
Constructive Common-Centroid Placement and
Routing for Binary-Weighted Capacitor Arrays

Nibedita Karmokar, Arvind K. Sharma, Jitesh Poojary,
Meghna Madhusudan, Ramesh Harjani, and Sachin S. Sapatnekar

University of Minnesota, Minneapolis, MN, USA

Abstract—The accuracy and linearity of capacitive digital-to-
analog converters (DACs) depend on precise capacitor ratios, but
these ratios are perturbed by process variations and parasitics.
This paper develops fast constructive procedures for common-
centroid placement and routing for binary-weighted capacitors
in charge-sharing DACs. Parasitics also degrade the switching
speed of a capacitor array, particularly in FinFET nodes with
severe wire/via resistances. To overcome this, the capacitor array
is placed and routed to optimize switching speed, measured by
the 3dB frequency. A balance between 3dB frequency and DAC
INL/DNL is shown by trading off via counts with dispersion. The
approach delivers high-quality results with low runtimes.

I. INTRODUCTION

The accuracy and performance of circuits such as charge-
scaling digital-to-analog converters (DACs) (Fig. 1) depend
on binary-weighted capacitor ratios [1], [2], which may be
perturbed by mismatch. We consider the problem of CC lay-
out [3] of binary-weighted capacitor arrays for DACs, which
reduces systematic mismatch, and take advantage of the prob-
lem structure to optimize DAC performance metrics. Several
related works (e.g., [4], [5]) that address CC layout do not
leverage the specific properties of DACs. For DAC structures,
routing parasitics are critically important, but numerous prior
CC placement methods [5]–[7] ignore their impact. Methods
that do incorporate routing considerations [8]–[10] are based
on computationally expensive stochastic search [1], [2], [8],
[10]. In contrast, we develop a fast, constructive approach.

We focus on layout in FinFET nodes where per-unit wire/via
resistances are high. Prior techniques address older bulk tech-
nology nodes and cannot easily be adapted to FinFET designs,
e.g., routing detours in [11], [12] incur high resistance penal-
ties. Analog design in FinFET nodes favors MOM capacitors
with high capacitance density and low-resistance device layer
connections, but few prior efforts [9], [10] consider CC layout
for MOM capacitors; none address FinFET node issues.

The primary contributions of our work are as follows.
(1) We present a fast, constructive, place/route algorithm for CC
layout of binary-weighted DAC capacitor arrays. The router is
applied to a new spiral style, existing chessboard methods, and
a new family of block chessboard placements.
(2) We target FinFET technologies, coping with via/wire re-
sistances by building CC structures with few vias, and by
implementing larger effective wire widths using parallel wires
in low metal layers (as required under width quantization).
(3) We show that prior placement methods that improve disper-
sion (which reduces INL/DNL variance) result in unacceptable

This work is supported in part by the DARPA IDEA program, as part of the
ALIGN project, under SPAWAR Contract N660011824048.

3dB frequency. We introduce the spiral placement approach that
shows large improvements in 3dB frequency over prior work
with some cost to INL/DNL, and block chessboard approaches
that trade off 3dB frequency with INL/DNL.

II. BACKGROUND

A. The impact of capacitance mismatch on a DAC
In a charge-scaling DAC (Fig. 1), the capacitor bottom plates
are connected to buffers. The top plates are initially grounded
by closing the Reset switch. After the Reset switch is opened, a
digital code is applied to the bottom plate through the buffers,
creating charge-shared voltage on the common node of the
capacitor top plates. This is fed to an opamp to provide VOUT .

Fig. 1: Schematic and equivalent circuit of a charge-scaling
DAC with the kth bit set to 1 and all other bits set to 0.

Fig. 1 shows the equivalent circuit for code i. Let Dk be
the kth bit of the code; let CT , CON (i) and COFF (i) be the
total capacitance, and sum of capacitors whose bottom plates
are connected to VREF and ground, respectively. In a binary-
weighted DAC, Ck = nkCu where nk = 1 for k = 0; nk =
2k−1 for k ≥ 1. Noting that C0 = Cu is always grounded,

CT (i) = Cu ·
(
1 + 1 + 2 + · · ·+ 2N−1

)
= 2NCu (1)

CON (i) =
∑N

k=1 Dk(i)2
k−1Cu ; COFF (i) =

∑N
k=1 Dk(i)2

k−1Cu

For perfect capacitor matching and an ideal opamp,

VOUT =
CON (i)

CT
VREF =

∑N
k=1 Dk(i)2

(k−N−1)VREF (2)

Shifts in the top-plate capacitance (Fig. 1) can alter VOUT .
Increasing Cu can reduce these effects, at the cost of increased
power. Moreover, as Cu increases, so does the array area, with
larger routing parasitics that lead to greater mismatch. Bottom-
plate parasitics do not affect DAC linearity, but affect the load
for VREF , and impact power and switching frequency.

B. Modeling wire parasitics
For each metal layer, given the foundry-provided per-unit wire
resistance r and per-unit wire capacitance c, the resistance
[capacitance] of a wire segment of length l is r · l [c · l]. For
adjacent wires, if the per-unit coupling capacitance is cc(s) for
a spacing of s, the coupling capacitance between two segments
with overlap length loverlap is cc(s) · loverlap.

C. Modeling variations in a capacitor array
To reduce systematic mismatch, capacitors are divided into
identical-sized capacitor cells (called unit cells) that are placed
in a gridded common centroid matrix.

1) Modeling systematic variation due to a linear gradient:
We use a gradient model for systematic variation [4]. At the
center of the CC array, t0 denotes the spacing between MOM
cap wires, and Cu is the unit capacitance. The oxide thickness
at (xj , yj) is tj = t0 + γ(xj cos θ + yj sin θ). Here, γ and θ
(0 ≤ θ ≤ 180◦) are the linear oxide gradient magnitude and
angle at the origin, respectively. A unit capacitor at (xj , yj)
thus has value Cu(t0/tj). Each capacitor Ck is shifted to

C∗k =
∑

j Cu × (t0/tj) (3)

2) Modeling random variations: A unit capacitor has zero-
mean random variations with variance σ2

u = A2
f/(WH) [13],

where Af is similar to a Pelgrom mismatch coefficient [14],
W and H are the width and height of the unit capacitor. The
correlation coefficient for two unit capacitors A at (x1, y1) and
B at (x2, y2) in the (r × s) CC matrix is [5]:

ρAB = (ρu)
D(A,B) (4)

where D(A,B) =
(√

(x2 − x1)2 + (y2 − y1)2
)
/Lc (5)

Here 0 < ρu < 1 and Lc are process-specific parameters.
If Cp = pCu [Cq = qCu], with p [q] unit capacitors,

correlation coefficient ρpq = Cov(p, q)/(σpσq) where
σ2
p = σ2

u (p+ 2Sp) ; σ
2
q = σ2

u (q + 2Sq) ; Cov(p, q) = σ2
uSpq (6)

Sp =

p−1∑
a=1

p∑
b=a+1

ρab ; Sq =

q−1∑
a=1

q∑
b=a+1

ρab ; Spq =

p∑
a=1

q∑
b=1

ρab

III. CIRCUIT-LEVEL METRICS

A. Mismatch-induced nonlinearity error model (INL, DNL)
The differential nonlinearity (DNL) at input code i is:

DNL(i) = (VOUT (i)− VOUT (i− 1)− VLSB) /VLSB (7)

where VLSB = VREF /2
N . The integral nonlinearity (INL) is:

INL(0) = 0

INL(i) =
(
VOUT (i)− V ideal

OUT (i)
)
/VLSB (8)

Under nonidealities, we update CON (i) and CT in (2) as [7]:

VOUT = VREF · (CON (i) + ∆CON (i)) /(CT +∆CT) (9)

where ∆CON (i) [∆CT] is the shift in CON (i) [CT].
We model random mismatch using a 3σ model, as opposed to

numerical yield integrals [7]. For an applied code i, depending
on whether the kth bit, Dk, is 0 or 1, capacitors may be
connected to VREF or ground, respectively. The values of
CON (i) and CT in (1) are shifted due to nonidealities as:

∆CON (i) =
∑N

k=1 Dk(i)∆Ck + CTB
ON (10)

∆CT (i) =
∑N

k=0 ∆Ck + CTB
ON + CTB

OFF + CTS (11)

where CTB
ON , CTB

OFF , and CTS represent the parasitics illustrated
in Fig. 1; ∆Ck is the sum of the systematic variations, ∆Csys

k ,
and statistical variations, ∆Csta

k . Given C∗k from (3),

∆Csys
k = (C∗k − nkCu) (12)

The extent of statistical variations is given by the 3σ points
of the statistical summations of Ck terms in (10) and (11). The
variances of ∆CON (i) and ∆CT (i) are shown below:

σ2
∆CON (i) =

∑N
j=1

∑N
k=1 Dj(i)Dk(i)Cov(j, k) (13)

σ2
∆CT (i) =

∑N
j=1

∑N
k=1 Cov(j, k) (14)

where Cov(i, j) is given by (6). Therefore,
∆CON (i) =

∑N
k=1 Dk(i)(C

∗
k − nkCu) + (3σ∆CON (i) + CTB

ON)

∆CT (i) =
∑N

k=0(C
∗
k − nkCu) + (3σ∆CT (i) + CTB

ON + CTB
OFF + CTS)

B. Capacitor 3dB frequency
The switching response of a capacitor array is encapsulated in
the 3dB frequency metric, which defines the maximum speed
at which switches can close the bottom plates of the unit
capacitors of the DAC. Thus, the 3dB bandwidth measures the
maximum switching frequency of the clock, which represents
how much data can be processed per unit time. Particularly
for high-resolution DACs, the routing-induced parasitics may
substantially affect the 3dB frequency. To our knowledge, no
prior automated CC capacitor layout method has incorporated
this consideration: as we will show in Section V, parasitics can
severely impact this important performance metric.

The settling time, tsettle, of the DAC [15] must ensure that
the capacitor is charged to a voltage that is ∼1/4 LSB from the
final voltage, leaving room for other nonlinearities. Modeling
the charge path as an RC circuit with time constant τ ,

e−tsettle/τ = 2−N/4 , i.e., tsettle = ln(2N+2)τ (15)

Since each cycle goes through a charge-discharge phase, the
3dB frequency, f3dB , for a full cycle for a capacitor is

f3dB = 1/(2(N + 2)ln(2)τ) (16)

For each capacitor Ci, we measure τ by computing the Elmore
delay of the RC mesh to the unit capacitors of Ci. Over all bits,
the charging network with the maximum Elmore delay limits
the frequency and is used as τ in (16). The Elmore delay for
a mesh can be computed using standard techniques [16].

IV. COMMON CENTROID PLACEMENT AND ROUTING

Our constructive routing-friendly CC placement flow optimizes
mismatch, interconnect wirelength, parasitic RCs, and 3dB
frequency; next, a routing step optimizes DAC performance.

A. CC placement
1) Array size calculation: The CC array for an N -bit DAC

consists of a grid of 2N unit capacitors, each of which is
typically built in a square aspect ratio. To minimize the impact
of systematic variations, the aspect ratio of the rectangular CC
array is made as close to a square as possible. The N capacitors,
each consisting of n0, · · · , nN−1 unit capacitors, can be placed
in an r × s array, where

r =

⌈√∑N
i=0 ni

⌉
, s =

⌈∑N
i=0 ni/r

⌉
(17)

For an N -bit DAC with binary-weighted arrays, the capacitor
ratios are [n0 : n1 : n2 : · · · : nN] = [1 : 1 : 2 : · · · : 2N−1].
Therefore,

∑N
i=1 ni = 2N . For odd N , DC dummy capacitors

are needed to complete the array, where DC = (r × s)− 2N ;
for even N , r = s = 2N/2, and no dummies are needed.

2) Placement tradeoffs between wire resistance and dis-
persion: Good matching under random variations is ensured
through dispersion, which reflects the spread of the unit ca-
pacitances of C0 through CN in the CC array. An additional
major consideration is to build routing-friendly placements that
optimize interconnect parasitic effects. Previous efforts have not
addressed the specific needs of FinFET technologies, with high
wire resistance and higher via resistances. As FinFET technolo-
gies used reserved-direction routing, especially in lower metal
layers that are used for MOM capacitors, every bend in a wire
incurs a via resistance cost due to a layer change.

Reducing via count is critical for reducing interconnect
resistance and improving 3dB frequency. An extension of high-
dispersion chessboard placement [7] matches capacitive routing
parasitics but neglects resistance: results show high via counts.
We consider a range of new constructive placement solutions
– spiral placement and block chessboard (BC) methods – to
trade off interconnect parasitics with dispersion.

Fig. 2: An example illustrating our CC placement algorithm.

Spiral placement for optimized interconnect parasitics
This solution minimizes the number of bends in the
connections and is illustrated for a 6-bit DAC in Fig. 2(a).
Since the number of unit capacitors in C0 and C1 is 1, an
odd number, it is not possible to achieve a common-centroid
placement. Instead, we place these as close to the common
centroid as possible to limit the impact of process variations.
Here, we place C0 and C1 diagonally opposite each other near
the center. Next, we place all the capacitors of C2, then C3,
and so on, in a spiral sequence from the center.

Whenever we place a unit capacitor at a location along a
spiral, we also place another unit capacitor at its reflection to
maintain the CC property. Considering the CC point as the
origin (the red dot in the figure), if we place a unit capacitor
in a square (d1, d2), it will be accompanied by another unit
capacitor at location (−d1,−d2). For example, when the spiral
places a unit capacitor of C2 at (−1,−1) in the figure, we
place another unit capacitor of C2 at (+1,+1). We place the
unit capacitors of C3 at the first empty location along the spiral,
first at (1, 2) and its reflection at (−1,−2), and so on.

Beyond C2, this technique naturally aligns numerous unit
cells of a capacitor to lie in the same row or column, the method
reduces the number of vias (corresponding to wire “bends”)
required to connect them. This approach maintains adequate
dispersion while also reducing the number of required turns
(corresponding to vias) for the routing connections. Although
the method is simple, it is different from previous methods:
the nearest similar methods are [4], with a mix of rectangles
and circles for placement, and [17] with interleaved rows, but
it does not achieve good dispersion.
Chessboard placement for optimized dispersion [7] At the
other extreme, [7] optimizes dispersion by interspersing unit

capacitors in a chessboard pattern, as illustrated for a 6-bit
DAC in Fig. 2(b). For a 6-bit DAC, the 32 unit capacitors of
C6 are first placed in an 8 × 8 array on the black squares of
a “chessboard”; then the 16 unit capacitors of C5 are placed;
and so on. However, the routing resistance costs here are large.
Block chessboard (BC) approaches A block chessboard ap-
proach attempts to find the best of both worlds, by achieving
the dispersion of the chessboard approach and the lower routing
costs of the spiral approach. Examples of this approach for a 6-
bit DAC are shown in Figs. 2(c) and 2(d). The inner core of this
structure is a conventional chessboard layout for the capacitors
with a smaller number of unit cells (here, C0 through C4):
this provides good dispersion, and while it has a high number
of bends/vias, its wire RCs are typically smaller than those
of the larger capacitors C5 and C6, and do not constrain the
3dB frequency, which is determined by the worst-case time
constant. The outer corridor here has a width of 2 cells. Since
n6 : n5 = 2 : 1, we first lay out half the cells of C6 in
clusters and then perform chessboard routing, alternating the
remaining cells of C6 with C5. Two layouts are shown for
different granularities in the outer corridor.

Other BC structures may be built with the inner full-
chessboard core of C0 − −Ck, and an outer block structure
for Ck+1 − −CN . MSB capacitors do not greatly affect DAC
accuracy since their variation is averaged over more unit
capacitors than LSB capacitors. MSB capacitors use fewer vias
in BC than chessboard, resulting in higher 3dB frequency.

To create a block chessboard layout, starting from i = k+1,
at each step we choose a block size for Ci and place the blocks
in chessboard fashion. We increment i and repeat until i = N ;
if N is odd, we also add dummies in block chessboard fashion.

B. Routing

1) Routing patterns within the CC array: The following
routing parasitics are seen for capacitor Ci in the CC array:
(1) The top-plate capacitance CTS

i to ground (Fig. 1) partic-
ipates in the evaluation of Vout. Parasitic CTS

i leads to gain
errors, affecting INL/DNL. Since all top plates are connected,
these parasitics appear in parallel at an opamp input. This
parasitic must be minimized using short routes.
(2) The top-plate-to-bottom-plate parasitic capacitance, CTB

i ,
(Fig. 1) is in parallel with the capacitor Ci and effectively in-
creases the value of Ci. Therefore, several techniques endeavor
to make it proportional to Ci [11], [12].
(3) The bottom plate capacitance CBS

i to ground is connected
to the switches and driver that charge it to VREF . By en-
suring that the switches are on for a sufficiently long time
(Section III-B), its impact on linearity metrics is minimal.

As in [8], we minimize CTB
i with nonoverlapped routing

that separates the wires that route the top-plate and bottom-
plate. MOM capacitors often use 3 or more metal levels, and
via-free connections are possible in the same direction even
when metals are routed using a reserved layer direction.

2) Connected unit capacitor group formation: To connect
all bottom plates of unit cpacitors of each Ci, we first create
connected capacitor groups of neighboring unit capacitors of
each Ci. We represent unit capacitors by nodes in graph G, with
edges between nodes for these neighboring unit capacitors.

We apply a breadth first search (BFS) algorithm on G to find
its connected components (connected capacitor groups). The
bottom plates of neighboring unit capacitors in the BFS tree are
connected using branch wires: each connection is immediately
mirrored to the unit capacitor at the diagonally symmetric
location in the CC placement, maintaining symmetric routing.
The connected unit capacitor groups for a 6-bit CC array for a
spiral placement is shown in Fig. 3(a). Section IV-B4 discusses
how parallel connections for bottom-plate routing (shown here
for C6) improve performance. A similar method can be used
for block chessboard placements. Chessboard placements have
no bottom-plate connected capacitor groups.

Fig. 3: (a) Routing for a CC placement of a 6-bit DAC using
parallel wires. For connected capacitor groups (different shades
of the same color), top-plate [bottom-plate] connections are
shown in red [black]. (b) Routing topology for C4.

3) Bottom-plate routing: Bottom-plate routing requires sep-
arate routes to connect the unit capacitor groups of each Ci.
For a DAC, the bottom-plate terminals in the capacitive array
are connected to switches and drivers that are clustered together
outside the array. Since these are noisy digital structures, they
are clustered together outside the array, away from sensitive
analog elements. Without loss of generality, we assume that
this cluster lies below the array, i.e., the terminals must go to
the bottom of the array. Wires are routed between capacitor
array columns in vertical tracks: since the number of wires is
small, the spacing between columns for the tracks is negligible
compared to the unit capacitor size.

We use three types of wires for routing (Fig. 3(b)): branch
wires are used to connect unit capacitors within capacitor
groups, or unit capacitor groups to trunk wires, trunk wires
connect disjoint connected capacitor groups along the vertical
tracks, and bridge wires connect trunk wires at the periphery
of the array. The routing method is outlined in Algorithm 1,
and consists of three steps: channel selection (Step 1), track
assignment (Step 2), and routing (Step 3).

Channel selection attempts to assign capacitor groups to
channels so that they maximize track sharing. If two connected
capacitor groups share a common vertical channel span, they
can share a connection along a track. The outer loop over i
iterates over all capacitors Ci. The next loop over j considers
each unvisited capacitor group p for Ci, and looks for other
capacitor groups q (in the loop over k) to share channels with.
Line 14 checks whether p and q share a horizontal span: if
not (e.g., for capacitor groups for C4 in Fig. 3(a)), then they
cannot share a channel; if they do (e.g., for the C5 groups in
the figure), the channels that can be shared are to the left/right
of the columns that both p and q span (for C5, the third to

sixth column). Next, we choose the closest cells up ∈ p and
uq ∈ q (line 16), which will be connected to the trunk wire in
the track: this choice minimizes the trunk wire length segment
that connects p and q. In case of a tie, we choose the wire
closest to the bottom of the layout, to minimize the connection
length to the drivers at the bottom. In Fig. 3(a), we choose the
lowest cell of the upper C5 group in column 2 and the leftmost
cell of the lower C5 group in column 3; not that its symmetric
opposite in columns 6 and 7 is eliminated by the tie-breaker
because it incurs a higher routing length to the bottom.

We now commit to connecting p to other groups through
up (line 18), and the remaining iterations attempt to find
other capacitor groups that can be connected to up via the
channel to its left or right, building lists Pl and Pr for such
candidates (lines 20–24). Depending on whether Pl or Pr has
more members, we choose to route up on its left or right
(lines 30–32). Note that using up to connect to uq is already a
good choice: this step attempts to find even better choices that

Algorithm 1 Bottom-plate routing
1: Input: C = [C0, · · · , CN]; CC placement; IC [i], a list of connected capacitor

groups for each Ci.
2: Output: Routed layout for the CC placement
3: // Step 1: Channel selection
4: for i = 1 to len(C) do //Over each capacitor
5: for j = 1 to len(IC [i]) do //Over each unvisited capacitor group of Ci

6: p = IC [i][j]
7: if p is not visited then
8: //Find U [i][j], set of capacitor groups with channel span intersecting p
9: //Find D[i][j], indicating whether route is to the left or right of p

10: Pl, Pr ← {} //Set of capacitor groups to the left, right of p
11: c[j] = −1 //Column number of p that is routed in the channel; initialization
12: for k = 1 to len(IC [i]) do //Over each unvisited group of Ci except p
13: if (q = IC [i][k] is not visited) and (p ̸= q) then
14: if (horizontal span(p) ∩ horizontal span(q) ̸= {}) then
15: Choose the nearest unit cells up ∈ p, uq ∈ q for connection;
16: if tied, choose a unit cell pair closest to bottom of CC array.
17: if (c[j] == −1) then
18: c[j]← column number of cell up

19: end if
20: if uq is in column (c[j]− 1) or c[j] then
21: Pl ← Pl∪ {q}
22: end if
23: if uq is in column c[j] or (c[j] + 1) then
24: Pr ← Pr∪ {q}
25: end if
26: end if
27: end if
28: end for
29: if len(Pl) > len(Pr) then
30: D[i][j]← left; U [i][j]← Pl; Mark all q ∈ Pl as visited
31: else
32: D[i][j]← right; U [i][j]← Pr ; Mark all q ∈ Pr as visited
33: end if
34: end if
35: end for
36: end for
37: // Step 2: Track selection for trunk wire routing recorded in array V
38: Calculate #tracks for each channel as the number of Cis routed in the channel.
39: for i = 1 to len(C) do //Over each capacitors
40: for j = 1 to len(IC [i]) do //Over each unvisited capacitor group of Ci

41: if (p = IC [i][j]) is not visited then
42: if D[i][j] == left then //Assign track to left
43: V [i][j]← Rightmost unused track tk in column c[j] to the left of p
44: else
45: V [i][j]← Leftmost unused track tk in column c[j] to the right of p
46: end if
47: for k = 1 to len(U [i][j]) do // For each q ∈ U [i][j], use the same track
48: V [i][k]← V [i][j]; Mark q = U [i][k] as visited
49: end for
50: end if
51: end for
52: end for
53: // Step 3: Perform branch and bridge wire routing
54: Create trunk wires using track assignment in V ; Connect capacitor groups to trunks

share tracks. Each iteration guarantees a connection from p to
the drivers, and therefore, each capacitor group is guaranteed
to complete routing. For |C| capacitors, the cost of this step,
which dominates algorithmic complexity, is O(|C|2 log(|C|)).
This is not a major bottleneck for typical values of |C|.

In Step 2 (line 37), we first use the information above to
compute the number of tracks required. For each channel,
this is simply the number of Cis that choose to use the
channel. We now assign connections to tracks for each Ci in
lines 39–52, sequentially assigning connections for Ci to the
closest available track. The channel widths are very small in
practice (even using parallel routes), and DAC performance is
insensitive to track assignment within the channel. Finally, once
the trunk wires are assigned, Step 3 (line 54) creates the actual
routes and connects them to the unit capacitor groups. Fig. 3(b)
shows how the short trunk wires for the two groups of C4 reach
the bottom of the layout and are connected by bridge wires.

4) Parallel wire routing: To reduce resistance and improve
3dB frequency in FinFET nodes under discrete wire widths,
we use multiple parallel wires for critical bits. This also
allows multiple parallel vias as wire direction changes. With
p parallel wires, wire and via resistance reduce by p× and
p2×, respectively, but wire capacitance increases by p×: all RC
parasitic changes are considered in our results. During capacitor
group formation, parallel wires are added between two adjacent
unit capacitors, and parallel routes are used on trunk/bridge
wires. Parallel wires for critical bit C6 is shown in Fig. 3(a)
(C6 uses no bridge wires and a short trunk wire with p2 vias).

5) Top-plate routing: The objective of top-plate routing is
to minimize CTS . We create a graph G such that each vertex
v ∈ G is a unit capacitor for any Ci (since all Ci top plates
must be connected). Each unit capacitor is connected to its
north, south, east, and west neighbor (if they exist), with an
edge weight corresponding to the horizontal or vertical spacing,
as applicable. In our case, since the vertical space between
unit capacitors is less than the horizontal spacing for channels,
the minimum spanning tree (MST) can be built by simply
connecting all unit capacitors in each column using branch
wires, and then connecting the unit capacitors in adjacent
columns using a branch wire. The use of this MST minimizes,
shown in Fig. 3(a), the parasitic capacitance, CTS

i .

V. RESULTS AND DISCUSSION

Our approach is implemented in Python and evaluated on a
commercial 12nm technology for N -bit binary-weighted DAC
arrays with capacitors ratios of 1 : 1 : 2 : 4 : · · · : 2N−1,
with N ranging from 6 to 10. We evaluate four techniques: the
placement in [1]; the chessboard placement [7]; spiral place-
ment (“S”) and the block chessboard (“BC”) [Section IV-A].
Several BC structures are considered, as shown in Fig. 4 and
the best BC result is reported. All even/odd bit DACs use the
same BC structure with a full chessboard for the inner core.

Our routing approach is applied to the S and BC methods.
Since [7] only proposes a placement without routing, we use
our router on their placement (Section IV-B).

For systematic variations, the wire spacing t0 is based on
a wire pitch of 64nm. The per-unit models for resistance,
capacitance to ground, and coupling-capacitance are taken

Fig. 4: 8-bit block chessboard layouts at various granularities.

from a commercial 12nm process. The systematic variation
parameters were set to γ = 10ppm, ρu = 0.9, Lc = 1mm [1],
[8], and we use A2

f = 0.85% × 1fF [13]. A unit capacitance
value of 5fF is used for all cases. The MOM capacitors are
built in three metal layers, with the bottom-plate and top-plate
terminals available in metal1 and metal2, respectively.

Table I shows various parameters associated with the RC
parasitics for routing. The capacitances, ΣCTS (total top-plate-
to-substrate), ΣCwire (total wiring capacitance), and ΣCBB

(total bottom-plate to bottom-plate), represent the parasitics
shown in Fig. 1; CTB is negligible due to nonoverlapped
routing (Section IV-B). The next set of metrics – ΣNV , the
total number of vias and ΣL the total wire length – are
correlated with the total resistance. Since f3dB only depends
on resistances on the critical bit with the largest RC delay, the
last column shows the total via resistance, RV , and the total
wire+via resistance, Rtotal for the critical bit.

Here, S has low resistive parasitics; BC has moderate para-
sitics, much lower than [1], [7]. Both S and BC use our parallel
routing method: when parallel routing is used on the MSB,
the second-most MSB, then the third-most MSB, etc., may
become critical, and parallel routing is used there too. If parallel
wires need channel resources, the spacing between columns is
increased appropriately. For any number of bits for S, the only
vias are at the input connection. Unit capacitors use nearest-
neighbor connections using the same metal layer with no vias.

The CTS values for S and BC are better than those of [1]; we
apply the same solution to our routing for [7] (although their
subsequent work [12] leads to higher top-plate wire lengths,
i.e., higher CTS). For other metrics (Cwire, CBB , NV , L and
R), the spiral approach provides the best solution and the
chessboard method [7] the worst, and the block chessboard
method provides an intermediate solution.

Table II shows circuit-level metrics: Area of the routed CC
array; |DNL| / |INL| the maximum absolute DNL(i) (Eq. 7) /
INL(i) (Eq. 8); f3dB , the 3dB frequency (Eq. (16)). Like [1],
[7], we evaluate DNL/INL under capacitor nonidealities, as-
suming an ideal opamp. Area is lowest for the spiral method
due to low routing overhead and comparable for other methods
(except 7-bit and 9-bit solutions for [7], which double the unit
capacitors). The table shows the INL/DNL vs. f3dB tradeoff
(particularly for >8 bits): S has the best f3dB but the worst
INL/DNL; [7] is the opposite; BC is a good compromise. All
INL/DNL values are below 0.5LSB and are acceptable.

Figs. 5(a) and (b) show a Python-generated view of the
placement and routing for an 8-bit DAC in a commercial 12nm
process, using the approach in [7] and our spiral placement
method, respectively. While the former requires five vertical
tracks in the vertical channels, the spiral approach, even with

TABLE I: CC array: Electrical metrics (Cu = 5fF)
#

∑
CTS (fF)

∑
Cwire (fF)

∑
CBB (fF) (

∑
NV ,

∑
L) (µm) (RV , Rtotal) (KΩ) for critical bit

bits [1] [7] S BC [1] [7] S BC [1] [7] S BC [1] [7] S BC [1] [7] S BC
6 0.02 0.03 0.03 0.03 1.8 2.8 0.9 1.4 13.4 6.5 0.5 1.4 (42, 149) (81, 229) (43, 77) (78, 120) (0.3, 1.2) (1.1, 2.6) (0.002, 0.03) (0.03, 0.26)
7 – 0.09 0.05 0.06 – 12.6 1.9 2.0 – 28.9 1.5 1.5 – (295, 1862) (46, 167) (82, 171) – (4.1, 10.0) (0.002, 0.05) (0.03, 0.30)
8 0.07 0.09 0.09 0.09 4.8 12.7 3.0 4.0 21.7 29.8 1.7 2.0 (92, 393) (295, 1884) (75, 256) (86, 335) (1.0, 3.1) (4.1, 10.0) (0.002, 0.06) (0.03, 0.51)
9 0.14 0.36 0.17 0.17 8.5 59.6 5.4 5.5 61.0 242.7 3.4 7.6 (143, 703) (1126, 9076) (78, 453) (92, 463) (1.2, 4.2) (15.8, 39.7) (0.002, 0.10) (0.03, 0.57)
10 – 0.36 0.32 0.33 – 59.9 9.7 12.6 – 242.7 5.1 21.5 – (1126, 9126) (107, 816) (177, 1050) – (15.8, 39.7) (0.002, 0.16) (0.03, 1.03)

Notes: (1) [7] doubles the number of unit capacitors for odd bits ⇒ {7-bit, 8-bit}, {9-bit, 10-bit} results are similar. (2) 7-bit, 9-bit DACs not reported in [1].

TABLE II: CC array: Performance metrics (Cu = 5fF)
Area (µm2) {|DNL|, |INL|} (LSB) f3dB (MHz)

bits [1] [7] S BC [1] [7] S BC [1] [7] S BC
6 200 205 200 204 {0.00,0.01} {0.00,0.01} {0.01,0.01} {0.01,0.01} 929 434 39613 8651
7 – 819 427 459 – {0.01,0.01} {0.02,0.02} {0.01,0.01} – 25 10862 6639
8 803 819 806 819 {0.03,0.05} {0.01,0.02} {0.06,0.03} {0.02,0.03} 75 23 3962 908
9 1655 3521 1669 1643 {0.08,0.11} {0.02,0.04} {0.06,0.07} {0.04,0.07} 25 1.3 1072 714

10 – 3521 3235 3296 – {0.05,0.09} {0.25,0.16} {0.11,0.11} – 1.2 286 91

TABLE III: Runtimes for the proposed CC layout algorithms
#bits 6-bit 7-bit 8-bit 9-bit 10-bit
Spiral 0.02s 0.04s 0.12s 0.35s 1.11s
BC 0.03s 0.05s 0.19s 0.38s 2.25s

parallel routes, requires two routing tracks, resulting in lower
CBB , as documented by the total CBB number in Table I. The
total routing wirelength is significantly higher for the placement
of [7], leading to higher Cwire parasitics, as shown in the same
table. Both factors degrade the 3dB frequency of [7]. This effect
is worse as the number of bits in the DAC increases.

In FinFET nodes, NV adversely affects performance due to
high via resistance. The spiral method uses the fewest vias of
all methods, and the chessboard method [7] uses the most.

Fig 6(a) shows the impact of using parallel routes, which
reduce interconnect resistance, on the 3dB frequency for spiral
placement. We show the frequency improvement factor, i.e.,
the ratio of the 3dB frequency using k wires vs. using one
wire. The increase in parasitic capacitance due to parallel wires
is minimal and is dominated by the capacitance in the array,
but the wire resistance reduction is significant. As k increases,
we see diminishing returns. Similar trends are seen for the
block chessboard scheme. When two parallel wires are used,
the frequency improvement factor exceeds 2: for this resistance-
dominated case, the connection from the trunk wire to a branch

Fig. 5: CC layout in (a) [7] (b) spiral approach. High wirelength
for [7] is inevitable: cells are spread for high dispersion.

Fig. 6: 8-bit CC array with parallel wires: 3dB frequency
improvements for (a) the spiral method. (b) all methods.

wire creates a 2×2 mesh with four vias. The gain lies between
2× (wire-dominated case) and 4× (via-dominated case). With
more wires, wire capacitance becomes noticeable, leading to
lower improvement. Fig. 6(b) shows the impact of parallel wires
for all methods, normalized to the 3dB frequency for S. Both
BC and [1] improve, but have much lower baseline frequencies
than S; chessboard [7] is bottlenecked by high via counts.

CPU times for both the spiral method and for each block
chessboard are similar and are reported in Table III. Because
the method is constructive, it is much faster than stochastic
optimization, while providing excellent quality of result.

VI. CONCLUSION

We present a routing-friendly constructive CC placement and
routing method to optimize mismatch and maximize perfor-
mance. Spiral and block chessboard placements are presented,
and it is shown that trading off wire parasitics with dispersion
provides a balance between the 3dB frequency and INL/DNL.

REFERENCES

[1] M. P.-H. Lin, et al., “Common-Centroid Capacitor Layout Generation
Considering Device Matching and Parasitic Minimization,” IEEE TCAD,
vol. 32, pp. 991–1002, 2013.

[2] W.-H. Hsiao, et al., “Automatic Common-Centroid Layout Generation for
Binary-Weighted Capacitors in Charge-Scaling DAC,” in Proc. SMACD,
pp. 173–176, 2012.

[3] N. Karmokar, et al., “Common-centroid layout for active and passive
devices: A review and the road ahead,” in Proc. ASP-DAC, 2022.

[4] D. Sayed and M. Dessouky, “Automatic Generation of Common-Centroid
Capacitor Arrays with Arbitrary Capacitor Ratio,” in Proc. DATE,
pp. 576–580, 2002.

[5] P.-W. Luo, et al., “Impact of Capacitance Correlation on Yield Enhance-
ment of Mixed-Signal/Analog Integrated Circuits,” IEEE TCAD, vol. 27,
pp. 2097–2101, 2008.

[6] C.-C. Huang, et al., “PACES: A Partition-Centering-Based Symmetry
Placement for Binary-Weighted Unit Capacitor Arrays,” IEEE TCAD,
vol. 36, pp. 134–145, 2016.

[7] F. Burcea, et al., “A New Chessboard Placement and Sizing Method
for Capacitors in a Charge-Scaling DAC by Worst-Case Analysis of
Nonlinearity,” IEEE TCAD, vol. 35, pp. 1397–1410, 2015.

[8] M. P.-H. Lin, et al., “Parasitic-Aware Common-Centroid Binary-Weighted
Capacitor Layout Generation Integrating Placement, Routing, and Unit
Capacitor Sizing,” IEEE TCAD, vol. 36, pp. 1274–1286, 2017.

[9] N.-C. Chen, et al., “High-Density MOM Capacitor Array with Novel
Mortise-Tenon Structure for Low-Power SAR ADC,” in Proc. DATE,
pp. 1757–1762, 2017.

[10] P.-Y. Chou, et al., “Matched-Routing Common-Centroid 3-D MOM Ca-
pacitors for Low-Power Data Converters,” IEEE TVLSI, vol. 25, pp. 2234–
2247, 2017.

[11] K.-H. Ho, et al., “Coupling-Aware Length-Ratio-Matching Routing for
Capacitor Arrays in Analog Integrated Circuits,” IEEE TCAD, vol. 34,
pp. 161–172, 2014.

[12] Y. X. Ding, et al., “PASTEL: Parasitic Matching-Driven Placement
and Routing of Capacitor Arrays With Generalized Ratios in Charge-
Redistribution SAR-ADCs,” IEEE TCAD, vol. 39, pp. 1372–1385, 2019.

[13] V. Tripathi and B. Murmann, “Mismatch Characterization of Small Metal
Fringe Capacitors,” IEEE TCAS-I, vol. 61, pp. 2236–2242, 2014.

[14] M. J. Pelgrom and A. C. Duinmaijer, “Matching Properties of MOS
Transistors,” in Proc. ESSCIRC, pp. 327–330, 1988.

[15] F. Maloberti, Data Converters. New York, NY: Springer, 2007.
[16] S. S. Sapatnekar, Timing. Boston, MA: Kluwer, 2004.
[17] G. Chen, et al., “Routability of Twisted Common-Centroid Capacitor

Array Under Signal Coupling Constraints,” in Proc. MWSCAS, 2016.

