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Abstract—Gate oxide breakdown is a major cause of reliability
failures in future nanometer-scale CMOS designs. This paper develops
an analysis technique that can predict the probability of a functional
failure in a large digital circuit due to this phenomenon. Novel features
of the method include its ability to account for the inherent resilience
in a circuit to a breakdown event, while simultaneously considering
the impact of process variations. Based on standard process variation
models, at a specified time instant, this procedure determines the circuit
failure probability as a lognormal distribution. Experimental results
demonstrate this approach is accurate compared with Monte Carlo
simulation, and gives 4.7-5.9x better lifetime prediction over existing
methods that are based on pessimistic area-scaling models.

1. INTRODUCTION

Gate oxide breakdown is widely recognized to be a major relia-
bility issue in CMOS circuits in current and future technologies, and
its significance is increasing with each technology node. A majority
of past work has focused on device-level analysis [1]-[3], but there
has been growing interest in analysis at higher levels of abstraction.

Oxide breakdown creates an additional path for current to flow
from the gate to the channel. The severity of the breakdown is
generally described by the terms hard breakdown (HBD) and soft
breakdown (SBD), and these can result either in parametric failures
that alter circuit behavior but not its functionality, or in catastrophic
functional failures that result in incorrect logic evaluation. In this
paper, “circuit failure” is defined as a catastrophic functional failure.
It has been observed that SBDs only cause parametric variations but
not functional failures [4], [5], and therefore they are not considered
in this work. Only HBDs are capable of resulting in functional
failures [4], but not every HBD causes a functional failure [6].

The probability of circuit failure is significantly affected by
on-chip process variations. At the circuit level, recent work [7]
proposed a statistical approach for full-chip oxide reliability analysis
considering process variation of 7,.; however, this work did not
present a path to determining the full distribution of the reliability
function or statistics such as its variance. Subsequent work in
[8] improved upon this by presenting a post-silicon analysis and
mitigation method involving on-chip sensors and voltage tuning.

A major drawback of traditional approaches for circuit-level oxide
reliability analysis, including [7], [8], is that they are all based on the
simple notion of area-scaling, extrapolating the circuit-level failure
rate from the characterized failure rate for a single device [4]. The
idea of area-scaling is that if the total device area in a circuit is A,
then the failure rate equals that of an isolated device of size A.

The drawback of this model lies in the fact that it assumes that any
device breakdown will cause a functional failure in the entire circuit.
There are two reasons why this is pessimistic: first, transistors are
not always under stresses that cause HBDs (as shown in [2], only
the inversion mode for NMOS can result in HBD generation), and
second, not all HBDs lead to failure (as described in [6], digital

circuits can survive several HBDs without losing its functionality).

These drawbacks were addressed in recent work [9] that captured
the effective stressing of NMOS inversion mode for HBD generation
and utilized circuit simulation-based characterization to calculate
the probability of circuit failure after a HBD event. A closed-
form expression for the circuit failure probability was derived as
a Weibull distribution with the same parameter (3 as single devices.
This work showed that area-scaling based approaches are pessimistic
in their calculations of circuit lifetime by 6 — 11x at the nominal
point. While this work makes a start towards more realistic failure
modeling, it performs all of its analyses at the nominal point and
neglects the effects of process variations. This significantly limits
the practicability of the work. Moreover, as we will show, the actual
distribution under variations is not a Weibull function.

Fig. 1 shows a comparison of failure probability vs. time for
benchmark c¢7552 using (a) area scaling with worst-case 7oz, (b)
area scaling with the T,, variation model in [7], (c) area scaling
with nominal 5., (d) the approach proposed in this paper, (e) the
analysis method using nominal process parameters [9]. The u+30
value is used for (b) and (d). The figure shows significant differences
between area-scaling based methods and the proposed method, and
indicates that [9] is too optimistic. Therefore, to accurately predict
circuit reliability, it is essential to account for the inherent circuit
resilience and process variations simultaneously.
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Fig. 1. Comparison of circuit failure, as predicted by various methods.

The goal of this paper is to predict the probability of oxide-
breakdown-induced circuit failure for large digital circuits. Like [9],
we leverage the fact that the dominant mode of circuit failure is due
to NMOS HBDs, and we correct the limitations of the conventional
area-scaling model. Over and above this, we capture the effect of
process variations on circuit failure. To the best of our knowledge,
this is the first work on oxide reliability considering both inherent
circuit resilience and process variations. We demonstrate that the
circuit failure probability at a specified time instant has a lognormal
distribution due to process variations, and this distribution expands
as the process variations and spatial correlation increase.



II. MODELING VARIATIONS

A. Process Variations

It is widely accepted that process parameter variations can be
classified as lot-to-lot, die-to-die (D2D), and within-die (WID)
variations, according to their scope; they can also be categorized as
systematic and random variations by their causes and predictability.
WID variations exhibit spatial dependence knows as spatial correla-
tion, which must be considered for accurate circuit analysis.

We employ a widely-used variational model: a process parameter
X is modeled as a random variable about its mean, Xo, as

X =

2
Ox =

X0+Xg+X5+X’r (1)

2 2 2
Ox, T 0x, + 0%,

Here, X 4, X, and X, stand for the global part (from lot-to-lot or
D2D variations), the spatially correlated part (from WID variation),
and the residual random part, respectively. Under this model, all
devices on the same die have the same global part X,. The spatially
correlated part is modeled using a method similar as [10], where the
entire chip is divided into grids. All devices within the same grid
have the same spatially correlated part X, and devices in different
grids are correlated, with the correlation falling off with the distance.
The random part X, is unique to each device in the system.

In this paper we consider the variations in the transistor width
(W), the channel length (L), and the oxide thickness (75z), and
assume Gaussian-distributed parameters. The spatial correlation can
be extracted as a correlation matrix [11], and processed using
principal components analysis (PCA). The process parameter value
in each grid is expressed as a linear combination of the independent
principal components, with potentially reduced dimension. For a
circuit with n transistors, with the three global parts for W, L and
Tox, the spatially correlated part and the n random parts, all the
process parameters and their linear functions can be expressed in
the random space with basis e = [e,, es, €] as

X = Xo+AX=Xo+kxe )
= Xo+kxgeg +kxees + kee
o% = kikx, cov(Xi,X;)=kxikx; — ke ke,
Here, e, = [ewy,erLg,eTq]" is the basis for global part, e; =

le1, ..., et]T is the basis of principal components for the spatial part,
and e~N (0, 1) is the independent random part for each parameter.

B. Variations in the Breakdown Location and Resistance

Fig. 2(a) includes a scatter plot that shows experimental results
from [3], based on real measurements, illustrating the spread of the
breakdown location in the channel (as measured from the source)
and the breakdown resistance. Also shown is a MEDICI simulation
that plots the predicted breakdown resistance at the nominal point.
Several conclusions can be drawn from these plots, and we use all
of these facts in our variational analysis.

First, the physical location of the breakdown location, xgp, is
uniformly distributed over the length of the channel.

Second, the breakdown event can be represented using a widely-
used model that includes two linear resistors, R and R4, from the
gate to the source and the drain, respectively. As in [9], their nominal
values may be modeled using the following piecewise linear/log-

WP F T T T T T T T T T et T T T

== MEDICI simulation
* measurement

ABD

Fig. 2. Modeling the randomness of Rpp.

linear fit, illustrated in Fig. 2(b):

bx
(0) _ ae’®, 0 < x < Lex
R() = { kr, Le<z<L
RO @) = RO(L-uz) 3)
R (x) RO () | RY ()

Here, L is the channel length, L.y is the length of the source/drain
overlap with channel, and a, b, k are the parameters characterized
from experimental data. The effectiveness of this approach is also
shown in Fig. 2(b), where the parallel combination of the resistors
shows the same variational nature as the experimental data.

Third, due to variations, the data are not all on the nominal curve.
We model process variations using a Gaussian distribution as:

Rep = RY(1+ Aee,) where e,~N(0,1) 4)

The random component ¢, for each NMOS transistor is assumed to
be independent of that for the others, and independent of the process
variations of W, L, and T},.'

With the modeling of Rpp variation in Equation (4), we can
update the nominal value of breakdown resistors R and R;O) in
Equation (3) to include the variation as follows,

aeb”“'(l +Ae€r), 0<z< Lex
Ri(x) = { kz(1+ Mrer), Lo <z <L
Rq(z) Rs(L — x) Q)
Rep(z) = Rs(z) || Ra(z)

e ~ N(0,1)

Fig. 2(b) plots this model, and the blue dots representing the Monte
Carlo samples show a good modeling for the Rpp randomness.

I1I. FAILURE MODEL AND ANALYSIS UNDER VARIATIONS

In this section, we propose a circuit failure analysis considering
process variations. Our nominal model is largely based on the work
of [9], which completely neglects all variations. The contribution of
this work is in building a framework for statistical analysis over this.

IPublished results do not indicate a correlation with these parameters, but
such an effect could easily be included in our formulation.



A. Transistor-Level Models

The time-to-breakdown Tgp for device 7 is expressed as a Weibull
distribution in [1]. Based on the observation in [2] that HBDs can
only occur in NMOS inversion mode, a stressing coefficient, +;,
can be introduced to capture the proportion of time that a NMOS
device is in inversion mode: this coefficient can be computed from
the signal probabilities in a circuit. For a device of area a;, the
breakdown probability as a function of time is the same as the
Weibull distribution function for 7Tgp, which is given by

N\ B
PR = 1 - exp ( (%) ) ©

Here, o and (3 are the parameters of the Weibull distribution. A
common representation of a Weibull distribution is on the so-called
Weibull scale, under the transform

W =In(—1In(1 — Pr)) = Bln(yit/a) + In(a;) 7

In other words, if we plot W as a function of In(¢), the result is a
straight line with slope [ and intercept In(a;).

Under variations, for transistor ¢, the Weibull slope 3 is a linear
function of oxide thickness [1], [12]:

Bi =
-th

where (3;o denotes the nominal value. The Tpp distribution of ¢
NMOS transistor under process variation has the same form as
Equation (6), with 3 replaced by ;. Its area, a;, = W;L;, is a
product of two correlated Gaussians.

Bio + ¢ AT = Bio +c ki e (8)

B. Cell-Level Analysis

The above analysis determines the probability that a transistor will
experience an HBD in the presence of process variations. However,
not every HBD results in circuit failure. The intuitive idea is that
breakdown results in a leakage current through a device that is
supposedly off, so that a resistive divider is created with the potential
of changing the voltage at a gate output. Depending on the location
of the breakdown and the breakdown resistance, some incidences
may result in a logic failure while others may not. In fact, transistor
sizing may be used to make a circuit more robust to such events. We
begin by reprising the approach in [9] for the nominal case, and then
present our solution for the case that accounts for process variations.

Consider a cell n that contains a transistor with oxide breakdown.
Let k& be the pin of cell n connected to the gate of this transistor,
and let m be the logic cell that drives pin & of cell n. Then for any
broken down NMOS transistor ¢, we can find the corresponding case
index (m,n, k). Figure 3(a) shows an example of such a breakdown
case using a NAND?2 as cell m, a NOR2 as cell n, and k£ = 1. Note
that we assume a single breakdown event in these two cells, since
the probability of two breakdowns is miniscule.

Thus, any breakdown of an NMOS transistor ¢ can be mapped to
a case indexed by the cell m that drives it, the cell n that contains
it, and the input pin k that it connects to, as shown in Fig. 3. The
input combination is denoted as V. The circuit failure is judged by
hard thresholds over the output voltages of cell m and n, which are
also functions of xpp, as the example shown in Fig. 4. An example
simulation is shown in Fig. 4, showing the output voltage of cell m
and cell n. Given a threshold Vg for the cell with a logic 1 output
and V7, for a logic 0 output, it is seen that breakdown events close to
the source or drain could cause a failure that violates the threshold.

Fig. 3. Cell-level analysis of the breakdown case.
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Fig. 4. Calculation of failure probability.

Based on the model in Equation (3), the breakdown case can
be analyzed using a SPICE DC sweep over xgp, enumerating all
input combinations. This precharacterizes the (m,n,k, V) case to
determine the points ng 1, xﬁ;ﬁ?s, xg:f 31, and mgfl) +» Which refer to the
breakdown locations where the corresponding cell output voltages
cross the threshold, as illustrated in Fig. 4%,

Given the uniform distribution of xgp [3], the failure probability is
equal to the proportion of xgp where the threshold is violated. The
source-side and drain-side failure probabilities under certain input
vector were calculated separately as:

m,n,k,V 7

Prgfail-s\BD) ) = mnax (pém%pg l)) (9)
(m,n,k, V) (m)  (n)

Pripilajppy’ = max (Pd Dy )

where, for a given breakdown case (m,n, k, V) at gate i,

(m)

(m)
pgm) fail-s 7 p;m) 1 — Ztail-d

L L

(n) (n)
(n) _ Thils (n) _ 1 _ Thaild 10
Ds 7 0 Pa 17 10)

The local failure probability caused by " NMOS HBD is
calculated as the two-sided sum of the worst-case probabilities over
all possible input vectors, and is given by

(m,n,k)

(i) _ _ (m,n,k,V)
Prt/ = Pr(fai”Bm = m\z}LxPr

(fail-s|BD)

(m,n,k,V)
(fail-d|BD)

1D

Under process variations, these failure probabilities depend on the
breakdown resistor Rgp and parameters of all transistors in involved

+ max Pr,
v

2If no crossing point exists, the value of the parameter is set to zero at
the source end or L at the drain end.



cell m and n. Using a first-order Taylor expansion,

=po+diAe, + > dw, AW+ dy ALj + Y dy, AT,
J J J

where p € {p{™, p{™, pfim) ;")}. Here, d? is the first-order Taylor
coefficients on parameter x. These coefficients is obtained using
SPICE sensitivity analysis, and AW;, AL; and AT} are random
variables that can be expressed in the form in Equation (2). Since
the case failure probability p is a linear combination of these process
parameters and €., it can also be expressed with vector e,

p = pot+k,etdire, (12)

p e {pM,pM pim piMy

Note that €, is the Gaussian representing the Rpp randomness from
Equation (4), and is independent of the elements in e.

From Equation (9), (11), and (12) we can obtain the source-
side and drain-side failure probabilities using analytical methods.
This involves applying the max operation on correlated Gaussians.
The work in [13] provided a solution for this max function and
approximated the result as a Gaussian in the same random space
e. Using such an approach, the final failure probability for case
(m,n, k) is calculated using Equation (11) as the sum of maximum
over all input vectors, and is approximated as a Gaussian of the form

(1) _
Pr = Prgipn) =

Pr(()i) + kgrie + dier,

The first part of the cell-level analysis, which is the case failure
sensitivity analysis for (m, n, k, V), only depends on the cell library
and can be performed as library characterization, and therefore its
complexity is not included in discussions about the runtime or the
computational complexity. The second part, including Equation (12)
to (13), requires the specified data of process variations, therefore
can only be implemented on a circuit-by-circuit basis.

C. Circuit-Level Analysis

The failure probability of a large digital circuit as a function of
time is calculated using the weakest-link property, since any local
failure caused by a NMOS HBD implies circuit failure.

pi) = 1- [ (1-pllw) (14)
1€NMOS
= 1= [T (1-m@rR),
1€NMOS

i.e., a circuit is failure-free if every NMOS device is failure-free, or
if any device failures are addressed by inherent resiliency.

By substituting Equation (6) and using the first-order Taylor
approximation, the circuit failure probability was derived in [9] as

Prid () =1 —exp < (é) Z pr(V40 ) )

1€ENMOS
which can also be expressed in the Weibull scale [1] as

(cko) _ it ? ()
In <f In (1 — Prig (t))) = lnl{%OS (Z) Pr'“a;
ﬂln( )—Hn Z Pr<)’6

1ENMOS

15)

w

(16)

Therefore, the failure probability of a large digital circuit also follows
the Weibull distribution, and has the same slope (3 as a single device.

Note that the Weibull scale circuit failure probability using area
scaling is W = BIn(t/a) + In3" a;. Since Pr < 1 and ~; < 1,

the area scaling based techniques always yield pessimistic result that
is much larger than Equation (16).
Under a statistical model, we derive the following:

Bi
it i
exp(W) = E (L) Pr”ai:E exp(y:) (17)
ienmos N & i
where y; = ﬂi1n<’7it)+ln<Pr<i>ai> (18)
o

B:1In (%t) +InPr' + InW; +In L; (19)

Under process variations, for the i*™ NMOS transistor, B; is a
Gaussian in random space e as shown in Equation (8); Pr? is a
Gaussian in space e U €., as in Equation (13); W; and L; are also
Gaussians in space e as assumed in Section II. Their logarithms are
approximated Gaussians using moment-matching (see Appendix).
As shown in our experimental reasuls section, that approximation
does not hurt the final result. Since Pr'® contains an additional
random basis €., for Rpp variation, the sum of the logarithms S;
will contain both e and ¢,,. Denoting ks, and ¢; as the coefficients

for these two parts, and pg, as the mean of the sum,
S; =P £ InW; +InL; = ps, + k3 e + gier, (20)

Therefore y; can be expressed as a Gaussian using e and e,,.
Denoting F; = In(7;t/«) and substituting Equation (19) with (20),

Blln< )+S
«a

= BioFi + ps; + (cFikr, + ks,v,)Te + gi€r;

vi =
€2y

which means that y; is also a Gaussian expressed in terms of e and
€r;» and exp(y;) will have a lognormal distribution. Note that y; is
the Weibull-scale failure probability corresponding to the HBD of

" NMOS transistor. Under process variations, the speed of HBD
generation is affected by ATy, through (3;, and W; and L; through
a;, the probability of failure after HBD is affected by variations of all
related transistors in corresponding cells through Pr and a;. From
Equation (17), exp(W) is the sum of correlated lognormal RVs. It
can be approximated to a lognormal using Wilkinson’s method [14],
and its first two moments, u; and us, are’®

Z €exXp (:U/yi, + 0—51 /2)

Z exp (2,uyz + 201) +

N—-1 N 1, 2
2 E E i Thy; ei(gyi

i=1 j=i+1

(22)

Uy =

U2

2 -
+ij +27;; Ty Oy )

When exp(W) is small enough, using a first-order Taylor expan-
sion, we find from Equation (16) that
(1— exp(W)) = "

Pri =1 — exp (—exp(W)) ~ 1 — (23)

This result indicates that, when the circuit failure probability Prgﬁo is

small (which is actually the case we are interested in, since a circuit
with a very large number of breakdowns is unlikely to be functional),

3The calculation of uo requires the covariance of 1; and yj. When the
HBD case for NMOS ¢ also involves NMOS j (i.e. j belongs to cell m or
n) or vice versa, the random parts € of y; and y; are actually correlated
since they contain process parameters from the same transisor(s). This kind
of case is fairly rare (about 2/N for a circuit with IV logic cells), hence the
correlations of the random parts are omitted to simplify the computation.



it can be approximated with exp(W), which has lognormal distribu-
tion with the first two moments given in Equation (22). When Pric”
is large, its distribution is unknown, but the mean and variance still
can be calculated using a numerical method based on Equation (23).
With this information of the circuit failure distribution, it is possible
to predict the circuit failure probability at given time ¢ with any
specific confidence (e.g. 99%) using the distribution function.

The result also shows that the circuit-level failure probability
under process variation is no longer a strict Weibull distribution
along time, since the ‘757: in Equation (22) brings second order term
In? ¢t. Although this observation is based on approximations, it is
confirmed by simulation results. The second-order and cross terms
51. also prevent a general closed-form expression.

Due to the process variations, the mean value of circuit failure
probability is increased by the aii in Equation (22). The variance
(uz — u?) also increases with larger Uii. This verifies that process
variations exaggerate the likelihood of failure. Moreover, u2 contains
the term 7;; which depends positively on the spatial correlation. This
means higher spatial correlation will increase the variance of failure

probability, thus elevating the reliability issue.

from o

D. Computational Complexity of the Analysis Method

For the circuit-level analysis in Section III.C, the calculation of
y; has constant complexity due to the limited number of involved
devices, principal components, and elements in the random part e,
(when using sparse computation). Using the recursive technique
proposed in [15], a sum operation over N lognormal variables can
be computed as N — 1 sum operations on two lognormal variables,
keeping the computational complexity at O(N). As stated earlier,
the cell-level analysis in Section IIL.B is not included in this cost
since it is a characterization that is carried out once for a library.

IV. EXPERIMENTAL RESULTS

The proposed method for circuit oxide reliability with process
variations and spatial correlation was tested on the ISCAS85 and
ITC99 benchmark circuits. The circuits were synthesized by ABC
[16] using the Nangate 45nm open cell library [17], and then
placement was carried out using a simulated annealing algorithm.
The library characterization of cell-level failure probability in Sec-
tion III.B was performed using HSPICE simulation and 45nm PTM
model [18]. The method was implemented in C++ and tested on a
Linux PC with 3GHz CPU and 2GB RAM.

The parameters for the Weibull distribution are o« = 10000
(arbitrary unit) and § = 1.2 [1]. The process variation of oy is
chosen so that its 3o point is 4% of its mean [8], and is split into
20% of global variation, 20% of spatially correlated variation and
60% of random variation. The variation of W and L sets the 30 point
to 12% of the mean [19], and is split to 40% of global variation,
40% of spatially correlated variation and 20% of random variation.
The correlation matrix is uses the distance based method in [11].
The number of grids grows with the circuit size.

For each benchmark circuit, the mean and standard deviation of
the failure probability are calculated at the time when the nominal
circuit has a failure probability of 1%, using the proposed method
and Monte Carlo (MC) simulation, separately. The MC simulation
randomly generates 5000 circuit instances with different process
parameters according to their distribution and correlation models:
for each sample, we evaluate the failure probability by using the

random value of the process parameters as inputs to the approach
in [9].

Table I presents the statistics of the circuit failure probability
using the proposed method. The first three columns represent the
circuit name and its characteristics. Information about the mean and
standard deviation of the failure probability using our approach are
presented in the next two columns, and the corresponding errors
relative to MC in the following two. It can be seen that our approach
closely matches MC, with average errors of 0.8% for the mean and
1.8% for the standard deviation. The value of the mean is very close
to the nominal failure probability of 1%, but the standard deviation
is considerable. The last two columns compare the circuit lifetime at
time p+30 for our approach with the nominal approach in [9] and
the area-scaling method under variations, respectively. We see that
the circuit lifetime decrease 19-23% due to process variation, and
the proposed approach shows 4.7-5.9x lifetime relaxation against
the pessimistic area-scaling method.

Fig. 5 plots the probability density function (PDF) and cumulative
density function (CDF) of benchmark c¢7552 at the nominal failure
probability of 1%. The dotted curves show results of MC simulation,
while the solid curves show lognormal distribution obtained using
proposed method. The nearly perfect match of these two methods
validates the approximations made during the analysis, and proves
that the circuit failure probability has a lognormal distribution in the
region of interest, rather than a Weibull distribution. Consistent with
this observation, if we plot this on the Weibull scale, it can be seen
that this distribution is not a straight line with a constant Weibull
slope.
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Fig. 5. Comparison of the PDF and CDF of circuit failure.

The proposed method is also tested with other process parameter
variance and correlation data besides the condition assumed above.
Table II shows the p+3o0 value of circuit failure when nominal
circuit failure probability is 1%, and its error against MC simulation
for benchmark c7552, under several process variation and spatial
correlation conditions:

TABLE II

CIRCUIT FAILURE OF C7552 UNDER DIFFERENT TEST CONDITIONS.

Process Less correlation Medium correlation More correlation
Variation g/s/r=10/10/80% g/s/r=30/40/30% g/ s/r=50/40/10%
W, L, Ty pt+3o Error p+3o Error p+3o Error
olu=1% 1.13% 0.20% 1.23% 0.24% 1.27% 0.15%
olu=2% 1.27% 0.04% 1.47% -0.06% 1.56% -0.27%
o/u=5% 1.85% 0.81% 2.45% 0.44% 2.72% 2.15%
o/pu=10% 3.99% 0.62% 6.15% 2.16% 7.29% 5.01%

The labels g, s, r in the table stand for the global part, the spatially
correlated part and the random part of the parameter variations. The
results indicate that the relative error to MC simulation is small under
all the test conditions, indicating the proposed method is accurate
and robust to different conditions of process variations. Moreover, we



TABLE I
COMPARISONS OF THE MEAN f AND o OF CIRCUIT FAILURE.

circuit Size Failure probability Error to MC Runtime 3o lifetime
name #Cells | #Grids o % I % Proposed MC Nominal | Area scaling
c432 221 4 1.02% 8.87% 0.89% | -0.45% 1.06s 24.8s -18.6% 5.2%
c880 384 9 1.02% 8.99% 1.08% 2.81% 1.50s 38.4s -18.8% 5.1%
c1355 596 9 1.02% 9.20% 0.73% 2.52% 1.88s 41.1s -19.1% 5.1%
c2670 759 16 1.02% 9.53% 0.63% 1.16% 4.84s 126s -19.7% 5.9x%
¢3540 1033 16 1.02% 9.56% 0.62% 2.05% 6.72s 191s -19.8% 5.3x
c5315 1699 25 1.02% 9.63% 0.86% 5.57% 6.30s 164s -20.0% 5.2x
c6288 3560 64 1.02% 10.4% 1.12% 5.53% 17.2s 434s -21.3% 5.4x
c7552 2316 36 1.03% 9.82% 0.55% 1.00% 9.34s 275s -20.2% 5.1x
bl4 4996 81 1.02% 10.2% 0.87% 1.96% 53.5s 1064s -21.0% 5.2%
bl5 6548 100 1.02% 10.3% 0.80% 0.59% 61.6s 1247s -21.1% 5.0%
bl17 20407 361 1.03% 11.3% 0.90% | -0.53% 233s 4195s -22.8% 4.7x
b20 11033 169 1.03% 10.7% 0.97% 1.51% 120s 21565 -21.8% 5.0x
b21 10873 169 1.03% 10.7% 0.79% 1.01% 69.1s 2489s -21.7% 4.9x
b22 14974 225 1.03% 10.9% 0.75% 0.78% 107s 3321s -22.1% 4.9x

observe that as the pu+30 value of the failure probability increases
when the spatial component of the process variation increases, or
when the correlation increases. This verifies again that the process
variations and spatial correlation elevate the reliability issues due to
oxide breakdown.

V. CONCLUSION

The paper has focused on the reliability issues caused by gate
oxide breakdown in CMOS digital circuits, with the consideration
of process variations and the inherent resilience in a circuit that
prevents every breakdown from causing circuit failure. The proposed
approach takes account for the effective stressing for HBD gener-
ation and the probability of circuit failure after HBD occurrences.
The circuit failure probability at specified time instant is derived to
be a lognormal distribution due the process variations. Experimental
results show this approach is accurate compared with Monte Carlo
simulation, and gives 4.7-5.9x better lifetime prediction compared
with the pessimistic area-scaling method.
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APPENDIX

Logarithm of a Gaussian RV : For x ~ N(u,02), given g >
oz > 0 so that z > 0 is always true, its logarithm y = Inz can
be approximated linearly as y = ¢ + kz. In order to get better
accuracy, the following moments matching method is used instead
of first-order Taylor expansion.

For y = Inz, we want to approximate it as y'~N(y,07).
Therefore 2’ = exp(y’) has a lognormal distribution with first two
moments

exp(y + 0y/2)
exp(2py + 207)

u1

24

U2

By matching the first two moments of =’ and x: u1 = iz, us =
o2 + 2, we can get the distribution of y as

py = 2lnuz—%ln(03+ui)

2
Ty

In(o + p3) — 21n (25)

Therefore the coefficients for the linear form y = ¢ + kx are k =

0y/0z and ¢ = fiy — 20y /0s.
g



