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Abstract—In wireless cellular communications, accurate local
mean (shadow) power estimation performed at a mobile station is
important for use in power control, handoff, and adaptive trans-
mission. Window-based weighted sample average shadow power
estimators are commonly used due to their simplicity. In practice,
the performance of these estimators degrades severely when the
window size deviates beyond a certain range. The optimal window
size for window-based estimators is hard to determine and track
in practice due to the continuously changing fading environment.
Based on a first-order autoregressive model of the shadow process,
we propose a scalar Kalman-filter-based approach for improved
local mean power estimation, with only slightly increased compu-
tational complexity. Our analysis and experiments show promising
results.

Index Terms—Fading channel, handoff, Kalman filtering, local
mean, multipath, power estimation, shadowing.

I. INTRODUCTION

M OBILITY-INDUCED fading is a serious impairment in
mobile wireless communications. Due to the motion of

the mobile station (MS), the received signal strength fluctuates
with two multiplicative forms of fading, namely, shadowing
(local mean, local power) and multipath. Shadowing, a slowly
varying large-scale path loss, is caused by obstacles in the
propagation path between the MS and the base station (BS).
The rapidly varying small-scale multipath is due to varying
Doppler shift along the different signal paths and the time
dispersion caused by the multipath propagation delays. As
one primary indicator of channel quality, the power of the
slowly varying shadow component is important for handoff
decisions and power control. For example, it has been shown
that a 1-dB reduction in local power estimation error enables
accommodating five more users in a system for a fixed outage
probability, under a variety of power control schemes [1]. Most
existing handoff algorithms [2]–[5] assume that multipath fluc-
tuations can be adequately filtered and base handoff decisions
on local mean power estimates.

Recently, several adaptive modulation techniques have been
proposed [6], [7]. These techniques adapt the signal constella-
tion according to both the instantaneous received signal power
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andthe local mean (shadow) power. In order to fully exploit the
capacity of the wireless channel, these approaches require accu-
rate shadow power estimation and prediction [8].

A simple type of window-based estimators, namely weighted
sample average estimators of local mean power, is currently de-
ployed in many commercial communication systems such as
GSM [9], and the Motorola Personal Access Communication
System (PACS) [10]. Various other window-based estimators
have been proposed in [11] and [12]. These window-based esti-
mators work well under the assumption that the shadow process
is constant over the duration of the averaging window, in which
case their performance improves as the window size increases.
In practice, however, the shadow process varies with time (al-
beit slowly relative to the fast-fading process), and this varia-
tion must be considered since both analysis (developed herein)
and experiment shows that the mean square error (MSE) perfor-
mance of these window-based estimators deteriorates severely
when the window size increases beyond a certain value. There-
fore, tools for choosing the optimal window size are required
for these window-based estimators. The optimal window size
depends not only on the vehicle velocity, but also on the sam-
pling period and other shadow fading characteristics. To the
best of our knowledge, no closed-form expression has been de-
rived in the literature for the optimal window size as a function
of system and propagation parameters, with the exception of a
few empirical results [13], [14]. Although the analysis devel-
oped herein will provide a formula which can be used for com-
puting the optimal window size numerically, estimates of certain
key parameters (like velocity and shadow fading characteristics)
are needed to calculate the optimal window size. These require
separate nontrivial estimation.

In this paper, we propose a novel Kalman-filtering
(KF)-based estimator for the local mean power and ex-
plore how KF compares with window-based estimators, like the
sample average (SM) estimator [13], the uniformly minimum
variance unbiased (UMVU) estimator of [12], and the max-
imum likelihood (ML) estimator of [11]. It will be shown that
KF always meets or exceeds the performance of window-based
estimators in the MSE sense and provides a host of other side
benefits as well.

This paper is organized as follows. In Section II, we present
the signal model and state the problem of local mean power es-
timation. The conventional window-based causal estimators are
discussed in Section III. Section IV proposes the KF-based ap-
proach for local power estimation. Performance analysis, simu-
lations, and discussion are presented in Section V, and conclu-
sions are drawn in Section VI.
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The notation is as follows: denotes base-10 logarithm;
denotes base-logarithm; denotes the mathematical

expectation with respect to all the random variables within the
brackets. For a generic real stationary stochastic process,
we use to denote its correlation func-
tion and use for the covariance
function at lag .

II. SIGNAL MODEL AND PROBLEM STATEMENT

The widely accepted1 multiplicative model for the received
power at a mobile station in a wireless cellular radio envi-
ronment is given by

(1)

where is the fast power fluctuation due to multipath,
is the slow power fluctuation due to shadowing, and the two pro-
cesses are assumed to be statistically independent. In general, if

is constant, then it can be absorbed into, yielding
a scaled . This scale can be accounted for via mean removal
in the log domain, which is tantamount to automatic gain control
(AGC). We therefore assume that for simplicity.

In digital systems, power measurements collected at the
output of a log amplifier are provided in the form of discrete
time real-valued samples in decibels (dB), since this allows
for a wide dynamic range of power levels. The corresponding
log-domain model derived from (1) is

(2)

where , , and
. The focus of this paper is on the latter model

since most handoff algorithms, as well as various system func-
tions, like channel access and power control, rely on estimates
of shadow power in decibels.

The problem can then be stated as follows.
Given , estimate . In the discrete-time do-

main, we are interested in estimating on the
basis of , , where is the sam-
pling period.

To solve this problem, the statistical properties of and
are needed. In practice, the following model for the multi-

path is usually adopted [15]:

(3)

where is the Doppler spread, is the wavelength
corresponding to the carrier frequency,is the magnitude of the
mobile velocity [15], is the number of independent scatterers
(usually, is sufficient to provide good approximation),

are the gains, are the angles between the incoming
waves and the mobile antenna, assumed to be i.i.d., uniformly
distributed over , and are i.i.d. phase random
variables, also uniformly distributed over .

1Accurate measurement of the received power is a premise of most local
power estimation approaches [6], [12], [13]. In practice, the effects of additive
measurement noise can be alleviated by averaging over a few closely spaced
power estimates and subtracting noise power, which is assumed known at the
receiver.

It can be shown [4] that the model in (3) implies that the
marginal probability density function (pdf) of the envelope of

is Rayleigh, and the pdf of is given by [12]

(4)

The mean of can be computed from (4) as (cf. [13], [12])

(5)

where is Euler’s constant. Using (3), the co-
variance of is given by (cf. [16])

(6)
where is the zeroth-order Bessel function of the
first kind, and the variance of is thus given by

. Although (6) only suggests
that the sampled multipath process can be assumed
approximately uncorrelated with a relatively large sampling
period , the following stronger assumption is usually made.

Assumption A:The sampled multipath process is
i.i.d. with a marginal pdf given by (4) and independent of the
shadow process .

One of two alternative assumptions is usually adopted for the
shadow process.

Assumption B:The shadow process is constant over the
duration of the averaging window.

Assumption C:The shadow process adheres to a first-
order autoregressive (AR) model.

In practice, Assumption C is more realistic and subsumes As-
sumption B, since a constant can be regarded as an extreme
case of the AR model corresponding to , and .

A first-order autoregressive [AR(1)] model for the shadow
process was suggested in [17]–[19] based on the measured au-
tocovariance function of in urban and suburban environ-
ments

(7)

where denotes the shadow variance and is the effective
correlation distance, which is a key attribute of the wireless en-
vironment. It can be shown that [18]

where is the correlation coefficient of the shadow process
between two points separated by distance. is usually in the
range between 10 m (urban environments) and 500 m (suburban
areas). The value of also depends on the environment. In
suburban areas, a typical value is 8 dB [15], [18], whereas in
urban environments it is roughly 4 dB [18].

The AR(1) model for the shadow process is given by [18]

(8)

where , is zero mean white Gaussian
noise with variance , and .
The coefficient is given by
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Thus, [20]

(9)

Note that the mean decreases monotonically as
increases. The parameter set determines the
second-order statistics of the shadow process. For simplicity, we
assume that , thus

As , we have

(10)

III. L OCAL POWER ESTIMATORS

In this section, the conventional window-based estimators for
the shadow process are briefly reviewed, and some perti-
nent performance analysis is carried out.

A. Sample AverageEstimator

Due to the rapidly changing character of the multipath
process , an estimate of local mean power can be obtained
by averaging the samples and removing the true mean

in (5). Under Assumption B, several sample average-based
estimators [21], [22], and more generally, linear filter-based
local power estimators have been proposed in the literature
[13], [14]. Under Assumption B, the performance of these
estimators improves as the window size increases. In practice,
especially in the urban scenario, Assumption B is not realistic,
and the shadow variation must be taken into account. In [13], an
integrate-and-dump (ID) filter and a first-order RC filter were
investigated for the case of time-varying shadow. It is argued
in [13] that the estimation error is approximately
Gaussian, and the estimation bias can be removed by proper
choice of the dc value of the filter’s frequency response. The
appropriate choice of the dc value depends on the sampling
period , the mobile velocity , the effective correlation
distance , and the shadow variance . Even though it is
argued in [13] that the standard deviation of the error can be
kept within 3 dB over a wide range of mobile velocities and
shadow fading characteristics by proper choice of the filter
bandwidth,2 only empirical guidelines were proposed in lieu
of an analytical result on the proper choice of filter bandwidth.
It should also be mentioned that the worst case investigation
in [13] aims to design a filter that minimizes the maximum
root mean square (RMS) error over the expected region of

. Such a filter does not minimize the RMS error for
each possible . In this paper, we adopt the ID approach
of [13] as a representative of the conventional linear filtering
techniques for local mean power estimation. In discrete time,

2Filter bandwidth is proportional to the reciprocal of the averaging window
size.

this corresponds to taking the running average of the received
samples as follows:

(11)

where is the window size, is the received power mea-
surement, and is given in (5). Under Assumptions A and B,
this linear sample mean estimator is unbiased and consistent,
but it does not enjoy the minimum variance property [12].

B. Uniformly Minimum Variance Unbiased (UMVU) Estimator

With Assumptions A and B, the optimum UMVUestimator
was derived in [12] as follows:

(12)

It is shown in [12] that is consistent and, more
importantly, the variance of this estimator is approximately 1.65
times smaller than that of for . It is also proven
in [12] that is asymptotically efficient, i.e., as

, it approaches the Cramér–Rao bound (CRB), which is given
by , [12]. It is worth mentioning that this CRB
cannot be achieved by any unbiased finite-sample estimators
[12].

C. ML Estimator

In [11], the ML estimator for local mean power esti-
mation under Assumptions A and B has been derived using the
pdf in (4) as

(13)

Note that

is a minimal sufficient statistic for [12] under Assumptions A
and B.

Both and are nonlinear estimators.
We conclude this section by illustrating the performance of

the above-mentioned estimators when Assumption B is satis-
fied, which in practice can be approximately true if is small
or is large.

Under Assumption B, we show in the Appendix that the vari-
ance of , i.e., the MSE is given by

(14)

independent of .
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Fig. 1. MSE versusT and window size inT .

A similar result for the multiplicative model (1) with con-
stant shadow process can be found in [23] and [21], where the
variance of was evaluated. Recall
that under Assumptions A and B, is unbiased with vari-
ance , which is greater than , the CRB
for this problem. In Fig. 1, it can be seen that, for fixed sample
size , the MSE in (14) is decreasing as increases due to
large leading to approximately uncorrelated samples, i.e.,

, for .
In Fig. 2(a), we can see that, under Assumption B, a larger

window size improves the MSE performance of all three esti-
mators. As expected, the UMVU has the least mean square error
and gets close to the CRB as the window size increases.
The ML estimator provides almost the same performance as
UMVU.

Note that independent samples are assumed in [12].
In practice, we can only choose the sample periodlarge
enough to make the successive samples approximately uncor-
related. In general, for non-Gaussian processes, uncorrelated-
ness does not imply independence, although the latter is often
assumed for convenience and mathematical tractability, with
acceptable results. When the sampling periodis not large
enough, the performance of all three estimators deviates signifi-
cantly from the CRB derived under Assumptions A and B. This
is illustrated in Fig. 2(b).

IV. K ALMAN FILTERING FORLOCAL POWERESTIMATION

Under Assumptions A and B, the window-based estimators
work well, but note that those two assumptions impose con-
flicting requirements in practice, since making large con-
tradicts the assumption of constant shadow process for a fixed
number of samples. When the variation of the shadow process
is taken into account, the performance of the window-based es-
timators deteriorates severely when the window size increases
beyond a certain value. The optimal window size is needed for
these window-based estimators. To the best of our knowledge, a

(a)

(b)

Fig. 2. Comparison of^S , ^S , and^S in the idealized case. (a) Large
T . (b) SmallT .

closed-form expression for the optimal window size is not avail-
able in the literature. Our theoretical analysis in Section V will
provide the means to compute the optimal size of window-based
estimators numerically as a function of the system parameters.
Nevertheless, such an approach may not be suitable in practice
due to its computational complexity and associated parameter
estimation and tracking requirements.

Based on the AR(1) model (8) for the shadow process,
we propose a scalar Kalman filter (KF)-based approach for local
power estimation. The KF can be regarded as a sequential min-
imum mean square error (MMSE) estimator of a signal cor-
rupted by white Gaussian noise, where the signal is character-
ized by an AR dynamical model with white Gaussian driving
noise. When the Gaussian assumption is not valid, as is the case
herein due to the non-Gaussian distribution of multipath, the KF
is still the optimal linear MMSE (LMMSE) estimator provided
the driving and measurement noises are white [20]. Addition-
ally, when is stationary and the KF attains its steady state
as , it reduces to the infinite length Wiener filter. We
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only invoke whiteness of the multipath component tomotivate
the proposed scalar KF approach as an LMMSE estimator. As
we will see, the KF works well in this context, even if this white-
ness assumption is violated to a certain degree.

AR channelmodeling and KF has been extensively studied,
e.g., see [24], [25]. However, AR(1) channel modeling is not
equivalent to AR(1) shadow modeling. If the channel is AR(1),
then so is (total) power; however, the converse is not true, be-
cause power is invariant to phase, e.g., channel phase could be
piecewise constant, and power could still be AR. The AR(1)
model for the shadow component has been empirically derived
and shown to fit measurements well [17]–[19]. Furthermore, to
track the channel coefficient itself using a KF, one needs pilot
(training) symbols [24] or else adopt a decision-directed ap-
proach. The latter can only work for very slowly varying chan-
nels, and without frequent retraining, it is prone to error propa-
gation. On the other hand, at least for MPSK constellations, total
power measurement can be achievedwithout resorting to pi-
lots, because power is invariant to the transmitted symbol phase.
Hence, for MPSK, power estimation can be blind, which also al-
lows smaller without a decrease in throughput. Also note that
the computational complexity of the extended KF [25] is much
higher than that of the scalar KF.

When Assumption C is adopted, the scalar KF offers a
promising approach compared with the other window-based
estimators for the following reasons.

1) The scalar KF is the natural approach for the problem
when the shadow process is characterized by an AR
model driven by white Gaussian noise. It implements
a window-free approach that is optimal in the LMMSE
sense when the multipath is white, with very modest
computational complexity (comparable to window-based
estimators).

2) Joint parameter estimation and KF is feasible [26]–[28];
KF can be developed into a fully adaptive solution for
local power estimation, taking advantage of the slowly
changing nature of the shadow component.

3) KF can easily support local power prediction as a direct
by-product; this is necessary for adaptive transmission
[6]–[8].

Recall that Assumption C subsumes Assumption B. Under
Assumption B, and further assuming white Gaussian measure-
ment noise, it can be shown that KF reduces to the sample
mean estimator with infinite window size, which is both ML
and MMSE optimal. In our problem, the measurement noise

is non-Gaussian. This is exactly the reason why does
not enjoy the minimum variance property even under Assump-
tion B, since when the measurement noise is non-Gaussian
cannot be regarded as the approximate ML or MMSE estimator.
Meanwhile, KF is still optimal in the LMMSE sense provided
the non-Gaussian measurement noise is white.

The scalar KF is summarized in Table I, where the estimator
of based on is denoted as ,

is the one-step minimum prediction MSE at state, and
is the MMSE at state . is the Kalman gain.

The parameter given in Section II can be precomputed, and
. The Kalman Prediction (KP), and fixed

point Kalman Smoothing (KS) algorithm, as it pertains to our

TABLE I
KALMAN FILTERING

specific problem, can be found in the literature (see [20, pp.
436–441] and [29, pp. 397]). We assume that the channel vari-
ation is mainly due to the changing mobile velocityand the
correlation distance ; hence, only the variation of is con-
sidered.

In a suburban scenario, the shadow process coefficientcan
be regarded as constant for a wide range of velocitiesdue
to the fairly large . For example, in the case m,
when the velocity is in the range from 5 to 80 km/hr, the
sampling period can be chosen as s, in which case

. Therefore, in a suburban scenario,can
be assumed known, and only KF is needed. Note that, with this
choice of , the sampled multipath process can be re-
garded as approximately uncorrelated, even in the slowest case.

In the urban case, the approximate time invariance of the co-
efficient may not be realistic due to the relatively small and
the wide range of velocity. For example, in the case
m, if the velocity is in the range from 5 to 80 km/hr, and the
sampling period is set to 0.216 s as before, then it follows
from the definition of that . Smaller
can reduce the variation ofsignificantly, e.g., with
s, ; however, such small yields highly
correlated measurement noise , especially for low mobile
velocity ; for example, with km/hr and s,
the correlation coefficient between the successive can
be roughly 0.5. On the other hand, choosing a relatively large
sample period in the urban scenario necessitates joint param-
eter estimation of and KF.

There are several approaches to estimatingfrom the re-
ceived power . One approach is based on second-order sta-
tistics of assuming that the vehicle velocityhas already
been accurately estimated [14]. The vehicle velocityis used
to compute . The second-order statistics of are
as follows [14]:

In practice, however, obtaining an accurate estimate of the
velocity is not trivial; in fact, accurate velocity estimation can
be more difficult than estimating the local mean. An alternative
method based on second-order statistics of is to choose
the sampling period large so that is approximately
zero for , in which case the need to estimateis cir-
cumvented. This approach only provides rather coarse estimates
of .
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Assuming that is changing slowly and the initial is
available, joint AR parameter estimation and KF is feasible
[26]–[28]. The method in [28] requires neither the transmitted
data [26] nor complicated extended KF [27]. The basic idea
behind [28] is to use finite sample least squares to update
based on smoothed power estimates.

V. PERFORMANCEANALYSIS, SIMULATION , AND DISCUSSION

In this section, the estimation and prediction of local mean
power using the approach presented in Section IV are compared
with those obtained using the conventional approaches reviewed
in Section III, in the practical setting where the shadow process
obeys the AR(1) model.

We define the least squares error (LSE) as

LSE

as the performance criterion, where is the estimator of
and is the total sample size ( window size ).

For the KF approach, the MSE

LSE

In a stationary environment, the KF approaches the linear time-
invariant Wiener filter, and as ; the
closed-form expression for can be found in [20]. For our
problem, the specific form of is derived in the Appendix.
This yields (15), shown at the bottom of the page.

Equation (15) suggests that smaller and/or larger lead
to better performance. In fact, (15) goes to zero asapproaches
1 or goes to 0. In practice, larger can be obtained for
small sample period or large effective correlation distance

; however, note that (15) is valid under the assumption that
the sampled multipath process is white. This is approxi-
mately true if is relatively large, but small will make the
performance of KF deviate from (15).

For the sample mean estimator, it is shown in the Appendix
that

(16)

where the is the window size.

Fig. 3. MSE versusT andN .

We note that (16) can be shown to be consistent with (14),
either by letting or

Equation (16) provides an analytical indicator of performance
of the sample mean estimator in the varying shadow process
scenario without assuming that the multipath process is white.
For given parameters , , , and , (16) can also be used
for computing the optimal window size for the sample mean
estimator numerically.

For fixed , as , it can be shown that (16) converges
to the limit

whereas, when , (16) converges to the constant ,
which is roughly 31. In Fig. 3, we plot the MSE in (16) versus

and . We observe that there exists an optimalfor each
fixed and an optimal for each fixed . Based on Fig. 3, for
given , , and , (16) indicates that there exists an optimal
( , ) pair for , and the optimal is small. However, it
is difficult to compute the optimal ( , ) pair analytically due
to the following reasons.

1) Equation (16) is discrete in , and the upper limit of the
summation is in terms of .

2) The derivative of is difficult to compute for .
3) Based on Fig. 3, a singularity of the MSE function appears

around , as we have observed.
We also note that it is very difficult to derive similar formulas

for UMVU and ML estimators due to their nonlinearity. How-
ever, in all our experiments, we have observed that the optimal

(15)
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Fig. 4. Comparison in urban areas with largeT .

Fig. 5. Comparison in suburban areas with largeT .

window sizes for UMVU and ML are close to the corresponding
optimum for SM.

A. Kalman Filtering Only

In this subsection, the coefficientis assumed to be available.
In Fig. 4, we compare the KF approach with window-based es-
timators in urban areas, along with the theoretical results in (15)
and (16). The theoretical performance of the sample mean and
the KF are computed by (15), and (16) accordingly. We observe
that the performance of all window-based estimators deterio-
rates beyond a window size when more samples are used to es-
timate the local mean. A unique optimal window size for each
window-based estimator exists. As expected based on (15) and
(16), KF exhibits the least LSE among all estimators, and the
large sampling period brings the performance of KF close to
its theoretical limit given by (15).

In Fig. 5, the suburban case is considered. In such a scenario,
the assumption of almost constantis acceptable, as we ex-
plained in Section IV. Due to the large , the performance

Fig. 6. Comparison in urban areas with smallT .

of all estimators improves, as expected. The optimal window
size for each window-based estimator increases as the effec-
tive correlation distance increases, since larger makes
the shadow process more like a constant. Thus, within a
certain window size range, the performance of window-based
estimators behaves more like in the idealized case, where the
performance improves as the window size increases. Due to the
varying shadow process, the performance of all window-based
estimators will deteriorate eventually when the window size ex-
ceeds a certain threshold. In the suburban scenario, the KF still
provides the minimum LSE, as it does in the urban case.

The sampling period plays a special role here. For the KF,
the smaller the is, the closer is to 1, and we might expect
a better LSE performance according to (15). However, the mul-
tipath sampled at a smaller becomes more correlated,
which implies that the KF performance may deviate from what
(15) predicts. For example, in Fig. 6, the sampling period
is decreased relative to the setup in Fig. 4, and it can be ob-
served that the theoretical performance computed by (15) in-
deed predicts a better LSE performance than the case where
is large. However, the true performance of KF deviates signifi-
cantly from the theoretical analysis. Although, in the small
case, (15) cannot provide an accurate prediction of the MSE per-
formance of KF, the simulations indicate that the KF still almost
always provides the minimum LSE compared with all other es-
timators. The overall performance of all estimators improves
slightly as the sample period moderately decreases, before

falls below a certain value.

B. AR Parameter Estimation Considerations

Joint parameter estimation and KF is necessary in urban areas
with relatively large sampling period . However, both rela-
tively large and relatively small cases are investigated due to
the following two reasons.

1) A large sampling period yields KF performance close
to the theoretical analysis. Meanwhile, a large also
leads to a large theoretical LSE.
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2) A smaller reduces the theoretical MSE, while the LSE
performance of KF may not suffer too much by the rela-
tively small , which may lead to better overall perfor-
mance than the one with larger.

The performance of joint parameter estimation and KF [28]
for power estimation will be illustrated as follows. We assume
that the coefficient is initially available, and the mobile ve-
locity increases slowly from 20 to 80 km/hr over 500 m. Two
different sample periods are adopted. With a small s,
the variation of can be kept within 2% of the smallest, and
therefore the coefficient used in KF can be assumed to be
constant (taken to be the mean of). When is chosen as
0.1 s, the largest can be 18% greater than the smallest one,
hence joint parameter estimation and KF [28] is needed. The
coefficient is updated every 500 samples, using a 200-sample
LS method on 200 smoothed power estimates (e.g., the 200 es-
timates are smoothed by ). We observed
that the fixed point smoothing converges within less than 50 in-
coming future received power samples. In Fig. 7(a), we com-
pare the LSE performance of all window-based estimators with
large , KF with small , KF with large , and the joint pa-
rameter estimation and KF with the same large sampling period

. The coefficient in KF is assumed to be available and given
by the mean of the range of. We first observe that joint pa-
rameter estimation and KF reduces the LSE only slightly com-
pared with KF with the same . Second, note that both out-
perform the best LSE performance achieved by window-based
estimators, while KF with the small performs better than all
other estimators. Finally, observe that in the varying velocity
case KF outperforms the window-based estimators by 1–2 dB,
instead of just achieving the best LSE performance attainable
by the window-based estimators. Unlike the constantcase,
compared with KF, the window-based estimators do not im-
prove much by adopting a smaller. These experiments sug-
gest that, in the urban scenario, parameter estimation can be
avoided by choosing a relatively small sampling period (e.g.,

s), and KF with such a sampling period provides the
best results.

However, it is not reasonable to expect that the LSE perfor-
mance of KF gets better and better asbecomes smaller and
smaller. In fact, we show in Fig. 7(b) that, with a very small
sampling period s, KF provides slightly worse LSE
than the best LSE performance attainable by the window-based
estimators. This is not a surprise. As goes down too much,
the correlation between the successive multipath samples
comes to play a role. When s, the correlation coeffi-
cient between successive samples is less than 0.1, whereas
when seconds, the coefficient is roughly 0.4, and
this number can grow as high as 0.97, when s
is adopted. KF suffers severely due to the highly correlated

. An optimal is desirable for KF. However, (15) ne-
glects multipath correlation; hence, it cannot be used to derive
the optimal for KF analytically. It is difficult to calculate
asymptotic KF performance under colored measurement noise
except if this noise can also be modeled as AR with known pa-
rameters [30].

(a)

(b)

Fig. 7. KF without parameter estimation versus KF with parameter estimation.
(a) KF with large to moderately smallT . (b) KF with very smallT .

C. Kalman Smoothing and Prediction

So far, only causal shadow power estimators have been
considered. If future samples are available (equivalently, if one
revisits a past shadow estimate with the added knowledge of
look-ahead samples), noncausal estimators naturally yield more
accurate shadow estimates. However, such delayed estimates
may not be very useful for power control, handoff, or adaptive
modulation, because noncausal estimates quickly become
obsolete, e.g., handoff protocols only allow very limited
hysteresis. Note that our use of Kalman smoothing so far has
been primarily intended for AR parameter estimation, rather
than power estimation. However, it is interesting to compare
Kalman-smoothing-based noncausal power estimates versus
noncausal (two-sided) SM power estimates. This is illustrated
in Fig. 8.

The Kalman algorithm also provides easy prediction of
the local mean power. Without undue discussion, we simply
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Fig. 8. Comparison of KF and two-sided^S .

(a)

(b)

Fig. 9. Kalman prediction. (a) SmallT . (b) LargeT .

illustrate performance of Kalman prediction (KP) in Fig. 9(a)
and (b).

VI. CONCLUSION

In this paper, based on the widely accepted AR(1) model of
the shadow process, we proposed a KF-based approach to esti-
mate the shadow process corrupted by the multipath
and derived the expected value of LSE achieved asymptotically
by the sample mean estimator and KF. Joint parameter estima-
tion and KF was also discussed when the AR parameter varies
over a wide range, as is typical in urban areas with small.
We showed that window-free KF either meets or exceeds the
performance of conventional window-based causal estimators
under Assumption C. Our results suggest that a relatively small

yields better LSE performance for KF, even though it vio-
lates the multipath whiteness assumption. The experiments also
suggest that joint parameter estimation and KF can be avoided
by choosing a relatively small sampling period. As a side
bonus, Kalman prediction for power estimation is also possible.
This is important for adaptive transmission. The improvement
in performance is partly attributed to the fact that the Kalman
filter can be regarded as approximating the sequential LMMSE
estimator for the problem at hand (albeit not exactly, due to the
mild dependence of multipath samples).

APPENDIX

Derivation of : It is shown in [20] that is given
by

(17)

Recalling that , and solving (17) for ,
we find

Derivation of (14) and (16):If is assumed to be con-
stant, , then

(18)
Therefore, (14) is obtained using

(19)
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When the shadow process follows an AR(1) model, we obtain

(20)

Due to the fact that the shadow process and the multipath
process are mutually independent, and for fixed,
, , as , (20) can be rewritten as

(21)

when .
The second term in (21) has already been obtained in (19).

The first term in (21) can be computed from (10) as follows:

(22)

which completes the derivation of (16).
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