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Abstract

The germ process embedded in a germ-grain random set is often not merely part of a constructive mathematical
model, but has physical significance as well, e.g., in the modeling of cell cultures. In such situations, knowledge of the
realization of the germ process associated with a particular random set observation is highly desirable. In this paper, it is
shown that, for an interesting class of germ-grain models, maximum likelihood estimation of the germ process on the
basis of a random set observation is an NP-complete computational problem. Certain additional computational
problems associated with the probabilistic specification of morphologically processed random sets are also dis-
cussed. © 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

A boolean random closed set (RACS) is constructively
defined as follows:

X= U GP(@{pi}’

i=1, 2,

where P = {p,, p,, ... } is a stationary Poisson point pro-
cess (the points p;, i = 1,2,..., are called the germs, and
P is called the germ process), {Gp1, Gpa, ...} is an iid.
sequence of non-empty bounded random closed sets (the
grains), and @ stands for Minkowski set addition. Here,
since one of its arguments is a singleton, @ simply
amounts to a translation of the associated grain. Infor-
mally (cf. [1,2]) for a rigorous exposition), one may think
of P as a random collection of points scattered over R",
with the following properties:
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(i) Poisson distribution of point counts: The number of
points in B, a bounded (Borel) subset of R", has
a Poisson distribution:

_(UB)e”H¥
- m!

P(@(B) = m) , m=0,1,2,...,

where ®©(B) is the number of points in B, |B| is the
volume of B, and A >0 is a constant parameter
known as the intensity of the stationary Poisson point
process.

(ii) Independent scattering: The point counts in k disjoint
(Borel) sets constitute k independent random vari-
ables.

The grains {G,,, G,,, ... } may be informally thought of
as simpler random shapes, e.g., disks of random radius
centered at the origin, in which case the Boolean model
is a union of such disks, centered at {py,p,,...},
respectively.

Discrete random sets are defined on a countable
L < R", e.g., a regular sampling lattice. Consider a Bi-
nomial germ-grain discrete random set, for which the
germ process is a homogeneous Bernoulli process on L,
of intensity A€ [0, 1], and the grains are random subsets
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of L. A very special instance of the Binomial germ—grain
model is one in which the grain associated with
each point in the lattice is fixed and known a priori; we
will call this a fixed-grain binomial germ-grain (discrete)
random set. The only source of randomness in such
a model is the (homogeneous Bernoulli lattice) germ
process; it is completely specified via the associated inten-
sity parameter A€ [0, 1]: each and every point in L is.an
element of P with probability A, independently of all
others.

This is, admittedly, a very restricted model; however, it
will serve our purposes perfectly, for, on one hand, it is
“rich enough” to exhibit the fundamental computational
limitation associated with ML germ estimation; while, on
the other hand it is simple enough to allow us to make
a formal intractability argument, by means of NP-
completeness. Also note that, even though the general
binomial germ-grain model is not a Boolean model
(Boolean models are Poisson processes on the space of
compact sets), the fixed-grain binomial germ-grain
model is equivalent to a fixed-grain Boolean model on
the lattice.

The Boolean model has received a lot of attention in
the random set literature, for a variety of reasons, includ-
ing central limit theory arguments, its plausibility in
certain modeling situations, and its relative tractability.
The literature on statistical inference of the Boolean
model has focused on parameter estimation, i.e., the es-
timation of the intensity of the germ process and/or the
size distribution of the grains [4-10]. The intensity para-
meter of the germ process is the (ensemble) mean number
of germs per unit area. Estimates of the intensity para-
meter are used to characterize the average density of, e.g.,
cell populations, across many sample images. Practi-
tioners are often interested in counting cells in a particu-
lar sample image, i.e., a more refined estimate of the
germ process per se. This clearly is more ambitious
than estimating the intensity parameter of the germ
process, a difficult problém in its own right. It is shown
in Section 2 that the pursuit of such an estimate of the
germ process is overly ambitious, in the sense that it
entails the solution of an NP-complete computational
problem.

NP stands for the class of problems solvable in non-
deterministic polynomial time. There exist deterministic
Turing machines that solve these problems, but their run
time is at best exponential in the size of the input. P is the
class of problems solvable in polynomial time by a deter-
ministic Turing machine. By definition, a problem IT is
NP-complete if IT belongs to NP, and every other prob-
lem in NP can be transformed to I in polynomial time.
A problem in NP can also be shown to be NP-complete
by proving that it contains a known NP-complete prob-
lem as a special case. This is known as proof by restriction.
If an algorithm could be developed to solve any given
NP-complete problem in deterministic polynomial time,

then every problem in NP would have been solvable in
deterministic polynomial time. Although no one has
proven that this is impossible, the current consensus is
that the likelihood of such an algorithm ever emerging is
very small, as NP contains many computationally very
demanding problems which have been under scrutiny for
a long time. NP-completeness is a cornerstone of theoret-

.-ical computer science. A classic reference on the subject is

the book by Garey and Johnson [11].

This paper is organized as follows. Section 2 is
concerned with the problem of maximum likelihood
estimation of the germ process associated with a
binomial germ-grain model. It contains the basic
NP-completeness result, and discusses its ramifications
in terms of the closely related problem of computing
minimal skeletons. Section 3 is concerned with some in-
tractability issues that arise in the context of probabilistic
specification of morphologically processed random sets.
Section 4 offers a synopsis of the work presented in this

paper.

2. The problem of estimating the germ process of a
Binomial germ-grain model is NP-complete

Theorem 1. Maximum Likelihood estimation of the germ
process realization associated with a given binomial
germ-grain random set observation is an NP-complete
computational problem.

Proof. The proof is by restriction to a known NP-com-
plete problem. Such a proof consists simply of showing
that the problem at hand contains a known NP-complete
problem as a special case. The key is to “peel off” all
inessential aspects of the problem at hand, until a known
NP-complete problem emerges.

Consider a fixed-grain binomial germ-grain random
set X, defined on a finite lattice L. Since the proof is by
restriction, we may assume that (i) 1€[0, .5), and (ii) the
deterministic grains associated with distinct lattice points
are distinct as well, i.e., the association between lattice
points and the set of grains is 1-1 and onto. We therefore
adopt a slight abuse of notation and use G, to denote the
grain associated with location pe L (i.e., G, has absorbed
the translation, and is “centered” at p).

Given a realization S of X, maximum likelihood es-
timation of the germs is equivalent to the following:

maximize : AF(1 — HIF

subjectto: {J G,=S§, ]
pePEL

where ¢ stands for complementation with respect to L,

ie, P°=L — P,|-| measures number of elements, and

G, is the grain associated with p. It follows from (i) that
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(1) is equivalent to the constrained minimization prob-
lem:

minimize : |P|

subjectto: () G,=S. 2
peP<L

The problem is clearly in NP (testing all possible subsets

will yield the solution). Define a collection C of subsets of

S as follows:

C ={G,peL|G, < 5}
and Eq. (2) may be re-written as

minimize ; |C|

subjectto: ) c=S§. 3)
ceC’'sC

The most important part of an NP-completeness

proof by the method of reduction is identifying a suitable

problem from the palette of known NP-complete

problems. For our present purpose, a most convenient

known NP-complete problem is the so-called mininum

cover problem, which can be compactly stated as
follows [11]:

Problem 1. (Minimum Cover - Decidability Version) In-
stance: A collection C of subsets of a set S, and a positive
integer K. Question. Does C contain a cover for S of size
K or less, that is, a subset C’' = C with |C'| < K and such
that Ucc = S?

It follows directly that the associated estimation prob-
lem is NP-complete:

Problem 2. ((Size of) Minimum Cover) Instance: A collec-
tion C of subsets of a set S. Question. What is the
smallest positive integer K such that C contains a cover
for S of size K, that is, a subset C' = C with |C'| = K and
such that gcc = S?

which, in turn, implies NP-completeness of the problem
in Eq. (3).

The following is an important Corollary:

Corollary 1. Maximum likelihood estimation of the germ
process realization associated with a given Boolean random
set observation is an NP-complete computational problem.

Proof. Recall that the fixed-grain binomial germ-grain
model considered above is equivalent to a special case of
a Boolean model; the proof by restriction argument
therefore applies. O

It is perhaps appropriate to comment briefly on the
meaning of NP-completeness. The fact that a certain
computational problem is NP-complete means that (i)
algorithms that solve a general instance of the problem
exist (enumeration of all possible solutions is often an
obvious such “algorithm™), but (ii) the associated com-
putational complexity (for non-trivial problem sizes) is
very high, at least as high as that required to solve any
problem from a class of very demanding problems for
which an efficient (polynomial-time) algorithm is not
known, and is highly unlikely to be found.

However, the key is the word general: special instances
of the problem may well admit an efficient solution. In
our present context, such special cases that immediately
come to mind are

o 4> 0.5: In which case, the problem becomes one of
finding a maximum cover, which is easy: visit each pe L,
and test whether G, < S;ifso, thenpe Py else p¢ Py,
where Py is the ML estimate of the germ process.
This situation is, in a way, less interesting from a prac-
tical standpoint. For example, in the modeling of cell
cultures, 4 > 0.5 would correspond to very dense cell
populations; in the modeling of clutter and in filtering
applications, A > 0.5 would correspond to severe oc-
clusion/distortion.

e Fixed-grain binomial germ-grain models in 1-D, in
which case simple algorithms for estimating the germ
process can often be constructed, e.g., based on dy-
namic programming (DP) or other recursive argu-
ments. The 1-D case is a very special one in many other
respects as well, e.g., cf. [12,13].

It is important to stress that these special cases are not
counter-examples to the general NP-completeness result.
As with all NP-complete problems, over-simplifying the
problem by imposing a lot of additional structure will
eventually render the problem polynomial-time.

2.1. Ramifications: minimal skeletons

The concept of skeleton as a compact description
(“sketch”) of shape can be traced back to the work of
Lantuéjoul [14,15]. Depending on the properties sought,
one may define a skeleton in many ways. A common
objective is economy of representation, primarily due to
the emphasis on recognition and coding applications
[16-18].

In loose terms, the general idea is as follows. Given
a shape, S, find a collection of points P = {py, p, ... } (the
skeleton), and associated grains {G,,, G,,, ... } (the skel-
eton functional) such that G, e%,Vi, and

S = U pr@{l’i}-

i=1, 2,..

Of course, numerous solutions may exist. Depending on
the application, additional restrictions may be imposed
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on P, to assure, e.g., connectivity or other desirable prop-
erties, and these may lead to a unique solution. From
a coding perspective, economy is the prime concern, and
this is reflected, for example, in the reduced morphological
skeleton proposal of Maragos [16,17]. It is therefore
natural to ask for a minimal skeleton representation.
Define a collection C of subsets of § as follows:

C={GO{p} =5,Ge¥%,pel}

and the problem of finding a minimal skeleton repres-
entation with respect to % may be stated as

minimize ; |C|

subjectto: () c=S§, )
ceC’'EC

which is NP-complete, as we have seen. This means that
the problem of computing minimal skeleton representa-
tions is, in general, computationally intractable. The
result constitutes an effective argument in support of
reduced (but not necessarily minimal) skeleton repres-
entations [16-18].

3. Probabilistic Specification of Morphologically
Processed Random Sets

The celebrated Choquet-Kendall-Matheron theorem
[3,19,20] for random closed sets, states that a RACS X is
completely characterized by its capacity functional, i.e.,
the collection of hitting probabilities over a sufficiently
rich family of so-called test sets. Random set theory is
a mature branch of theoretical and applied probability,
whose scope is the study of set-valued random variables.
There exist numerous references on the subject; cf. [3,20]
for foundations, and the recent books [21,4] for many
references on various aspects of random set theory. An
extensive bibliography on random closed sets and related
topics can be found on-line under hitp:/liinwww.
ira.uka.de/bibliography/Math/ random.closed.sets.html.

For our present purposes, it suffices to focus attention
on finite discrete random sets (DRS), a special class of
random sets defined on a finite lattice. A DRS may be
thought of as a sampled version of an underlying RACS;
cf. [22] for a rigorous analysis of a suitable sampling
process, as well as a formal argument which establishes
the usefulness of DRS theory. DRSs can be viewed as
finite-alphabet random variables, taking values in a finite
partially ordered set (poset).

One of the “wheels™ of discrete probability and combi-
natorial theory is the principle of inclusion-exclusion (e.g.,
cf. the classic book of Feller [23]). Although this principle
applies to numerous problems, it is often hard to make
the connection, and realize that it indeed applies to
a particular problem at hand. As noted by Rota [24] “It
has often taken the combined efforts of many a combina-

torial analyst over long periods to recognize an inclu-
sion-exclusion pattern.”

As it turns out, the inclusion-exclusion principle is the
simplest but also the typical case of a very general prin-
ciple of enumeration, regarding the inversion of indefinite
sums ranging over an arbitrary poset. This principle is
known as Moebius inversion, and it is the analog of the
“Fundamental Theorem of calculus” in the context of
enumeration.

For the special case of finite DRSs, a variant of
Moebius inversion provides an elementary constructive
proof of the Choquet-Kendall-Matheron Theorem.

3.1. Preliminaries

The following theorem is a cornerstone of enumeration
and combinatorics. Cf. [25] for a general proof.

Theorem 2 (Moebius inversion for Boolean algebras). Let
L be a finite set (i.e., |L| < o), and (L) be its power set.
(X(L), <) is acomplete lattice with unit element L and zero
element 9. (E(L), <) is isomorphic to the Boolean Algebra
of (finite) rank |L|. Let p be a real-valued functional on 2(L).
Define the lower and upper sum functionals, q, and r,
respectively, by

qA2 Y pS), VAeZ(L),
Sc4

(A2 Y, pS), VAeZ(L)

S=24

Then, VS e X(L) (inversion from below)

pS) = Y (— DgSna) = Y (- 1)SI-Mig(4)

ASS ASS

and, VS e X(L) (inversion from above)

)= T (—DInsuA) = T (= A1),
A=S A=S
where A°=L — A,VAeX(L).

A stand-alone proof involves a convenient change of
variables, followed by the application of an enumeration
lemma.

We will need the following technical lemma. Although
it cannot be found “as-is” in the classic references,
[24,26,27] or in the relatively up-to-date book of Aigner
[25] the statement has appeared in the context of Belief
Junction computation [28] and a proof can be construc-
ted using Moebius inversion from above.

Lemma 1.

gA) =Y (—1)S) = ¥ (- 1)SnS), VAeX(L)

ScA S=24

le

oA
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and

=Y (~1%59= ¥ (- 1(s) VAeX(L).
SE€A S24°
Consider a mapping ¢ : — X(L) — X(L). ¢ is called an
erosion if it distributes over intersection. ¢ is called a dila-
tion if it distributes over union. A pair (g, ) of mappings
from (L) to itself is called an adjunction on Z(L) if

8A) < SeA S €(S), VAeX(L), VSeX(L).

If (¢, 6) is an adjunction, then ¢ is necessarily an erosion
(i.e., it distributes over intersection), and ¢ is a dilation
(i.e., it distributes over union). For any given erosion, &,
there exists a unique dilation, &, dubbed the right adjoint
of &, such that the pair (¢, ) is an adjunction. This J is
given by

8A) = n{SeX(L)4 < e(s}.‘

Similarly, for any given dilation, §, there exists a unique
erosion, ¢, dubbed the left adjoint of , such that the pair
(¢, 9) is an adjunction. This ¢ is given by

&(S) = U{A e X(L)5(4) < S}.

If (¢, &) is an adjunction, then ¢ and J are adjoint to each
other. A thorough treatment of adjunctions can be found
in Ref. [29] Related material can also be found in Ref.

[30].

We will need the following elementary Lemma.
A proof can be constructed along the lines of the material
in pp. 85-86 of Heijmans [29].

Lemma 2. Any dilation, 6, can be represented as
HA) = UszeaS(2).

Given (A) = U ,c45(2) define

gA)2{zeL|S(z) = A}.

It can be shown [29] that (¢, ) is an adjunction. Further-
more, it can be shown (by uniqueness of left adjoint) that

Lemma 3. Any erosion, €, can be represented as
eA) = {zeL|S(z) = A}

We will need the following Lemma. The proof is el-
mentary.

Lemma 4. Let (g, 8) be an adjunction. Define
(A& Y po)
<A

and

r(& Y pS)

€S)=2 A

Then
q5(A4) = q(€(4)), VAeZ(L)
and

rA) = rnd(A4)), VAeZ(L).
3.2. Finite DRSs

A DRS X is simply a probability measure on Z(Z(L)).
Denote this by Py(+). Let px(-) denote the restriction of
Px(+) to the atoms, i.e., the elements of Z(L). This is the
probability mass function of the DRS X. Define the capa-
city functional, generating functional, covering functional,
and cumulative distribution functional, Tx(-), Ox(),
Rx(-), Fx(-), respectively, by

Tx(A)2Py(XNnA #0),

Ox(ALPHXNA=0) =1~ Txd)= 3 pxiS),

ScA
RA)2PxX 24)= ), px(S),
S=24

Fx(A)21 — Rx(4).

Identify py with the functional p of Theorem 2. Then, it
becomes clear that

Ox (4) = q(4)
and
Ry (4) = r(4),

where g,r are the lower, and upper sum functionals,
respectively, of Theorem 2. It now follows from Theorem
2, and Lemma 1, that VSeX(L)

px(S) = Y, (— DMIQxs°ud) = }:s( — 1)SI=1410 (49
AE

AsS

and

prS) = T (— DHIR(SUAY = ¥ (— DA4I-BIRA)

A=25 A=2S8

Furthermore, VA e X(L)

Sc4 S=24

Ox) = 3 (—DRAS) = ¥ (= D¥IR(S)

and

Red)= T (=108 = ¥ (—1F0x(s)
sc4 S22 4 ;
Since Qx(A)=1—Tx(4) and Fx(d)=1— Rx(4),
VAeX(L), we now have identities which relate ail five
functionals Ty, Qy, Rx, Fx, and pyx. As a trivial corollary,
any one of these functionals is sufficient to specify X.
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3.3. Connection with mathematical morphology

Mathematical morphology is an important quantitat-
ive shape analysis tool in image processing. Its founda-
tions were laid down by Matheron [31,32], Serra [33,34]
and collaborators, during the late 1960s to early 1980s.
An excellent recent treatment which unifies several seem-
ingly distinct approaches within a purely algebraic
framework can be found in Ref. [29].

Morphological image operators [29] are compositions
of two classes of elementary building blocks, namely
erosions and dilations. Several special cases of erosions
and dilations can be defined; the definition given in
Section 3.1 is the most general one within our framework.

Let (¢, 5) be an adjunction. Identify px with the func-
tional p of Theorem 2. Then, as before, Qx(4) = g(A) and
Rx(A) = r(A). We further observe that Qsxy{(4) = gs(4°),
and Regx)(A) = re(A), whereg,, and re have been defined in
Lemma 4. By applying this latter lemma, we conclude

QsxfA) = Ox((€(A)), VAeX(L)
and
Rexf(A) = Rx(6(A)), VAeZ(L)

A probabilistic proof of the first result for the special
case of translation-invariant operators has appeared
{35]; similarly, a probabilistic proof of the second resuit
for the special case of translation-invariant operators has
appeared [36].

In the previous Section, we have concluded that either
one of the functionals Ty, Qx, Ry, Fx, Or px, is a sufficient
and constructive specification of X. From the latter two
identities we now conclude that Qx (or, equivalently,
Tx = 1 — Qx) is the most convenient specification if our
interest is in processing X via an operator which distrib-
utes over union (i.e., a dilation), whereas Ry (or, equiva-
lently, Fx = 1 — Ry) is the most convenient specification
if our interest is in processing X via an operator which
distributes over intersection (i.e., an erosion). This picture
is depicted in Fig. 1. One may obviously substitute T’y for
Qy, and/or Fy for Ry. The choice of Qy versus Ry de-
pends solely on whether one will apply a dilation, or
erosion, respectively, on X. However, in morphological
shape analysis and synthesis we sequentially process
X using a variety of erosions and dilations. This means
that one is forced to use both specifications, i.e., move
between the two in anticipation of the next operation in
line. This movement is made possible by Lemma 1, which
is essentjally another incarnation of Moebius inversion.
As such, it involves a combinatorial computational cost:
given all necessary values of the generating functional (or,
equivalently, the capacity functional), it takes O(2'4)) ele-
mentary operations to compute the value of the covering
functional (or, equivalently, the cumulative distribution
functional) for argument A, and vice-versa.

Rx Qx

PX

Fig. 1. The three fundamental functionals.

3.4. Fast Moebius transform

If the underlying lattice (base frame) L consists of n
points, it appears that one needs 0(2"2") = 0(4") elemen-
tary operations to move between the two basic alternative
random set specifications. As it turns out, this is not the
case: there exists a “fast Moebius Transform” due to Thoma
[28] (also cf. [37]) that allows one to move more efficiently
between the two specifications. The basic idea behind this
algorithm is simple and quite elegant. Recall that

Ox(A) = 3 px(S

scA

and

px(A) =Y (—DHI-1510(8°)
sS4

form a Moebius pair. Thoma’s algorithm transforms
px(+) into Qx(+) in n steps, each step associated with one
element of L. Define mq(: )£ px(-), and think of m(-) as
a state functional. Let L = {6, ... ,0,}. The ith step of the
algorithm (associated with 0;) modifies the state func-
tional as follows:

m;_ 1(A) + m;- (A\{6:}), fieA,

miA) = {m.--l(A), b4A.

Thoma [28] proves that, after the completion of the nth
step, my(A) = Qx(A%), VA < L. In addition, each step in
the algorithm can be inverted; [1,2,28] this provides
a similar algorithm to compute the inverse transform:

m{A) — mi(A\{Hi})9 ficA,

miild) = {mi(A), 0.4A.

Going backwards, mo(*) = px(*) eventually results. Sim-
ilar algorithms can be constructed for moving between
the remaining functionals [28].

It is easy to see that Thoma’s algorithm requires O(n2")
(instead of a brute-force O(4") elementary computations
to transform a given functional into another functional.
This is a faster Moebius transform, but unfortunately not
fast enough for our purposes: still, complexity is exponen-
tial in n, and n is in the order of 2'6-22° for typical

(g
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image processing applications. Even for a 16 x 16 image
(n = 256),n2" = 107 Million elementary operations,
which is clearly out of question.

Given, e.g., Qx(A4), VA = L, Thoma’s algorithm com-
putes px(A),VA € L. In estimation and detection prob-
lems (e.g., hypothesis testing), one is often interested in
computing the likelihood of a given observation, A = L,
under a postulated data-generating model, i.e., px(4) for
a single A, and given model Qx(A), VA < L. Brute-force
computation of this quantity would be 0(2') < 0(2")
- thus the fast Moebius transform does not facilitate this
computation.

In the context of Belief function computations, certain
shortcuts exist that build upon special properties of the
functionals involved [28]. For example, suppose that
0Ox(A) exhibits a typical value, e.g., without loss of gener-
ality, suppose that Qx(4) = 0 for all but a few atypical
subsets of L. Then, clearly, the computation of

px(d) = Y (— DMI"ISI0x(s7)
Sc4d

can be greatly simplified, by considering only those sub-
sets of A whose complements are atypical. While fruitful
in the context of Belief function computations, this idea
does not appear to provide any computational savings
for an independent germ-grain random set model, since
no one of its functionals exhibits a typical value: even for
a simple binomial germ - deterministic grain model,
0x(A) is a function of the shape of A.

In short, the computational complexity of Moebius
transformation appears to be a significant barrier for
applications.

4. Conclusions

This paper focused on some computational (in)tracta-
bility issues associated with certain inference problems
for random sets. A key result is that maximum likelihood
estimation of the germ process embedded in a binomial
germ-grain model is an NP-complete computational
problem. The implications of this result in the context of
computing minimal skeleton representations have been
discussed. The second part of the paper has examined
computational problems associated with the probabilis-
tic specification of morphologically processed random
sets. In this latter direction, recent results on a fast
Moebius transformation [28,37] have been examined in
the context of statistical inference and morphological
filtering of random sets.
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