
Enabling Improved Power Management in
Multicore Processors through Clustered DVFS

Tejaswini Kolpe†, Antonia Zhai‡, and Sachin S. Sapatnekar†
† Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
‡ Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA

Abstract—In recent years, chip multiprocessors (CMP) have
emerged as a solution for high-speed computing demands.
However, power dissipation in CMPs can be high if numerous
cores are simultaneously active. Dynamic voltage and frequency
scaling (DVFS) is widely used to reduce the active power, but
its effectiveness and cost depends on the granularity at which
it is applied. Per-core DVFS allows the greatest flexibility in
controlling power, but incurs the expense of an unrealistically
large number of on-chip voltage regulators. Per-chip DVFS,
where all cores are controlled by a single regulator overcomes
this problem at the expense of greatly reduced flexibility. This
work considers the problem of building an intermediate solution,
clustering the cores of a multicore processor into DVFS domains
and implementing DVFS on a per-cluster basis. Based on a typical
workload, we propose a scheme to find similarity among the cores
and cluster them based on this similarity. We also provide an
algorithm to implement DVFS for the clusters, and evaluate the
effectiveness of per-cluster DVFS in power reduction.

I. INTRODUCTION

In recent years, there has been a growing demand for
high-performance computing systems capable of performing
a multitude of tasks. Meeting these demands using a single
superscalar processor that uses instruction level parallelism
(ILP) or simultaneous multithreading (SMT) has offered only
partial relief, and on most applications, these schemes have
eventually hit barriers associated with limited ILP, limited
memory bandwidth, total power budgets, or some combination
of these factors.

Multicore processors, or chip multiprocessors (CMP), are
seeing increasing adoption as they provide a pathway to
achieving high performance under power bounds [1]. These
consist of several processor cores on a single die, each
equipped with one or more levels of a private cache. Each
core is relatively simpler and easier to design and validate
than a single large SMT processor. Multiple applications can
be run independently on each core of a CMP, or a single
application can be split into several parallel threads and can be
executed on the cores simultaneously, and a high throughput
can be achieved without increasing the clock rate. The reduced
complexity and smaller sizes of the cores of a CMP eliminate
the necessity for long interconnects, thus eliminating signifi-
cant performance bottlenecks [2]. However, multicore systems
also have the potential for large area and power overheads as
several processor cores operate simultaneously. Thus, a major
task in working with multicore architectures is in controlling
the power dissipation.

This research was supported in part by the NSF under award ECCS-
0903427 and the SRC under contract 2009-TJ-1990.

A significant observation in this regard is that instructions
in various cores typically do not execute at a constant rate.
For example, cache misses result in memory accesses that are
much slower than on-chip operations and are of the order
of few hundreds of cycles. The instruction throughput is
low during such periods of low activity, and hence, if the
processor is operated at a high frequency during these times,
the corresponding switching transitions are essentially wasted.
To reduce the total power during such periods, the processor
frequency and Vdd value can each be linearly reduced on
the fly to yield a cubic reduction in the dynamic (CV 2

ddf)
power. The process of dynamically altering the supply voltage
and operating frequency is commonly referred to as dynamic
voltage and frequency scaling (DVFS), and the corresponding
schedule is referred to as the DVFS schedule.

A key element of DVFS is the use of one or more voltage
regulators that deliver power to a circuit from an energy
source. On-chip regulators have the advantage of providing
fast switching to different voltage levels as compared to off-
chip voltage regulators: specifically, the voltage transition
times are of the order of tens of nanoseconds for on-chip
voltage regulators, and of the order of tens of microseconds
for off-chip regulators [3].

(a) Per-chip DVFS (b) Per-core DVFS (c) Clustered DVFS

Fig. 1. DVFS domains in a CMP

In principle, DVFS for a CMP can be performed at various
levels of granularity:

• Per-chip DVFS, as shown in Figure 1(a), uses the same
power delivery network to reach every core, and conse-
quently, binds each core to the same DVFS schedule.

• Per-core DVFS, illustrated in Figure 1(b), uses a separate
voltage regulator for each core and therefore allows every
core to have an independent DVFS schedule.

• Cluster-level DVFS, shown in Figure 1(c), uses multiple
of on-chip regulators drive a set of DVFS domains, or
clusters, so that one or more cores are associated with
each cluster.

sachin
Text Box
978-3-9810801-7-9/DATE11/©2011 EDAA

The single voltage regulator required by per-chip DVFS may
be located on-chip or off-chip. Per-core DVFS requires one
regulator per core: due to the scales involved, it is essential
for all of these regulators to be located on-chip. However,
on-chip regulators incur significant area and power overhead
by introducing large inductors and capacitors; moreover, it
is difficult to build inductors with sufficient Q factors to
support a large number of on-chip regulators. Therefore, per-
core DVFS is practically difficult beyond 4 or at most 8
cores. Additionally, it does not yield commensurate benefits
that justify its overhead [4]; on the other hand, per-chip
DVFS is too constrained by the worst case over all cores, and
cannot leverage the full power of DVFS. Cluster-level DVFS
represents an intermediate point between the extremes of per-
chip and per-core DVFS, and is a reasonable design scheme.

In this work, we address the problem of power dissipation
in a homogeneous CMP consisting of identical cores at the
design stage, by grouping the cores into a specified number
of clusters such that the performance and power dissipation
of the clusters is optimized. There has been little prior work
in the area of clustered DVFS and researchers have focused
primarily on per-core [5] or per-chip [6] DVFS for CMPs. The
clustering of cores in a 16-core CMP and the implementation
of DVFS on a per-cluster basis has been analyzed in [4],
but the clustering is not based on any similarity metrics or
typical workloads. Two clustering methods are used: cores
with consecutive indices are grouped together and cores with
the same index mod 4 are clustered together: in each case,
the assignment of cores to domains is uniform. Our proposed
method for core clustering, on the other hand, is based on
the temporal correlation between them in the required voltage
values based on running a representative set of benchmarks.

The problem solved in this paper can be stated as follows.
Given a representative workload for a multicore processor and
a target number of DVFS domains, we determine how the
system should be partitioned into DVFS clusters. Our work is
targeted towards a multiprogramming environment where each
core runs a separate program, and has a private cache and a
shared main memory, and there is little to no communication
between cores since the programs are largely independent.
Based on this representative set of benchmarks, we determine
the optimal number of cores for each DVFS cluster.

Our approach first finds the optimal voltage/frequency
schedule on a per-core basis using a bounded enumeration
scheme, and then clusters processors together, depending on
an affinity metric based on the per-core voltage/frequency
schedule. Finally, the efficacy of the clustering is examined by
determining the voltage/frequency schedule for each cluster.

Note that the optimization in this paper is a one-time,
off-line optimization. Once these clusters have been detected
and implemented in hardware, runtime techniques can be
used to run programs on the multicore processor by mapping
applications to these DVFS clusters. The development of such
techniques is beyond the scope of this paper, but examples of
prior work that solves related problems include [7], [8]. Using
offline or online compiler analysis, the compiler can identify
program regions for Vdd and frequency adjustments, and this
information can be coupled with the set of available processors
at the time the program commences. Alternatively, one could

extract a signature from the programs in the representative
workload that captures its key performance features. When
a new program is to be scheduled, one could compare the
signature from this program with those of the representative
workload to determine which domain it best belongs to.

II. OVERVIEW OF THE APPROACH

A. Objective function
We consider a CMP executing a multiprogrammed workload

where each core runs an independent application. As a result,
note that we often use the terms “core” and “application”
interchangeably in the following discussion. We consider
determining the optimal DVFS schedule with minimum cost,
under several circumstances:

1) Hard constraint: The application is required to execute
completely in a given duration T and the cost function
is the power consumed

Cost = Power (1)

2) Soft constraint: The application is not required to exe-
cute completely, but there is a penalty associated with
the incomplete instructions and this is built into the cost
function. The cost function for this case is defined as

Cost = Power (1 + K × (1− η))) (2)

where K is a user-defined constant and η is the fraction
of instructions that are completed by the deadline. In
choosing K, it can be seen that the higher the value of
K more is the penalty for incompletion and vice versa.
In selecting the value of K, the relative weight of the two
components of the objective function can be determined
by looking at possible values of η. Note that 0 ≤ η ≤ 1
by definition, and typically its value is closer to 0 than to
1. Moreover, to ensure a reasonable solution, we insert
an additional requirement that

η > ηspec (3)

In our experiments, we set ηspec = 0.85.
The second model above is based on the intuition that

allowing a small percentage of incompletion might allow
greater power savings since the core can operate at lower
frequencies for more time. For instance, if the runtime of one
of the programs is large but relatively insensitive to the value
of Vdd, then the advantage of speeding it up is minimal, but
its large runtime makes it liable to seek the highest frequency
at most times. Allowing some level of incompletion relaxes
the frequency requirements for this processor.

However, any decision to do so must involve a requirement
that a minimum number of instructions is executed, and must
contain a penalty component for incomplete instructions. If
the penalty for incomplete instructions is lower than the power
that would be consumed to ensure completion, an incomplete
execution may be favored by the deadline, so that execution
is completed slightly later than the deadline.

In general, as we will see, the soft deadline model better
captures the essence of DVFS. For example, if a benchmark
has more memory-bound cycles and periods of low activity,
the first objective function may assign it to high-frequency

operation, but this simply increases the total power dissipation
with little improvement in the throughput.

B. Outline of the method
Under our scheme, clustered DVFS in a multicore processor

is based on their performance on a typical workload in a
multiprogramming environment. For this workload, cores that
have good temporal correlation in the required voltage and
frequency of operation must be clustered together.

Our optimization approach consists of the following steps:
• Finding the per-core DVFS schedule for each core: In

the first step, we temporarily assume that each core can
be independently biased, as in a per-core scenario. Under
this assumption, we use an offline approach to determine
the best possible DVFS for each core, as an intermediate
step in the overall solution. The idea of this step is to
determine a DVFS schedule that corresponds to the best
overall flexibility and optimal power dissipation over all
cluster assignments. We develop an implicit enumeration
scheme to solve this problem, incorporating procedures
to ensure that at a practical level, its computational cost
is reasonable.

• Clustering “similar” cores together: The per-core DVFS
schedule presents the “unconstrained” optimal solution,
and our goal is to find a cluster whose performance
is as close to this as possible. We use the per-core
schedule as a starting point and define a similarity metric
between these schedules for all processors. If we cluster
together groups of cores for which the per-core solution
is temporally similar over a number of intervals, each
core can eventually achieve a temporal assignment that
is “close” to the per-core assignment. We use the K-
means algorithm to perform this clustering based on the
output metric.

• Finding the DVFS schedule for each cluster to evaluate
the solution: The final step is an evaluation step to
measure the performance of the clustering procedure.
To determine the quality of clustering, we now find the
optimal DVFS schedule for each cluster, using an ap-
proach similar to the first step. This can now be compared
with the original performance to obtain a measure of the
solution quality.

III. INGREDIENTS OF THE ALGORITHM

In this section, we will describe the basic ingredients of the
algorithm. To begin with, Section III-A will describe how we
profile the representative workload to compactly capture the
information that is required by our algorithm. Next, in Section
III-B, we present an implicit enumeration scheme, which is
very computationally efficient in practice, to find the optimal
per-core DVFS schedule. The information from the per-core
DVFS is then used to define affinities, and cores are then
clustered using the K-means clustering algorithm, described
in Section III-C. Finally, we verify the performance of the

Note that since this optimization is performed offline, our DVFS is not
strictly dynamic scheduling (which is performed online), but represents the
best DVFS schedule possible.

Note that all cores are homogeneous, i.e., structurally similar. Here,
similarity refers to their workload characteristics.

clustered DVFS using a variant of the implicit enumeration
algorithm, as described in Section III-D.

A. Initial profiling

Our assumption is that the workload provided is represen-
tative of a real workload, and that conclusions drawn from an
intensive analysis of this workload can lead us to create DVFS
clusters that operate for a wider range of typical applications to
be run on the multicore processor, with intelligent scheduling
algorithms.

Each program in the workload runs on a separate core
in a multiprogramming environment, and as a starting point,
we profile each of these programs to obtain an idea of the
voltage/frequency needs of the core. Given a set of discrete
frequencies at which the programs will be executed, we
execute these programs in a cycle-accurate simulator to obtain
the power dissipation at this frequency. We store the data for
further analysis; given the large volume of data, we sample
each benchmark once in every 1000 cycles with no significant
loss in accuracy.

B. Implicit enumeration scheme

The first step in our implementation of DVFS for multicore
system requires finding the optimal frequency and voltage
schedule for each core such that the cost is minimized. A
similar scheme is used in the third step, where the performance
of the clustering approach is analyzed. This section explains
the algorithm used in the implicit enumeration scheme that
drives both methods.

The multiprogrammed workload scenario requires applica-
tions to be run on a core each. Let us consider one such core.
Let the target execution time for the application running on
the core be T . Let this time T be divided into M equal time
steps such that

M∑
i=1

ti = T (4)

Here, each time step corresponds to a DVFS interval, i.e., the
voltage and frequency may be changed at the beginning of this
interval. We will first assume per-core DVFS in illustrating this
algorithm, and then show the extensions of this approach to
per-cluster DVFS later.

The supply voltage and frequency are chosen from the set
of available choices, (Vj , fj), j ∈ 1, . . . , N , which form a
set of N discrete Vdd-frequency pairs available. This set is
considered to be an input to the procedure, and captures the
DVFS capabilities of the multicore processor. Here, Vj is the
minimum supply voltage required to sustain an operating fre-
quency of fj . The objective of the offline implicit enumeration
scheme is to find the assignment (Vj , fj) for each ti such that
the cost function is minimized. This assignment is the optimal
DVFS schedule for the core for that interval.

The algorithm is applied to each core, and starts at the first
time step and proceeds till the M th step, computing a list of
possible tuples that capture its performance up to the end of
the step. Each tuple is represented by (I, C), where I is the
number of instructions committed till the end of the time step
and C is the associated cost till the end of the time step. The

value of C is computed according the objective function that
is selected from among the possible choices in Section II-A.

A naı̈ve (and impractical) way of computing the (I, C)
tuples is as follows. At time 0, the only tuple is (0, 0). At the
end of the first time step, the value of I and C is computed for
each possible (Vj , fj) pair: therefore, there are N such tuples.
At the end of the kth time step, the set of tuples is taken by
combining the tuples from time step k − 1, and considering
an execution in time step k at each of the N possible voltage-
frequency pairs.

The profiling information from Section III-A presents a
quick and compact table-lookup operation that can be used
to predict the number of instructions at frequency fj , starting
from a given instruction count, performed during a given
interval, and also the corresponding contribution to the cost
function.

The drawback of this naı̈ve method is its complexity. It is
easy to see that after M time steps, we would have O(MN)
tuples for each core. This exponential complexity is clearly
not a scalable solution.

Therefore, we explore ways of pruning this list. We employ
a mix of exact and heuristic strategies for this purpose.

• Provably suboptimal tuples: Let (Ia, Ca) and (Ib, Cb) be
two elements in the list of tuples. Then, if Ia ≤ Ib and
Ca > Cb, we can be certain that (Ia, Ca) is suboptimal.
Stated another way, if there is a tuple (Ib, Cb) that
completes an equal or greater number of instructions than
Ia at a lower cost than Ca, then it will always be preferred
to (Ia, Ca) in any optimal solution, and therefore the
latter can be eliminated.

• Heuristic pruning strategies are also possible. For exam-
ple, for the first objective function, where we have a hard
requirement that the application has to complete by a spe-
cific deadline, we can observe that if the application is to
complete by the end of M th time step, it has to complete
approximately i

M

th
of the total number of instructions by

the end of ith time step. Given the nonuniform structure
of any computation, we include a tolerance factor that
makes this estimate very liberal. At the ith step, any
tuple that has completed fewer instructions than this limit
is eliminated. A similar formulation can be created for
the second objective function: assuming that η% of all
instructions are completed by the M th time step, at the
end of ith time step, it is reasonable to assume that about
η i
M

th
of all instructions are executed; this requirement

may be made more liberal through a multiplicative factor
of less than 1.

Further approaches for pruning tuples may be used: for exam-
ple, if a tuple is within some ϵ of being provably suboptimal to
another, it could be deleted. However, we found that further
strategies were unnecessary in our implementation, and that
the above two approaches worked well enough.

An example of the trend showing the growth in the number
of tuples with respect to program time, which is observed in
practice for benchmark galgel, which is run repeatedly from
t = 0 to t = 0.9s, using three candidate frequencies and for
different values of M , is shown in Figure 2. It can be seen that
the growth without pruning suboptimal tuples is exponential

whereas, with pruning, the growth is very manageable.

Fig. 2. Tuple growth as a function of time for different values of M .

C. Finding the DVFS clusters

The optimal voltage assignment for each core obtained will
have voltages assigned for each of the M time steps and
hence can be seen as a point in an M -dimensional space.
The M−dimensional points corresponding to the cores are
then clustered using the K-means clustering algorithm. Since
this is a standard clustering technique with several software
implementations in the public domain, we do not present the
details of the approach. The algorithm has the limitation that it
converges to a local minima and the result depends largely on
the initial centroids chosen. Hence, several trials with random
initial centroids are carried out in an attempt to find global
minimum. The K-means algorithm provides an optimal set
of clusters that correspond to the optimal clustered DVFS
solution.

D. Verifying the performance of the clusters

Once the optimal clusters have been determined and cores
assigned to these clusters, it is important to evaluate the
performance of the clustering approach. For this purpose, we
run the clustered programs under the assumption that all cores
within a cluster must have their voltage and frequency values
changed simultaneously.

The problem formulation for finding this optimal DVFS
schedule for a cluster of cores is similar to that of imple-
menting per-core DVFS. Let the target execution time for the
applications running on all the cores in the cluster be T . As
before, let this time T be divided into M equal time steps
such that

∑M
i=1 ti = T . In this case, the objective is to find

the assignment (Vj , fj) for each ti such that the sum of the
associated costs of all the cores in the cluster is minimized,
under the constraint that a certain percentage of the total
number of instructions present in each of the applications
is completed. The implicit enumeration procedure to find the
frequency and voltage schedule for a cluster proceeds in the
same way as implementing DVFS for a core. The difference
is that instead of calculating tuples for one core at each time
step, we calculate tuples for all the cores in a cluster at each
time step. Another difference is that the suboptimal tuple for a
core can be eliminated only if the corresponding tuples for all
other cores in the cluster are also suboptimal. The complexity

of the algorithm is the same as that of per-core case, since
we do essentially the same but for multiple cores at a time.
However, as before, the use of tuple elimination, coupled with
our heuristics, keeps the complexity reasonable.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

We consider a homogeneous 16-core CMP in 45nm tech-
nology. Figure 3 shows the organization of the CMP that is
considered. It has 16 processing cores, and each core has its
private L1 and L2 cache. The L3 cache is shared.

Fig. 3. Block diagram of the simulated 16-core CMP

For our multiprogramming environment with individual pro-
grams running on separate cores, we use a cycle-accurate out-
of-order uniprocessor simulator, SimpleScalar [9], to simulate
each individual core of the CMP. Clearly, using SimpleScalar,
a uniprocessor simulator, to model a CMP system is an ap-
proximation: in particular, the shared cache cannot be modeled
using this simulator. This approximation is reasonable in a
multiprogramming environment since each processor runs an
independent application, and realistically, the contention for
shared cache is small. The simplicity and ease of use of
SimpleScalar drives our choice, and for the above reasons,
it is adequate. The processor configuration modeled in Sim-
pleScalar is as shown in Table I. Each processing core is an
out-of-order processor and has private L1 data and instruction
caches and a private unified L2 cache. The L1 data and
instruction cache access latency is 1 processor cycle, and the
L2 unified cache access latency is 4 processor cycles. Since the
L1 and L2 caches are private for each core, their access latency
in terms of the number of processor cycles is the same at all
frequencies, but the number of cycles required to accesses the
main memory change with processor frequency.

TABLE I
CONFIGURATION OF A SINGLE PROCESSOR

Fetch/Decode/Issue/Commit width 4/4/4/4 (instructions/cycle)
RUU size 64 entries
LSQ size 32 entries
Private L1 Data cache 16KB, 4-way SA, 32B block size
Private L1 Instruction cache 16KB, 4-way SA, 32B block size
Private L2 Unified Data and Instruction cache 512KB, 8-way SA, 64B block size
Memory access bus width 8 bytes
Data Translation Lookaside Buffer 512KB, 4-way SA, 4KB block size
Instruction Translation Lookaside Buffer 256KB, 4-way SA, 4KB block size
integer ALUs 4
integer multiplier/dividers 4
floating point ALUs 2
floating point multipliers/dividers 2
memory system ports available to CPU 2 (1 read, 1 write)

For power estimation, we employ Wattch, an architectural-
level power modeling tool that is integrated with SimpleScalar.
We have updated the technology-specific parameters in Wattch
based on the ORION 2.0 [10] technology file.

The first step in our implementation consists of gathering
the profiles of the representative workload, as described in
Section III-A. Sixteen benchmarks from the SPEC CPU2000
suite were used, of which nine are integer and seven are
floating point benchmarks. Each is assumed to run on a
separate core, repeating after completion until 1.5s at 0.5GHz.
These benchmarks were run on the SimpleScalar simulator
with the MinneSPEC input sets [11].

TABLE II
SUPPLY VOLTAGES AND SUPPORTED FREQUENCIES

Processor frequency (in GHz) 0.5 0.7 0.9 1 1.1
Supply Voltage (in V) 0.8 0.9 1 1.1 1.2

We assume a set of discrete (Vdd,frequency) pairs available
for DVFS, as shown in Table II, taken from [12]. The memory
access latency and translation lookaside buffer (TLB) miss
penalty corresponding to each of the processor frequencies
from Table II are shown in Table III.

TABLE III
MEMORY ACCESS LATENCY AND TLB MISS PENALTIES (IN PROCESSOR

CYCLES) FOR EACH FREQUENCY

0.5 GHz 0.7 GHz 0.9 GHz 1 GHz 1.1 GHz
Memory access latency 25 35 45 50 55
TLB miss penalty 30 42 54 60 66

B. Results

We evaluate configurations of 1, 4, 8 and 16 clusters: the 1-
cluster configuration corresponds to the per-chip DVFS case
and the 16-cluster configuration corresponds to the per-core
DVFS case. For every cluster configuration, we set upper
and lower limits on the number of cores per cluster with the
goal of ensuring that no regulator is excessively overloaded or
underloaded. For the 4-cluster case, the number of cores per
cluster must be between 3 and 5; for the 8-cluster case, this
number must be between 1 and 3.

We evaluate various target times under each of the two
objective functions in Section II. Recall that at the lowest fre-
quency, the runtime of the workload is 1.5s. We evaluate target
times of 0.9s, 1.1s, and 1.3s for the first objective function, 0.9s
and 1.1s for the second. Due to space limitations, we show a
selected set of results. A reasonable value for the penalty K is
empirically found to be K = 5, where only a few cores have
an 85-90% completion rate; the others have a higher rate of
completion of 98-100%. For a lower value of K, the penalty is
insufficient and the tradeoff is worse: e.g., for K = 2, almost
all benchmarks have a small completion rate, close to ηspec.
For K = 5, as stated earlier, the incomplete programs are
primarily slow because they are awaiting memory accesses,
and speeding up the processor would not help their cause.

The per-core DVFS schedules of cores in these clusters,
along with the per-cluster DVFS schedules for 4-cluster case
is shown in Figure 4. The five frequencies are assigned indices:

0.5GHz is assigned an index of 1 and 1.1GHz is assigned an
index of 5. Several observations can be made from this:

• The result of per-core DVFS assignment for each core
is shown in each subfigure, and the black line indicates
the cluster DVFS assignment. Given that two of the
benchmarks, mgrid and art, have a per-core assignment
at the maximum value for all time, clearly the per-
chip DVFS solution will also be at the maximum value:
clearly, this is a wasteful use of power for the programs
in the other clusters. The per-cluster case, on the other
hand, places them in a cluster together, and enhances the
likelihood that other compatibilities and clusters can be
found.

• The number of cores per cluster is not uniform, and
indeed reaches the bounds of 3 and 5. This implies that
using a uniform number of cores per cluster, as in [4]
and other prior work, is suboptimal.

• As the deadline becomes more relaxed, there is greater
flexibility for clustering cores together and the cluster
sizes tend to become more uniform. For the 4-cluster
16-core case, under a 0.9s deadline, the number of
cores per cluster were {3, 3, 1, 1}; when the deadline
is relaxed to 1.1s, the corresponding numbers were
{3, 2, 2, 1}. Similarly, for the 8-cluster case, the num-
ber of cores per cluster went from {3, 3, 3, 3, 1, 1, 1, 1}
to {3, 3, 3, 2, 2, 1, 1, 1}. All evaluations were under the
second objective function for K = 5.

Fig. 4. DVFS for 4-cluster case under first use model and 0.9s target
execution time

(a) Hard constraints (b) Soft constraints

Fig. 5. Comparison of the power saved from the different cluster configu-
rations for 0.9 s target execution time

Next, we evaluate the reduction in the power (“power gain”)

as we move from per-core to per-chip DVFS, and we examine
how much performance we must sacrifice to match the power
dissipation of the per-core case. Results of this evaluation
for first and second objective functions, for a target time of
0.9s, are shown in Figure 5. We relax the target execution
time (“performance loss”) to achieve the power dissipation
of the per-core case. For the 1-, 4-, and 8-cluster cases,
the x-axis crossing shows the performance loss at which the
power matches the per-core case. This degradation is seen to
reduce with the number of clusters. The per-chip case fails
to match the per-core case even with 10% performance loss
under the first objective function, but requires only a 5% loss
in the second. This data clearly indicates (a) the importance
of clustered DVFS over per-core DVFS (b) the importance
of allowing the flexibility of the soft constraints, and (c)
diminishing returns with increasing the number of clusters: in
particular, going from 4 to 8 clusters is not worthwhile here.

V. CONCLUSION

We have developed an effective approach for DVFS domain
assignment in a multiprogramming environment. We find the
optimal per-core schedule using a novel implicit enumeration
environment with aggressive pruning, and then cluster these
schedules to find the best assignments. Our results indicate
significant benefits from clustered DVFS over per-core DVFS,
but diminishing returns with increased number of clusters.

REFERENCES

[1] Y. Li, K. Skadron, D. Brooks, and Z. Hu. Performance, energy, and
thermal considerations for SMT and CMP architectures. In Proceed-
ings of the International Symposium on High-Performance Computer
Architecture, pages 71–82, 2005.

[2] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip multipro-
cessor. IEEE Computer, 30(9):79–85, 1997.

[3] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System level
analysis of fast, per-core DVFS using on-chip switching regulators.
In Proceedings of the International Symposium on High-Performance
Computer Architecture, pages 123–134, 2008.

[4] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 38–43, 2007.

[5] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark. Coordinated,
distributed, formal energy management of chip multiprocessors. In
Proceedings of the International Symposium on Low Power Electronics
and Design, 2005.

[6] J. Li and J. F. Martı́nez. Dynamic power-performance adaptation of
parallel computation on chip multiprocessors. In Proceedings of the
International Symposium on High-Performance Computer Architecture,
2006.

[7] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose,
and Margaret Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for a given power
budget. In Proceedings of the International Symposium on Microarchi-
tecture, pages 347–358, December 2006.

[8] M. Martonosi and S. Kaxiras. Computer Architecture Techniques for
Power-Efficiency. Morgan and Claypool, San Rafael, CA, first edition,
2008.

[9] D. Burger and T. M. Austin. The SimpleScalar tool set, Version 2.0.
ACM SIGARCH Computer Architecture News, 25:13–25, 1997.

[10] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A fast
and accurate NoC power and area model for early-stage design space
exploration. In Proceedings of Design, Automation & Test in Europe,
pages 423–428, 2009.

[11] AJ KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research. Com-
puter Architecture Letters, 1:7–7, 2002.

[12] J. Howard et al., A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS. In Digest of Technical Papers, International
Solid-State Circuits Conference, pages 108–109, 2010.

