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R
ecent research and experimental findings, as well 
as technological development and commercializa-
tion efforts, suggest that even a modest amount of 
data can deliver superior signal modeling and 
reconstruction performance if sparsity is present 

and accounted for. Early sparsity-aware signal processing tech-
niques have mostly targeted stationary signal analysis using 
offline algorithms for signal and image reconstruction from 

Fourier samples. On the other hand, sparsity-aware time- 
frequency tools for nonstationary signal analysis have recently 
received growing attention. In this context, sparse regression 
has offered a new paradigm for instantaneous frequency esti-
mation, over classical time-frequency representations. Stan-
dard techniques for estimating model parameters from time 
series yield erroneous fits when, e.g., abrupt changes or outli-
ers cause model mismatches. Accordingly, the need arises for 
basic research in robust processing of nonstationary paramet-
ric models that leverage sparsity to accomplish tasks such  
as tracking of signal variations, outlier rejection, robust 
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parameter estimation, and change detection. This article aims 
at delineating the analytical background of sparsity-aware 
time-series analysis and introducing sparsity-aware robust and 
nonstationary parametric models to the signal processing 
readership, through readily appreciated applications in fre-
quency-hopping (FH) communications and speech compres-
sion. Preliminary results strongly support the vision of 
seeking the “right” form of sparsity for the “right” application 
to enable sparsity-cognizant estimation of robust parametric 
models for nonstationary signal analysis. 

IntRoductIon
For over 50 years, time-series analysis has been a vibrant 
research topic profiting from contributions in areas as diverse 
as statistics, communications, econometrics, geophysics, and 
meteorology [3], to name a few. In the 1950s and 1960s, linear 
regression methods were proposed for estimation, detection, 
classification, estimation, and tracking based on Wiener and 
Kalman filtering [17], [31]. In parallel, researchers pursued 
approaches for (non)parametric spectral estimation. The 1970s 
were characterized by an increasing interest toward vector 
(multichannel) time series, while the 1980s brought impor-
tant results in adaptive signal processing, and nonparametric 
interpolation techniques based on splines [30]. Major advances 
in the last few decades include tools for time-frequency analy-
sis using, e.g., the Wigner–Ville distribution and the wavelet 
transform [10]. 

As evidenced by this high-level literature review, time-series 
analysis has slowly drifted toward nonparametric methods. One 
reason for this is the lack of robustness of linear parametric 
methods against model mismatches originating from abrupt 
changes of the model parameters and outliers present in the 
observed time series. Very recent research trends promote fully 
data-driven time-frequency analysis via, e.g., empirical mode 
decomposition (EMD) [23]. On the other hand, linear and parsi-
monious models have been always attractive from an imple-
mentation perspective. Such models are even better motivated 
for real-time systems built using simple embedded system com-
ponents, where nonparametric and nonlinear methods may 
exhibit prohibitive complexity. 

To address this performance-complexity tradeoff, a novel 
approach is advocated here: overcomplete linear models under 
which the observed signal can be sparsely represented using a 
suitable basis. Sparsity may arise from prior knowledge that out 
of a dense frequency grid, only a few frequencies can be simulta-
neously present. Similarly, exploiting sparsity in the model 
residuals can enhance robustness of classical estimators to bad 
data [16], [18]. Sparsity-aware time-frequency tools for nonsta-
tionary signal analysis and time-adaptive (online) algorithms 
have recently received growing attention [4], [13]. Indeed, when 
attempting to identify instantaneous frequencies, the time- 
frequency plane is sparsely occupied by a few trajectories. Lever-
aging this observation, sparse regression has offered a new 
paradigm for instantaneous frequency estimation over classical 
time-frequency representations. 

To promote sparsity, the prevailing signal processing tech-
niques employ the 1, -norm of the unknown parameter vector, 
and, as a consequence, the estimates are nonlinear functions of 
the data. However, unlike classical nonlinear techniques based 
on, e.g., stochastic simulations, the estimates can be obtained 
with tractable computational complexity. This is possible 
because the proposed framework for robust sparsity-cognizant 
estimation of nonstationary parametric models is rooted in con-
vex optimization. Historically, advanced convex optimization 
know-how was mostly confined to nonengineering communi-
ties, but, in the last two decades, its benefits have also perme-
ated several engineering fields. Today, engineering practitioners 
can readily tap off-the-shelf convex optimization solvers (e.g., 
SeDuMi [1]). More recently, automatic code generation tools 
(e.g., CVXGEN [2]) have been developed to enable portability of 
convex optimization solvers to embedded systems employing 
simple microcontrollers and digital signal processors. This last 
step is crucial for bringing the power of convex optimization in 
the hands of practitioners. 

This tutorial advocates using sparse regression as a key tool 
for estimating instantaneous frequencies in nonstationary time 
series. Its focus is on a recent sparsity-cognizant framework for 
time-varying (TV) frequency estimation, including both analytical 
modeling and computational aspects. The presented framework 
bridges sparse with robust regressions and employs them for the 
analysis of time series. Collectively, these techniques enable pre-
cise identification of parameters of complex nonstationary time 
series. Readily appreciated applications in FH communications 
and speech modeling are used to motivate and illustrate key 
aspects of the methodology. 

EstImatIon of fREquEncy-hoppIng sIgnals

Signal model and problem Statement
Consider a continuous-time signal ( ),s t  which, at time  

[ , ],t t tk k1! -  consists of Mk  pure tones, i.e., ( ) :s t =  
, ,a e t t t,m km

M j f t
k k1

2
1

,k m k 1#r

= -/  w h e r e ,  ,a fC, ,m k m k! !  
[ , ]f fmax max-  are the complex amplitude and frequency of the  
mth tone in the kth system dwell [ , )t tk k1-  (interval over 
which all tone frequencies and complex amplitudes remain 
fixed), and [ , ]t T0k !  is the kth system-wise hopping instant. 
The number of tones, ,Mk  can also vary with ,k  due to emitter 
(de)activation or bandwidth mismatch. The entire observation 
interval is [ , ]T0  (i.e., ) .t 00 =  A noncooperative asynchro-
nous scenario is considered, where hop timing is aperiodic 
and independent across transmitters. The measured continu-
ous-time waveform ( )y t  is corrupted by additive circularly 
symmetric complex white Gaussian noise ( ),v t  i.e., 
( ) : ( ) ( ),y t s t v t= +  .t T0 # #  Let K  denote the total number 

of system-wise hops in [ , ],T0  and : / ( )T f1 2 maxs =  the period 
with which ( )y t  is sampled at the receiving end. The discrete-
time FH signal can be written as 

 : ( ) , ,s s nT a e n n n,n s m k
m

M
j n

k k
1

1
,

k
m k 1#= = ~

=

-/  (1)
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where { , , , },n N0 1 1f! -  : / ,N T T1 s- = 6 @  [ , ],,m k !~ r r-  
: ,f T2, ,m k m k s~ r=  and : / .n t Tk k s= ^ h  Correspondingly, the 

 discrete-time noisy observations are 

 : , { , , , },y s v n N0 1 1n n n f!= + -  (2)

where { }vn  is white and ~ ( , ) .v 0CNn
2v  In addition, it is 

assumed that the sampling period is much smaller that the 
minimum dwell duration. 

Given : [ , , ]y y yN T
0 1f= -  (( ) T$  denotes transposition), the 

objective is to estimate ,K  ,nk" ,  { },Mk  { },a ,m k  and { } .,m k~  
Since maximum-likelihood estimation of FH signal parameters 
is intractable, nonparametric estimators based on the spectro-
gram have been traditionally employed [20]. Nevertheless, the 
resulting estimation performance is limited by the spectro-
gram’s intrinsic time-frequency resolution tradeoff. High- 
resolution time-frequency localization is possible using 
dynamic programming (DP) and parametric modeling [20], but 
complexity quickly becomes prohibitive, and performance is 
sensitive to model mismatch. A different and very effective 
approach based on sparse linear modeling is presented next. 

exploiting SparSity and continuity  
to identify fH SignalS
Suppose that the true frequencies { },m k~  in (1) belong to a 
known finite set : { , , }W P1 f~ ~=  with cardinality 

.maxP Mk k&  Note that this is not a limiting assumption for 
civilian applications, e.g., Bluetooth [15], provided that Doppler 
is negligible. In cases where this information is not available, 
similar to what is used in [9] for harmonic retrieval, the set W  
can be a dense grid such that the separation between two con-
secutive frequencies in W  is less than the desired resolution. 
Clearly, as the grid density increases with ,P  so does the attain-
able frequency resolution—what in the sparse linear regression 
parlance is referred to as superresolution [9]. 

With { } ,W,m k 1~  the received noisy samples can be 
 rewritten as 

 , { , , , },xy v n N0 1 1n n
T

n n f!~= + -  (3)

where : [ , , ] ,e en
j n j n TP1 f~ = ~ ~  and .C!: [ , , ]x x x, ,n n n P

T P
1 f=  

Observe that x ,n p  represents the amplitude and phase of the  
pth frequency bin at time .n  Since ,maxP Mk k&  only a few 
coefficients { },x ,n p  representing the active frequencies at each 
time, are nonzero. Letting : [ , , ] ,x x x C* T

N
T T PN

0 1f != -  and

 : [ , , , , , , ] ,w 0 0 0 0 Cn P
T

P
T

n

n
T

P
T

P
T

N n

T PN

1

f f !~=
- -

1 2 344 44 1 2 344 44
 

the model in (1), (2), and (3) can be expressed in vector-matrix 
form as 

 y W v,x*= +  (4)

where : [ , , ] ,W w wN
T

0 1f= -  and .: [ , , ]v v vN T
0 1f= -  The FH 

signal parameters to estimate can be obtained from ,x*  
which obeys the linear regression model in (4). Matrix 

:X* =  [ , , ]x x CN
P N

0 1f ! #
-  represents the time-localized 

frequency content of the signal, in the same spirit as the 
spectrogram matrix, but with potentially much higher 
time-frequency resolution. 

The key advantage of introducing the grid of candidate fre-
quencies W  is that the nonlinear parameter estimation task at 
hand is rendered linear [cf. (4)]. This is possible by increasing the 
problem dimensionality through the selection of .maxP Mk k&  
Note also that as the N PN#  matrix W  is fat, the least-squares 
(LS) solution with minimum 2,  norm, specifically,  

:x W y,normmin
LS = @
-t  does not yield an accurate estimate of x*  even 

when the signal-to-noise ratio (SNR) is high. Improved alterna-
tives are possible however, if one capitalizes on the fact that the 
unknown vector x*  exhibits the following two sparsity properties: 

 ■ Active carrier-domain sparsity: Only a few of the coeffi-
cients { }x ,n p  are nonzero, which implies that x*  in (4) is 
sparse 

 ■ Differential time-domain sparsity: Since FH is assumed 
slow, x x, ,n p n p1 =+  most of the time; hence, each row of X*  
is piecewise constant. This means that adjacent row-wise dif-
ferences are sparse.
Consider now the ( )N P NP1 #-  matrix : [ , , ,D d d ( )

1 1
1 f=  

]d ( ) TN P
1

1 1- -` j  where 

 : [ , , , , , , , ] ,d 1 0 0 1 0 0
( )P N P

T
1

1 1 1

f f= -
- - -

> >  

and the notation ( ) ( )m$  represents the right cyclic shift of m  
positions. From the definition of D,  the ( )nP p+ th entry of 
Dx*  contains the difference ;x x, ,n p n p1 -+  hence, as mentioned 
earlier, Dx*  is a sparse vector. 

Ideally, one would form a sparse and piecewise-constant esti-
mate of x*  by solving the optimization problem 

 ,x y Wx x Dxarg min 2
1

x
2
2

1 0 2 0
CNP

n n= - + +
!

s = G  (5)

where Dx 0  denotes the number of nonzero entries of the vec-
tor Dx.  The first term of the cost in (5) takes into account the 
observed signal, while the positive scalars 1n  and 2n  control the 
intrinsic sparsity and smoothness of the estimate, respectively. 
However, the problem in (5) is nonconvex and NP-hard [22]. 

Motivated by recent advances in variable selection [27] 
and compressive sampling [7], [11], the 0,  (pseudo-)norm is 
relaxed to the convex 1, -norm. Hence, the advocated formu-
lation becomes 

 : .x y Wx x Dxarg min 2
1

2
2

1 1 2 1
x CNP

m m= - + +
!

t ; E  (6)

Large 1m  effects sparsity, and large 2m  effects smoothness. Since
,Dx x x, ,n p n pn

N

p
P

1 11

1

1
= - -=

-

=
//  the second 1, -norm pen-

alty in (6) captures the sum of total variation penalties. Observe 
also that the Gaussian noise assumption is not necessary for (6) 
to be meaningful; (regularized) LS is widely used and can be 
motivated without recourse to Gaussianity. 

The optimization problem in (6) resembles the fused Lasso 
[28], and it is convex because the cost comprises the sum of 
convex terms; hence, the cost in (6) can be minimized 
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via off-the-shelf interior point solvers such as [1], which are 
computationally affordable for small-to-medium size prob-
lems. Large-scale problems are usually tackled via coordinate-
descent solvers [29]. Nevertheless, since the nondifferentiable 
part in (6) is not separable coordinatewise, existing results 
regarding convergence of coordinate-descent solvers to a 
global optimum cannot be invoked [28]. An iterative algo-
rithm to approximate the solution of the fused Lasso is devel-
oped in [28]. On the other hand, an algorithm to solve (6) 
exactly is derived in [6], building upon the alternating direc-
tion method of multipliers (ADMoM). Data-driven methods for 
tuning 1m  and 1m  are discussed in [6] along with generaliza-
tion of (6) to polynomial phase-hopping signals (e.g., hopping 
chirps), and its application to wireless communications and 
radar. The method is quite robust to off-grid frequency mis-
match, as illustrated in [6]; further improvements can be 
achieved by iteratively refining the frequency grid using the 
approach in [34]. 

The performance of (6) is illustrated in Figure 1 (also see 
“One or Two Frequencies—Just Beat It!”). The signal of interest 
in (1) and (3) consists of two hopping tones, while the grid of 
carriers is chosen to be ( ) /{ p P2 1W = - - ( ) }P p

P
1r =  with 

P 32=  and .N 48=  The first FH tone is on the tenth carrier in 
the interval [ , ],0 9  and then hops to the 20 th carrier during the 
interval .[ , ]10 47  The second hopping tone occupies the 25 th 
carrier in the interval [ , ],0 29  and the fifth carrier in the inter-
val .[ , ]30 47  The two FH signals are in-phase and have equal 
amplitude. 

The true time-frequency pattern of the signal of interest is 
depicted in Figure 1(a). (Here, and in what follows, the squared 
modulus of the X*  entries is plotted.) The spectrogram obtained 
with window length ,N 81 =  number of frequencies ,N 2562 =  
overlap factor ,L 1o =  and using a rectangular window is 
shown in Figure 1(b) at SNR : ( ) / dB.xlog N10 20*

10 2
2 2v= =  

In Figure 1(c), the modulus of the estimate in (6) rearranged 
in matrix form, i.e., [ , , ],X x xN0 1f= -

t t t  is depicted for 
( ) /10,max1 1m m=  and ( ) / ,10,max2 2m m=  with ,, max1m  ,, max2m  the 

parameter settings [6] that recover the null solution, and the 
constant solution, respectively. Observe that Xt  is a far better 
estimate of the true time-frequency pattern than the spectro-
gram.  Figure  1(d), on the other hand, which depicts the 
 solution of (6) for ( ) /10,max1 1m m=  and ( ) / ,100,max2 2m m=  illus-
trates how beating can occur at small enough .2m  Indeed, in 
the dwell [ , ],10 29  a single beating frequency is identified. 

JoInt sEgmEntatIon and aR modEl IdEntIfIcatIon
Sum-of-exponentials models with piecewise constant parame-
ters, such as the one advocated in the section “Estimation of 
Frequency-Hopping Signals,” are encountered in several 
branches of engineering, including communications and 
radar. Natural signals such as speech and electroencephalo-
gram (EEG), on the other hand, do not conform to (1). 
Autoregressive (AR) models have been the workhorse for para-
metric spectral estimation of many naturally occurring sig-
nals, since they form a dense set in the class of continuous 
spectra, and, in many cases, they approximate parsimoniously 
the spectrum of a given random process [25, Ch. 3]. While AR 
modeling of stationary random processes is well appreciated, a 
number of signals encountered in real life are nonstationary 
(e.g., speech signals). This justifies the growing interest 
toward nonstationary signal analysis and TV-AR models, which 
arise naturally in speech analysis due to the changing shape of 
the vocal tract, as well as in EEG signal analysis due to 
changes in the electrical activity of neurons. In the ensuing 
section, TV-AR models with piecewise-constant coefficients are 
introduced. Their identification is regarded as a sparse linear 
regression with grouped variables, which enables the usage of 
efficient algorithms. 

onE oR two fREquEncIEs—Just bEat It!
In [23], an interesting phenomenon in time-frequency analy-
sis referred to as beating was analyzed. Consider two closely 
spaced sinusoidal signals with equal amplitude, and fre-
quencies f1  and ,f2  i.e., ( ) ( ) .sin sins f nT f nT2 2n s s1 2r r z= + +  
Applying prosthaphaeresis formulas, it holds that 

cos2

.sin

=( ) ( )sin sinf nT f nT f f nT

f f nT

2 2 2
2 2

2
2 2

s s s

s

1 2
2 1

1 2

r r z r
z

r
z

+ + - +

+ +

c

c

m

m

 
 
 

  
(S1)

Observe that sn  can be regarded as a single carrier at fre-
quency ( ) /f f 21 2+  modulated in amplitude by the (low- 
frequency) sinusoidal signal ( ) / ( ) / .cos f f nT2 2 2 2s2r z- +^ h  In 
[23], the EMD method is applied and conditions for the recov-
ery of one or two frequencies are analyzed. Observe that the 
right-hand side of (S1) can be interpreted as a sparser solution 
than the left-hand side (one slowly Tv sinusoidal component 

versus two stationary sinusoidal components). On the other 
hand, in terms of consecutive differences of the instantaneous 
frequencies, the left-hand side of (S1) yields sparser differences 
than the right-hand side. 

So is it one or two frequencies? both interpretations are 
valid—the “right” one depends on how one weighs sparsity 
versus smoothness in the instantaneous frequency (or fre-
quencies), as reflected in the selection of 1m  and 2m  in (6). 
Reducing 2m  while keeping 1m  fixed will eventually tilt the 
balance toward a single modulated tone interpretation. This 
is the sparse linear regression answer to the beating phe-
nomenon, and it is illustrated in Figure 1. 

The beating phenomenon has been analyzed in several 
recent works dealing with signals having slowly varying spectra 
[23], [32]. The method presented in this article is more appro-
priate for FH signals. A comparison of the two approaches with 
respect to the beating phenomenon would be interesting, but 
goes beyond this article’s scope.
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Signal model and problem Statement
Let { }yn n L

N
=-  denote the realization of an Lth order TV-AR 

process obeying the discrete-time input-output relationship
,y a y v,

L
n n n n1
= +,, ,= -/  , , , ,n N0 1 f=  where vn  denotes 

the zero-mean white input noise at time n  with variance
: [ ] ,vE n

2 2 31v =  and a , n,  is the , th TV-AR coefficient at 
time .n  With : [ , , , ]h y y y Rn n n n L

T L
1 2 f != - - -  and :an =

[ , , , ] ,a a a R, , ,n n L n
T L

1 2 f !  the observation model can be 
rewritten as 

 , , , , .h ay v n N0 1n n
T

n n f= + =  (7)

Suppose that abrupt changes in the spectrum of { }yn  occur due 
to piecewise-constant changes of ,an  i.e.,  

 ,a a n n n 1n k k k 1# #= -+  (8)

for , , , ,k K0 1 f=  where K  denotes the number of abrupt 
changes in the TV-AR spectrum, and nk  the time instant of 
the kth abrupt change. The interval [ , ]n n 1k k 1-+  is referred 
to as the kth segment. Without loss of generality, let n 00 =  
and .n N1K 1- =+  

In this context, the goal is to identify the instants { }nk k
K

1=

where the given time series { }yn  is split into K 1+  (stationary) 
segments, and also estimate the constant AR coefficients per 
segment, i.e., { } .ak k

K
0=  The number of abrupt changes, specifi-

cally ,K  is not necessarily known. 

optimum Segmentation of tV-ar proceSSeS
Regularized LS has been the workhorse approach for analyzing 
these kinds of nonstationary processes [19]. With n  denoting a 
positive tuning constant, an 0, -type regularization is typically 
adopted to estimate jointly the change points and the AR coeffi-
cients as 

arg
={ } :a

( ) ( ) ,min h a a ay
2
1

n n
N

n

N

n n
T

n
n

N

n n

0

0

2
0

1
1

{ }a
L

n n
N

0

n d- + -
=

= =

-
=

s

= G/ /

 (9) 

where the indicator function ( ) : { , }0 1RL
0L "$d  is defined as 

 ( ) :
,
,

if
otherwise.

a
a0

1
0L

0Ld =
=*  (10) 
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[fIg1] the estimation of hopping complex exponentials. (a) true time-frequency pattern, (b) spectrogram, (c) sparse linear regression 
estimate with / ,10max2m m=  and (d) sparse linear regression estimate with / .100max2m m=
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The nonconvex regularization term ( )a a
n

N
n n1 10Ld -

= -/  not 
only captures the total number of changes, but also encourages 
piecewise-constant { } .an n

N
0=s  Clearly, the larger the ,n  the 

smaller the total number of changes. The estimator in (9) is 
optimal in the maximum a posteriori (MAP) sense when the 
change occurrences are modeled as Bernoulli random variables, 
and ( , )v 0Nn

2+ v  [19]. 
From a practical point of view, the minimization in (9) is 

challenging since an exhaustive search over all possible sets of 
change instants has to be performed. However, several tech-
niques based on DP, simulated annealing, and interactive condi-
tional model algorithms have been developed to evaluate (9) 
[19]. Even though DP approaches solve (9) in polynomial time, 
the computational complexity is cubic in ,N  which limits their 
applicability to signal segmentation in practice. In typical appli-
cations, N  can be very large (up to several thousands), and 
cubic complexity cannot be afforded. 

In what follows, a convex relaxation of the cost in (9) is advo-
cated based on recent advances in sparse linear regression and 
compressive sampling. To this end, (9) is first reformulated into 
a sparse regression problem with nonconvex regularization that 
is subsequently relaxed through a tight convex approximation. 
The resulting relaxation enables remarkably accurate retrieval 
of change points, obtained via an efficient block-coordinate 
descent iteration that incurs only linear computational burden 
and memory storage. 

exploiting group SparSe coefficient cHangeS
To disclose the connections between TV-AR signal segmentation 
and sparse linear regression, let dn  denote the difference vector 
defined as 

 :
,

,
if
otherwise.

d
a
a a

n 0
n

n

n n 1
=

-

=

-
*  (11) 

Using (11), the problem in (9) can be rewritten as 

 { } : ( )d y Xdarg min d
2
1

{ }d
n n

N

n

N

n0 2
2

1
0

n n
N

L

0

n d= - +=

==

,s = G/  (12)

where : [ , , , ] ,d d d d R( )T T
N
T T N L

0 1
1f != +  and 

 : .X
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g
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S

V

X
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 (13) 

Clearly, it is possible to recover { }an n
N

0=  from { }dn n
N

0=  since 
.a dn

n

n
n 0
=

=
l

l
/

What makes the formulation in (12) attractive but also chal-
lenging is the nonconvex regularization term. The latter 
“pushes” most of the { }dn n

N
1=  vectors toward ,0L  while d0  is not 

penalized. As a consequence, the vector : , , ,d d d dT T
N
T T

0 1 f=s s s s8 B  is 
group sparse, and the nonzero group indices correspond to the 
change instants of the TV-AR coefficients. Recently, a convex 
model selector with grouped variables was put forth by [33] and 

successfully applied to biostatistics and compressive sampling. 
It generalizes the (nongrouped) least-absolute shrinkage and 
selection operator (Lasso) [27] to regression problems where 
the unknown vector exhibits sparsity in groups; hence, its name 
group Lasso. The crux of group Lasso is to relax the regulariza-
tion in (12) with a tight convex approximation. For grouped 
variables, it holds that the equivalent of the sparsity-promoting 

1, -norm is the sum of the 2, -norms [33]. 
The group Lasso is advocated here for catching change 

points by estimating the difference vectors as 

 { } ,d y Xd darg min 2
1

{ }d
n n

N
n

n

N

0 2
2

2
1n n

N
0

m= - +=

==

t = G/  (14)

where m  is a positive tuning parameter. It is known that the 
group Lasso regularization encourages group sparsity, i.e., 
d 0n L=t  for most n 02  [33]. Again, the larger the ,m  the 
sparser the d.t  

REMARk
The role of the regularization term in (14) is illustrated  
next through a simple example. Select L 2=  for simplicity 
to have : [ , ] .d d d T

1 2=  Consider the family of penalties
,( )d d dp p

2 1
2

2
2

2= +  where .p0 21 #  Figure 2 depicts the pen-
alties d p

2  for , , . ,p 2 1 0 5=  and . .0 1  Clearly, d p
2  is convex 

for .p1 2# #  On the other hand, d p
2  is nonconvex for 

p0 11 1  but it comes closer to ( )d0Ld  as p  approaches .0  
Thus, it is clear that dn 2  is a tight convex approximation of

( ) .dn0Ld  Furthermore, dn 2  is nondifferentiable at ,d 0n L=  
which enables group Lasso to encourage group sparsity. 

Needless to say that convexity of the regularizing functions 
avoids the presence of local minima, and allows for solving the 
resulting optimization problem efficiently. To this end, an effi-
cient block-coordinate descent algorithm is developed in [5], 
with computational complexity per iteration that scales linearly 
with .N  Furthermore, the matrix X  does not have to be stored. 
Uniqueness conditions, tuning of the parameter ,m  and perfor-
mance enhancement are discussed in [5]. In particular, it is 
shown that the performance of (14) can be markedly improved 
if the regularization is adaptively weighted depending on 
interim estimates, similar to [8]. To this end, [5] advocates the 
smoothly clipped absolute deviation (SCAD) function, wherein 
the regularization term is downweighted for components that 
are nonzero. 

The following SCAD regularization can be used with a 22
in place of the group Lasso regularization: 
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along with the corresponding optimization problem, i.e., 

 { } ( ) .d y Xd darg min p2
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In the following, the performance of (14) and (16) is exem-
plified in the context of speech segmentation. A speech signal 
of 0.5 s is sampled at 8 kHz, to obtain ,N L 1 4 000+ + =  
samples. The resulting time series depicted in Figure 3 com-
prises a descent diphthong /ai/ followed by an /o/. Its 

spectrogram, evaluated over 256-point segments with 255 
samples overlap, is depicted in Figure 4. Typical speech spectra 
are characterized by peaks at specific frequencies called for-
mants. For instance, vowel spectra are characterized by two to 
three formants. Therefore, to capture these spectra, typical AR 
model order in linear prediction coding (LPC) ranges from six 
to ten [21]—there is little to be gained in terms of prediction 
performance by using a higher model order, which does not 
justify the added complexity. A TV-AR model with L 8=  is 
adopted in the following. The change of vocoid in the diph-
thong occurs approximately at instant , ,n 1 5001 =  while the 
/o/ occurs approximately at , .n 3 0002 =  Figure 5 shows the 
TV-AR coefficients estimated by the group Lasso and group 
SCAD. The group Lasso tends to declare a cloud of change 
points in the proximity of an actual change, while the jumps of 
the group SCAD estimates are very sharp. The group SCAD 
reveals four segments with change points at , ,n 1 0651 =t  

, ,n 1 6062 =t  and , .n 2 9933 =t  Clearly, the first segment corre-
sponds to the /a/, the second, which is the shortest, to the tran-
sition of the diphthong, the third to the /i/, and the fourth to the 
/o/. The results in Figure 5 have been obtained in about 5 s  
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(corresponding to 100 iterations of the coordinate descent algo-
rithm) using MATLAB software on a Quadcore Intel Core i5 CPU 
running at 2.4 GHz and 6 GB of RAM. 

REMARk
Recent research has shown that spiky and quasi-periodic 
residuals of voiced speech can be identified by using  

1, -norm minimization of the model residuals [14]. Our 
joint segmentation and TVAR system identification frame-
work can be extended to account for sparse residuals. In 
fact, one can identify piecewise-constant TVAR models with 
sparse residuals by solving the following convex optimiza-
tion problem: 

 { }d y Xd darg min 2
1

n n
N

n
n

N

0 1 2
1{ }dn n

N
0

m= - +=

==

t = G/ . (17) 

The cost in (17) resembles the one in (14), but minimization of 
the 1, -norm of the model residuals enforces their sparsity. Per-
formance of the method in (17) and the pursuit of efficient algo-
rithms to solve (17) are currently under investigation. 

doubly Robust smoothIng
The piecewise-constant TV-AR model is important for joint 
speech segmentation and linear speech coding, since it allows 
a careful selection of the intervals to perform linear 
 prediction. Nevertheless, most natural signals tend to exhibit 
spectral characteristics that are slowly time varying. Estima-
tion of slowly TV spectra can be performed using TV-AR mod-
els that are identified via, e.g., Kalman smoothing (KS). KS 
has been successfully adopted to identify fine spectral charac-
teristics of EEG and electrocardiogram (ECG) signals [26]. 
Nevertheless, new applications call for ever-increasing signal 
processing capabilities. In many cases, the signal of interest is 
occasionally subject to abrupt spectrum changes and bad data. 
It is well documented that KS falls short in this case, being 
sensitive to model mismatches [12]. In the ensuing section, 
the ordinary KS is first reviewed and recast as a convex opti-
mization problem. KS is then made robust by introducing 
auxiliary (sparse) variables, which are identified along with the 
TV-AR model parameters. 

nonrobuSt Kalman SmootHing
Relaxing the piecewise-constancy, it is possible to estimate 
slowly TV-AR processes recursively. It is assumed that the pre-
dictor coefficients change according to a random walk model 

 , for , , ,a a w n N1n n n1 f= + =-  (18)

where : [ , , ] ,w w w, ,n n n L
T

1 f=  with w ,n ,  a zero-mean, white 
process, with covariance .Ia L

2v  Given observations { }yn n L
N
=-  

drawn according to (7), the optimal (in mean-squared error) 
linear estimation of TV-AR coefficients can be achieved via KS. 
KS can be regarded as the solution of the following convex opti-
mization problem, see, e.g., [3, p. 189], 

 

{ } ( )a h a

a a a

arg min y
2
1

2
1

2
1

KS

{ }a
n n

N

y n

N

n n
T

n

a
n n

n

N

a

0 2
0

2

2 1 2
2

1
2 0 2

2

n n
N

0 v

v v

= -

+ - +

=

=

-

=

=

.

t =

G

/

/  (19) 

The main advantage of KS is that the convex problem in (19) 
can be solved in closed-form via a first pass of the Kalman filter, 
followed by a backward recursion [3, p. 189]. 

While KS is optimal in the family of linear estimators, its 
performance might not be satisfactory for non-Gaussian noise, 
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especially for heavy-tailed distributions of ,vn  and ,wn  i.e., 
wherein outliers occur in the observations and the coefficients 
{ }an  are subject to abrupt changes [24]. In the following sec-
tion, a robust smoother is presented, building upon recent 
advances in sparse regression. 

coping witH outlierS and abrupt cHangeS
To robustify the KS in (19), unknown auxiliary variables mod-
eling outliers and abrupt changes are introduced into the 
problem. The following model is adopted for doubly robust 
smoothing: 

 , , , ,

, , , .

h a
a a w c
y v o n N

n N

0 1

1
n n

T
n n n

n n n n1

f

f

= + + =

= + + =-

 (20) 

  (21) 

Nonzero values in { }on n
N

0=  and { }cn n
N

1=  represent bad data and 
abrupt changes in the signal spectrum that cannot be modeled via 
(7) and (18). The auxiliary variables are identified along the TV-AR 
parameters and, since abrupt changes and bad data occur occa-
sionally, sparsity of { }on n

N
0=  and { }cn n

N
1=  is imposed. Accordingly, 

the advocated doubly robust smoother (DRS) is [12], as can be 
seen in (22) in the box at the bottom of the page.  

The DRS in (22) can cope with outliers jointly present in the 
state and in the measurements. In addition, (22) is universal 
because it does not require knowing the distribution of the 

nominal noise or the outlier vectors (in [12], data-driven crite-
ria for the selection of f  and m  are given.) 

Unlike classical KS, DRS estimates are nonlinear functions 
of the data. In [12], an effective solver based on the ADMoM is 
introduced. Closed-form expressions render the bulk of com-
plexity per iteration comparable to that of KS, which is linear 
in the observation time. In practice, few iterations of the 
ADMoM-based algorithms are required to obtain satisfactory 
results. Fixed-lag DKS is also discussed in [12] for real-time 
applications. 

To assess performance of the proposed method, a nonsta-
tionary signal with main peak around 60 Hz is acquired with 
sampling frequency f 200s =  Hz. Two seconds, i.e., 400 sam-
ples, have been acquired. The nonstationary signal to be ana-
lyzed can be modeled as ( ( ) / ) .sins A f n f n2n sr= ^ h  The 
instantaneous frequency starts at 61 Hz, then it smoothly 
changes to 58 Hz and stabilizes at 60 Hz. After 1.5 s, corre-
sponding to sample index 300, the instantaneous frequency 
abruptly changes to 60.5 Hz. The signal :yn = s v on n n+ +  is 
observed, where ~ ( , . ) .v A0 0 05Nn

2  Bad data are represented by 
{ },on  which are zero with probability 0.98, while { }on  are inde-
pendent and identically distributed as ~ ( , )o A0Nn

2  with proba-
bility 0.02. A TV-AR model with L 2=  is used for the 
identification. Figure 6 shows the AR-estimated spectra for a 
realization of { } .yn n 1

400
=  Bad data occur at samples indices 155 

and 206. Observe that bad data strongly corrupt the KS esti-
mates, and abrupt changes are tracked slowly. On the other 
hand, the DRS estimates are insensitive to bad data and abrupt 
changes are tracked faster. 

concludIng REmaRks
A set of contemporary tools was outlined in this article for 
time-frequency representation of nonstationary signals. These 
tools become available by cross-fertilizing sparsity-aware sig-
nal processing with time-series analysis. Signal models 
adopted in diverse branches of engineering were revisited and 
suitably modified to account for sparsity in different domains. 
It was shown that by leveraging the dual sparsity present in 
the frequency domain and in the time-difference domain 
enables accurate identification of FH signals. Piecewise-con-
stant TV-AR models allow for joint speech segmentation and 
LPC. The speech segmentation problem was recast as a sparse 
linear regression problem that enables efficient solvers to 
carry out the identification task. Finally, the ordinary nonro-
bust KS algorithm was robustified by accounting for abrupt 
changes and bad data. Sparsity-aware time-frequency analysis 
appears to be a promising research area, if only practitioners 

manage to bring the appropriate 
form(s) of sparsity to bear on 
timely applications. As always, 
this requires a good helping  
of “domain art,” on top of 
engineering principles and 
knowledge. Additional chal-
lenges include the pursuit of 

[fIg6] the estimated tV spectrum: (a) ks and (b) doubly robust 
smoothing.
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 performance analysis metrics, and “frugal” algorithmic imple-
mentations that can be mass produced at a low cost. 
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