1
. L . . N—1 .
techniques for local mean power estimation. In discrete time, N T 2 E < e L> cu (i15) (14)
=1

2Filter bandwidth is proportional to the reciprocal of the averaging window
size. independent ofu.
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Xc =10 m, v =20 km/hr S(t) = S, v =20 km/hr, fc = 900MHz, Ts =0.054s

T T
—— Cramer-Rao bound

MSE

- 1 1 L 1 L 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Window length in seconds

Window size in T

Sample period TS

@

Fig. 1. MSE versug’, and window size ifl’,. ot S(t) = S, v = 20 km/hr, f_ = 900MHz, T, = 0.01s

I
— Cramer-Rao bound
— - Mean
o UMVU

A similar result for the multiplicative model (1) with con- - M
stant shadow process can be found in [23] and [21], where ti
variance ofs := (1/N) Y2 p(nT,) was evaluated. Recall
that under Assumptions A and Bgy is unbiased with vari- ' |
ancecy (0)/N, which is greater than00/[N (In 10)?], the CRB
for this problem. In Fig. 1, it can be seen that, for fixed samply
size N, the MSE in (14) is decreasing d% increases due to =
large T leading to approximately uncorrelated samples, i.e
ey (iT,) — 0, fori # 0. o'

In Fig. 2(a), we can see that, under Assumption B, a large
window size improves the MSE performance of all three esti
mators. As expected, the UMVU has the least mean square er
and gets close to the CRB as the window sW&, increases.

1

The ML estimator provides almost the same performance i o 005 04 0.5 02 025

10°

U MVU Window length in seconds
' . . b
Note that independent sampl¢n7’) are assumed in [12]. _ o ®) L o

In practice, we can only choose the sample peflgdarge ;Ig.(Zb.) S%o;?;anson af'sn, Sumvu,andSyy inthe idealized case. (a) Large

enough to make the successive samples approximately uncoér- B

related. In general, for non-Gaussian processes, uncorrelate]d- . . . o .
) ; . osed-form expression for the optimal window size is not avail-

ness does not imply independence, although the latter is of &

. : o e in the literature. Our theoretical analysis in Section V will
assumed for convenience and mathematical tractability, with ~. : ! :
. provide the means to compute the optimal size of window-based
acceptable results. When the sampling pefigds not large

enough, the performance of all three estimators deviates sig I_tlmators numerically as a function of the system parameters.

cantly from the CRB derived under Assumptions A and B. Thl&evertheless, such an approach may not be su_|table In practice
o - ue to its computational complexity and associated parameter
is illustrated in Fig. 2(b).

estimation and tracking requirements.

Based on the AR(1) model (8) for the shadow procggs,
we propose a scalar Kalman filter (KF)-based approach for local
power estimation. The KF can be regarded as a sequential min-

Under Assumptions A and B, the window-based estimatoraum mean square error (MMSE) estimator of a signal cor-
work well, but note that those two assumptions impose corupted by white Gaussian noise, where the signal is character-
flicting requirements in practice, since makifi§ large con- ized by an AR dynamical model with white Gaussian driving
tradicts the assumption of constant shadow process for a fixealse. When the Gaussian assumption is not valid, as is the case
number of samples. When the variation of the shadow procéssein due to the non-Gaussian distribution of multipath, the KF
is taken into account, the performance of the window-based ésstill the optimal linear MMSE (LMMSE) estimator provided
timators deteriorates severely when the window size increasles driving and measurement noises are white [20]. Addition-
beyond a certain value. The optimal window size is needed fally, whenS(t) is stationary and the KF attains its steady state
these window-based estimators. To the best of our knowledgasn — oo, it reduces to the infinite length Wiener filter. We

IV. KALMAN FILTERING FORLOCAL POWER ESTIMATION



JIANG et al. KALMAN FILTERING FOR POWER ESTIMATION IN MOBILE COMMUNICATIONS 155

only invoke whiteness of the multipath componentriotivate TABLE |
the proposed scalar KF approach as an LMMSE estimator. As KALMAN FILTERING
we will see, the KF works well in this context, even if this white-
ness assumption is violated to a certain degree. S(nln—1) = aS(n—1jn - 1)

AR channelmodeling and KF has been extensively studied, M(njn - 1) = E[(S(n) - $(nn - 1))?]
e.g., see [24], [25]. However, AR(1) channel modeling is not =a?M(n—1n-1)+02

equivale_nt to AR(1) shadow modeling. If the channel is AR(1), Kn) = I\iM(n (nl_l_g .
then so is (total) power; however, the converse is not true, be ~ 7 "_" K P(n) - & —1)
cause power is invariant to phase, e.g., channel phase could t 2 ™") __S(”ln D+ (">2( E") (nln
piecewise constant, and power could still be AR. The AR(1) M () =E(S(n) = S(njn))"} = (1 = K(n))M(n|n - 1)
model for the shadow component has been empirically derivec
and shown to fit measurements well [17]-[19]. Furthermore, to
track the channel coefficient itself using a KF, one needs pilspecific problem, can be found in the literature (see [20, pp.
(training) symbols [24] or else adopt a decision-directed ap36-441] and [29, pp. 397]). We assume that the channel vari-
proach. The latter can only work for very slowly varying chanation is mainly due to the changing mobile velocitynd the
nels, and without frequent retraining, it is prone to error propaerrelation distanceX..; hence, only the variation of is con-
gation. On the other hand, at least for MPSK constellations, togadiered.
power measurement can be achiewdgthout resorting to pi- In a suburban scenario, the shadow process coeffigieah
lots, because power is invariant to the transmitted symbol phase.regarded as constant for a wide range of velocitigsie
Hence, for MPSK, power estimation can be blind, which also &b the fairly largeX.. For example, in the casg. = 300 m,
lows smallefT; without a decrease in throughput. Also note thathen the velocityy is in the range from 5 to 80 km/hr, the
the computational complexity of the extended KF [25] is muckampling period can be chosenBs= 0.216 s, in which case
higher than that of the scalar KF. a € [0.9841, 0.9990]. Therefore, in a suburban scenarocan
When Assumption C is adopted, the scalar KF offers lge assumed known, and only KF is needed. Note that, with this
promising approach compared with the other window-basetoice ofT;, the sampled multipath proce#s(n) can be re-
estimators for the following reasons. garded as approximately uncorrelated, even in the slowest case.
1) The scalar KF is the natural approach for the problem In the urban case, the approximate time invariance of the co-
when the shadow process is characterized by an Affficienta may not be realistic due to the relatively smajl and
model driven by white Gaussian noise. It implementde wide range of velocity. For example, in the casg, = 10
a window-free approach that is optimal in the LMMSHN, if the velocityv is in the range from 5 to 80 km/hr, and the
sense when the multipath is white, with very modestampling periodr’ is set to 0.216 s as before, then it follows
computational complexity (comparable to window-baseftiom the definition ofa thata € [0.6188, 0.9704]. SmallerT
estimators). can reduce the variation afsignificantly, e.g., withl’, = 0.01

2) Joint parameter estimation and KF is feasible [26]-[285; a € [0.9780, 0.9986]; however, such small; yields highly
KF can be developed into a fully adaptive solution fogorrelated measurement noisén ), especially for low mobile
local power estimation, taking advantage of the slowlyelocity v; for example, withv = 20 km/hr andT;; = 0.01 s,
changing nature of the shadow component. the correlation coefficient between the successivé(n) can

3) KF can easily support local power prediction as a direbe roughly 0.5. On the other hand, choosing a relatively large

by-product; this is necessary for adaptive transmissi@mple period’, in the urban scenario necessitates joint param-
[6]-[8]. eter estimation of. and KF.

Recall that Assumption C subsumes Assumption B. UnderThere are several approaches to estimatirigom the re-
Assumption B, and further assuming white Gaussian measugeived powet’(n). One approach is based on second-order sta-
ment noise, it can be shown that KF reduces to the samplics of P(n) assuming that the vehicle velocityhas already
mean estimator with infinite window size, which is both MLbeen accurately estimated [14]. The vehicle veloeiig used
and MMSE optimal. In our problem, the measurement noise computecy (mT). The second-order statistics B{n) are
H(n)is non-Gaussian. This is exactly the reason why; does as follows [14]:
not enjoy the minimum variance property even under Assump-
tion B, since when the measurement noise is non-Gaussign rp(mTy) = E[P(nTs)P(nT, +mT)]
cannot b_e regargied as the_ app_roximate ML or MMSE estimator. — cu(mT,) + (ﬁ n MS)Z + 02 exp(—vmTs/X.).
Meanwhile, KF is still optimal in the LMMSE sense provided
the non-Gaussian measurement noise is white. In practice, however, obtaining an accurate estimate of the

The scalar KF is summarized in Table I, where the estimateelocity v is not trivial; in fact, accurate velocity estimation can
of S(n) based on{ P(i)}1", is denoted as$/(n|m), M(n|n — be more difficult than estimating the local mean. An alternative
1) is the one-step minimum prediction MSE at stateand method based on second-order statistic$6f) is to choose
M(n|n) is the MMSE at stater. K(n) is the Kalman gain. the sampling period large so thaty (mTs) is approximately
The parameter g given in Section Il can be precomputed, andero form # 0, in which case the need to estimatés cir-
ai = (1 — a®)o%. The Kalman Prediction (KP), and fixedcumvented. This approach only provides rather coarse estimates
point Kalman Smoothing (KS) algorithm, as it pertains to owf a.
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X,=10m, g =4 dB, v =20 km/hr

Assuming thata is changing slowly and the initiat is
available, joint AR parameter estimation and KF is feasib
[26]-[28]. The method in [28] requires neither the transmitte
data [26] nor complicated extended KF [27]. The basic ide 4
behind [28] is to use finite sample least squares to update
based on smoothed power estimates.

30—

25—

V. PERFORMANCEANALYSIS, SMULATION , AND DISCUSSION

& 20 —
In this section, the estimation and prediction of local meaz‘
power using the approach presented in Section IV are compa™ "* 7|
with those obtained using the conventional approaches reviev ,,_
in Section Ill, in the practical setting where the shadow proce
obeys the AR(1) model. 57

We define the least squares error (LSE) as

0.35 03 0.25 20 Window size in T,

0.2 0.15 0.1 0.05 o

L
1 ~ 2 ample perio
LSE= 73" [S(n) = $(n)] epereet,
n=1 Fig. 3. MSE versuds andN.

&~

as the performance criterion, whefén) is the estimator of
S(n) and L is the total sample sizd(# window sizeN).
For the KF approach, the MSE

We note that (16) can be shown to be consistent with (14),
either by lettingpg = 0 ora — 1

N -1 2 a— Na"¥ + (N —1)aNt!
lim e a4 +( )a =0

L
e, B T
=t Equation (16) provides an analytical indicator of performance

In a stationary environment, the KF approaches the linear tinf¥f-the sample mean estimator in the varying shadow process
invariant Wiener filter, and// (n|n) — M (c0) asL — oo; the scenario without assuming that the multipath process is white.
closed-form expression fdif (co) can be found in [20]. For our For given parameters;, v, o5, andX., (16) can also be used
problem, the specific form af/ (o) is derived in the Appendix. for computing the optimal window siz¥ for the sample mean
This yields (15), shown at the bottom of the page. estimator numerically.

Equation (15) suggests that smaltey and/or larger lead ~ For fixed N, asT; — oo, it can be shown that (16) converges
to better performance. In fact, (15) goes to zera approaches t0 the limit
1 or o5 goes to 0. In practice, larger can be obtained for N-1, cu(0)
small sample period’; or large effective correlation distance N /s + N
X_.; however, note that (15) is valid under the assumption tha

the sampled multipath proce#&(n) is white. This is approxi- wi]_eregs, whefl, — 0, (16) converges to the constan(0),
mately true if7, is relatively large, but small’; will make the which is roughly 31. In Fig. 3, we pI(_)t the MSE in (16) versus
performance of KF deviate from (15) T, and N. We observe that there exists an optifialfor each

For the sample mean estimator, it is shown in the Append(&(edN and an optimalV f_or e;ach fixedr. Based.on Fig. 3, fpr
that givenv, o,, and X,, (16) indicates that there exists an optimal
(T, N) pair for Ssyr, and the optimal’, is small. However, it
1 & ) 2 is difficult to compute the optimali(;, V) pair analytically due
Jim BILSE]= lim — Y E [(S(n)_SSJ\I(n)) } to the following reasons.
n=1 1) Equation (16) is discrete iV, and the upper limit of the

L

> (S(n) ~ Snlm))’

n=1

HBH:%E

_[N-1 2 a—Na" +(N-1)aV*! summation is in terms oW.
“|"N N2 (1—a)? Is 2) The derivative oty (¢) is difficult to compute for # 0.
3) Based onFig. 3, asingularity of the MSE function appears
cu(0) =N aroundT; = 0, as we have observed
———=+2 /T 16 ® L - o
+ N + ; N2 en (i) (16) We also note that it is very difficult to derive similar formulas
for UMVU and ML estimators due to their nonlinearity. How-
where theN is the window size. ever, in all our experiments, we have observed that the optimal
1— a2) (o2 232 1 4020202, — 1—a2 2 2
Llim E[LSE]| =v1—a? V(L= a5 +op)” + a;gaH V1) (o5 + o) (15)
— 00 a
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X, =10m,o4 =4 dB, v =20 km/hr, f = 900MHz, T_ = 0.01 sec
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Fig. 6. Comparison in urban areas with small

of all estimators improves, as expected. The optimal window
size for each window-based estimator increases as the effec-
tive correlation distanceX. increases, since largef. makes
the shadow proces$(n) more like a constant. Thus, within a
certain window size range, the performance of window-based
estimators behaves more like in the idealized case, where the
performance improves as the window size increases. Due to the
varying shadow process, the performance of all window-based
estimators will deteriorate eventually when the window size ex-
ceeds a certain threshold. In the suburban scenario, the KF still
provides the minimum LSE, as it does in the urban case.

The sampling period’; plays a special role here. For the KF,
the smaller thd’; is, the closewr is to 1, and we might expect
a better LSE performance according to (15). However, the mul-
tipath H(¢) sampled at a smalléF; becomes more correlated,
which implies that the KF performance may deviate from what
(15) predicts. For example, in Fig. 6, the sampling pefigd
is decreased relative to the setup in Fig. 4, and it can be ob-
served that the theoretical performance computed by (15) in-

window sizes for UMVU and ML are close to the correspondindeed predicts a better LSE performance than the case Where

optimum for SM.

A. Kalman Filtering Only

is large. However, the true performance of KF deviates signifi-
cantly from the theoretical analysis. Although, in the siall
case, (15) cannot provide an accurate prediction of the MSE per-

In this Subsection, the coefficiemis assumed to be a\/a”ab|e_f0rmance of KF, the simulations indicate that the KF still almost

In F|g 4, we compare the KF approach with window-based e%hNa.yS prOVideS the minimum LSE Compared with all other es-
timators in urban areas, along with the theoretical results in (1B)ators. The overall performance of all estimators improves
and (16). The theoretical performance of the sample mean &hghtly as the sample peridfl, moderately decreases, before
the KF are computed by (15), and (16) accordingly. We obser¥e falls below a certain value.

that the performance of all window-based estimators deterio-

rates beyond a window size when more samples are used tOESAR Parameter Estimation Considerations

timate the local mean. A unique optimal window size for each o _ _
window-based estimator exists. As expected based on (15) andoint parameter estimation and KF is necessary in urban areas

(16), KF exhibits the least LSE among all estimators, and tHath relatively large sampling period;. However, both rela-
large sampling period, brings the performance of KF close totively large and relatively small; cases are investigated due to

its theoretical limit given by (15).

the following two reasons.

In Fig. 5, the suburban case is considered. In such a scenariol) A large sampling period, yields KF performance close

the assumption of almost constanis acceptable, as we ex-
plained in Section IV. Due to the larg&., the performance

to the theoretical analysis. Meanwhile, a larfje also
leads to a large theoretical LSE.
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2) Asmaller, reduces the theoretical MSE, while the LSE , _ Yom1omeg-AdBv-20- 0kmn k- S0ME ,
performance of KF may not suffer too much by the rela- |, v

tively small T, which may lead to better overall perfor- *|
mance than the one with largét.
The performance of joint parameter estimation and KF [28]
for power estimation will be illustrated as follows. We assume **| |
that the coefficient is initially available, and the mobile ve- =%
locity v increases slowly from 20 to 80 km/hr over 500 m. Two §2
different sample periods are adopted. With a sthal= 0.01s, ~ |'
the variation ofa can be kept within 2% of the smallestand 2o 0000000 00000]
therefore the coefficient used in KF can be assumed to be 4| ! oo 0TI oY N B
constant (taken to be the mean ©f WhenT; is chosen as |
0.1 s, the largesi can be 18% greater than the smallest one. "°|,_¢ |
hence joint parameter estimation and KF [28] is needed. Th s}
coefficienta is updated every 500 samples, using a 200-sampl ‘ . . . . . ‘ ‘ ‘
LS method on 200 smoothed power estimates (e.g., the 200 e ° ! 2 ? Window ength i sample periods T ¢ ° e
timates{S(i)}#3%., are smoothed byP(i)}2%9). We observed @
that the fixed point smoothing converges within less than 50 in- X 10 i = 48, - 20 - 0 K, | - SO0V
coming future received power samples. In Fig. 7(a), we com: so ; — ° —
pare the LSE performance of all window-based estimators witl o o UMvu |
largeT’, KF with smallT,, KF with largeT, and the joint pa- S e
rameter estimation and KF with the same large sampling perio “f o KPwT —00ts © ||
T,. The coefficient: in KF is assumed to be available and given
by the mean of the range af We first observe that joint pa-
rameter estimation and KF reduces the LSE only slightly comg ™[, : )
pared with KF with the sam#&),. Second, note that both out- s}
perform the best LSE performance achieved by window-base |
estimators, while KF with the smdll; performs better than all “r 0 £.0 000000009 ]
other estimators. Finally, observe that in the varying velocity s ' R B S S S
case KF outperforms the window-based estimators by 1-2 dE | |
instead of just achieving the best LSE performance attainabl s
by the window-based estimators. Unlike the constamise, 5k 7
compared with KF, the window-based estimators do not im- o, : : : ; : . : : : o
prove much by adopting a smallg;. These experiments sug- Window length in sample periods T,
gest that, in the urban scenario, parameter estimation can be (b)
avoided by choosing a relatively Sma”_ sampl_mg perlqd (e'g=ig.7. KF without parameter estimation versus KF with parameter estimation.
Ts = 0.01 s), and KF with such a sampling period provides th@) KF with large to moderately small,. (b) KF with very smallT.
best results.
However, it is not reasonable to expect that the LSE perfor-
mance of KF gets better and betterasbecomes smaller and = kaiman Smoothing and Prediction
smaller. In fact, we show in Fig. 7(b) that, with a very small i
sampling period’; = 0.001 s, KF provides slightly worse LSE So. far, only causal shadow power estlmat(_)rs have. been
than the best LSE performance attainable by the Window-bascg&s!dered' If future sampl_es are ayallable (equivalently, if one
estimators. This is not a surprise. &S goes down oo much, revisits a past shadow estimate Wlth the added knowledge of
the correlation between the successive multipath sandp(es look-ahead samples),_noncausal estimators naturally y|eId_m0re
. . accurate shadow estimates. However, such delayed estimates
comes to play a role. Whefi, = 0.1 s, the correlation coeffi-

ientb . lesis| han 0 h may not be very useful for power control, handoff, or adaptive
cient between successi(n) samplesis less than 0.1, w €8/ odulation, because noncausal estimates quickly become

whenT; = 0.01 seconds, the coefficient is roughly 0.4, andpsojete, e.g., handoff protocols only allow very limited
this number can grow as high as 0.97, whign = 0.001 S pysteresis. Note that our use of Kalman smoothing so far has
is adopted. KF suffers severely due to the highly correlatgfen primarily intended for AR parameter estimation, rather
H(n). An optimal T is desirable for KF. However, (15) ne-than power estimation. However, it is interesting to compare
glects multipath correlation; hence, it cannot be used to derikgiman-smoothing-based noncausal power estimates versus

the optimal7’; for KF analytically. It is difficult to calculate noncausal (two-sided) SM power estimates. This is illustrated
asymptotic KF performance under colored measurement noiserig. 8.

except if this noise can also be modeled as AR with known pa-The Kalman algorithm also provides easy prediction of
rameters [30]. the local mean power. Without undue discussion, we simply

ML

KF w/T_=0.1s
& ParaEsti&KF w/T =0.1s 1
4 KFW/T_=0.01s

401

351

LSE (d
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illustrate performance of Kalman prediction (KP) in Fig. 9(a)

and (b).
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VI. CONCLUSION

In this paper, based on the widely accepted AR(1) model of
the shadow process, we proposed a KF-based approach to esti-
mate the shadow proceS$t) corrupted by the multipat/ (¢)
and derived the expected value of LSE achieved asymptotically
by the sample mean estimator and KF. Joint parameter estima-
tion and KF was also discussed when the AR parameter varies
over a wide range, as is typical in urban areas with sfall
We showed that window-free KF either meets or exceeds the
performance of conventional window-based causal estimators
under Assumption C. Our results suggest that a relatively small
T, yields better LSE performance for KF, even though it vio-
lates the multipath whiteness assumption. The experiments also
suggest that joint parameter estimation and KF can be avoided
by choosing a relatively small sampling peri@gl. As a side
bonus, Kalman prediction for power estimation is also possible.
This is important for adaptive transmission. The improvement
in performance is partly attributed to the fact that the Kalman
filter can be regarded as approximating the sequential LMMSE
estimator for the problem at hand (albeit not exactly, due to the
mild dependence of multipath samples).

APPENDIX
Derivation of M (o0): Itis shownin [20] thaf\/(oo) is given
by
o (azM(oo) + oi)
M(o0) = a7

a?M (o0) + oi +o0%
Recalling that} = (1 —a?)og, and solving (17) fo (c0),
we find
—(1—a?) (0% +0%)
2a?
\/(1 —a?)? (0% + 0%{)2 + 4a%(1 — a?)oio%
2a2 '

M(o0) =

+

O
Derivation of (14) and (16):If S(n) is assumed to be con-
stant,S, then

SYSM("):% > P(i)—F=S+% S HG)-T.
i=n—N+1 i=n—N+1 (18)
Therefore, (14) is obtained using
i n 2
E[(S’—gSM(n))Z] =F <i Z H(O_F)
I i=n—N+1
_ : . )
=B <— > {H)- H})
1=n—N+1
0 XZ/N
= CH]\(I ) +2 kZZI < N Z) cu (kTs)
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When the shadow process follows an AR(1) model, we obtain

E |:(§SJ\I(TL) - S(n

~—
N—

V]
| I |

B 2
1 " —
=F||—= P(i)— H - S(n)
_<N 1=n—N+1
—p <% [SG) + H(i)} - T - S(n)
L 1=n—N+1
- F {% S 186) - ()]
L i=n—N+1

r > [H6)-) (20)

i=n—N+1
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N-—1
N-1, ka*
:TUS‘Z;W%

N-1
N -1 2
2 k
=% |y W ke
k=1
N—-1 2 a—NdV+(N-1)a¥*!
_ 2 |- <
— s [ N N2 (1—a)? (22)
which completes the derivation of (16). O
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Due to the fact that the shadow process and the multipath

process are mutually independent, and for fiRédFE[S(i)] —

0,i=(n—N+1), ..., n,asn — oo, (20) can be rewritten as

5 [(SSM(m - s(nﬂ

LA L S CORKI)
i=n—N+1
+E %i:n;m [H(i) - H] (21)

whenn — oo.

(1]

[2]

(3]
(4]
(5]
(6]

(71

8
The second term in (21) has already been obtained in (19).[ ]

The first term in (21) can be computed from (10) as follows:

2
1 - ,
Bl X 1S60)-5m)
1=n—N+1
_ ) . )
=F|{ = S(i) — S(n)
i Ni:n—N+1
_ ) . )
=E|~ >, S0
Nz:n—]V—l—l
1 n
—2E |+ > S@)S(n)| + E[S(n)?]
i=n—N+1
N-1
N —k
_ 2 2 k
N2 N05+2; N2 osa
1 N—1
-2 N cr%ak —f—o%

[9]

(10]
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