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Abstract—We describe the scope and initial efforts of Open-
ROAD, a project in the DARPA IDEA program that pursues
open-source tools for 24-hour, “no human in the loop” digital
layout generation across integrated circuit, package and board
domains. If successful, OpenROAD will help realize the IDEA
goal of “democratization of hardware design”, by reducing
cost, expertise, schedule and risk barriers that confront system
designers today. Several novel technical directions follow directly
from the IDEA program’s 24-hour, no-humans goals. These
include (i) enablement of pervasive machine learning in and
around design tools and flows, (ii) parallel search and optimiza-
tion to exploit available cloud resources, (iii) partitioning and
problem decomposition to reduce solution latency, and (iv) layout
generation methodologies that provide “freedoms from choice”
without undue loss of design quality. Further, the development of
open-source, self-driving design tools is in and of itself a “moon
shot” with numerous technical and cultural challenges.

I. INTRODUCTION

Even as hardware design tools and methodologies have
advanced over the past decades, the semiconductor industry
has failed to control product design costs, as depicted in
Figure 1. Today, barriers of cost, expertise and unpredictability
(risk) block designers’ access to hardware implementation in
advanced technologies. Put another way: hardware system
innovation is stuck in a local minimum of (i) complex and
expensive tools, (ii) a shortage of expert users capable of using
these tools in advanced technologies, and (iii) enormous cost
and risk barriers to even attempting hardware design.

Particularly in the digital integrated-circuit (IC) domain,
layout automation has been integral to the design of huge,
extremely complex products in advanced technology nodes.
However, a shortfall of design capability – i.e., the ability to
scale product quality concomitant with the scaling of underly-
ing device and patterning technologies – has been apparent for
over a decade in even the most advanced companies [2]. Thus,
to meet product and schedule requirements, today’s leading-
edge system-on-chip (SoC) product companies must leverage
specialization and divide-and-conquer across large teams of
designers: each individual block of the design is handled by a
separate subteam, and each designer has expertise in a specific
facet of the design flow. DoD researchers and development
teams do not have resources to execute such a strategy, and
hence see typical hardware design cycles of 12-36 months.

Fig. 1. Design technology crisis.

A. IDEA and the OpenROAD Project

To overcome the above limitations and keep pace with
the exponential increases in SoC complexity associated with
Moore’s Law, the DARPA IDEA program aims to develop
a fully automated “no human in the loop” circuit layout
generator that enables users with no electronic design ex-
pertise to complete physical design of electronic hardware.
The OpenROAD (“Foundations and Realization of Open,
Accessible Design”) project [17] was launched in June 2018 as
part of the DARPA IDEA program. OpenROAD’s overarching
goal is to bring down the barriers of cost, expertise and
unpredictability that currently block system creators’ access
to hardware implementation in advanced technologies. With
a team of performers that includes Qualcomm, Arm, and
multiple universities led by UC San Diego, OpenROAD seeks
to develop a fully autonomous, open-source tool chain for
digital layout generation across die, package and board, with
initial focus on the RTL-to-GDSII phase of system-on-chip
design. More specifically, we aim to deliver tapeout-capable
tools in source code form, with permissive licensing, so as
to seed a future “Linux of EDA” (i.e., electronic design
automation).
Three innovative base technologies underlie the OpenROAD
team’s strategy to achieve no-human-in-loop (NHIL), 24-
hour turnaround time (TAT). First, machine learning based
modeling and prediction of tool and flow outcomes will enable
the tool auto-tuning and design-adaptivity required for NHIL,
new optimization cost functions in EDA tools, and new tool



Fig. 2. Design complexity.

knobs that tools may expose to users. Second, extreme parti-
tioning strategies for decomposition will enable thousands of
tool copies running on cloud resources to maximize success
within human, CPU, schedule bounds. Quality loss from
decomposition is recovered with improved predictability of
flow steps, along with stronger optimizations. Third, paral-
lel/distributed search and optimization will leverage available
compute resources (e.g., cloud) to maximize design outcomes
within resource limits, and in the face of noise and chaos
in the behavior of complex metaheuristics. A complementary
precept is to reduce design and tool complexities through
“freedoms from choice” in layout generation; this can increase
predictability and avoid iterations in the design process. The
synergy of base technologies and restrictions of the layout
solution space is illustrated in Figure 2.

B. A New Paradigm

The contributions and approach of OpenROAD seek to
establish a new paradigm for EDA tools, academic-industry
collaboration, and academic research itself. OpenROAD aims
to finally surmount ingrained, “cultural” and “critical mass /
critical quality” barriers to establishing an open-source ethos
in the EDA field. To start the project, we bring (i) signifi-
cant initial software IP including donated source code bases,
and a commercial static timing analysis tool; (ii) a signifi-
cant set of academic software IP and skillsets; (iii) leading
SoC and IP know-how and guidance from industry partners
Qualcomm and Arm; (iv) an in-built Internal Design team
(U. Michigan) to provide de facto product engineering and
alpha customer functions; and (v) a broad agenda of industry
and academic outreach. Furthermore, OpenROAD derives its
“Base Technologies” efforts directly from the IDEA program
requirements (no-humans, 24-hours, no loss of PPA quality).
We view the cohesive integration of machine learning, problem
partitioning and decomposition, and parallel/distributed search
and optimization as essential to reaching the IDEA target.
This paper. The remainder of this paper will outline the
current status of OpenROAD’s GitHub-deployed tools and
flow. Early proof points and calibrations in the realm of digital
IC layout generation (“RTL-to-GDSII”) have been obtained in
multiple foundry design enablements including 16nm FinFET
technology.

Fig. 3. The OpenROAD flow.

II. CURRENT STATUS: LAYOUT TOOL CHAIN

OpenROAD’s layout generation tool chain consists of a set
of open-source tools that takes RTL Verilog, constraints (.sdc),
liberty (.lib) and technology (.lef) files as input, and aims to
generate tapeout-ready GDSII file. Figure 3 illustrates the flow
of tools corresponding to individual OpenROAD tasks. These
include logic synthesis (LS), floorplan (FP) and power delivery
network (PDN) generation, placement, clock tree synthesis
(CTS), routing and layout finishing.

A. Logic Synthesis

The major gap in open-source LS is timing awareness and
optimization. OpenROAD has explored two avenues toward
enablement of timing-driven synthesis. First, we use machine
learning techniques to enable autonomous design space ex-
plorations for timing-driven logic optimization. It is often
the case that synthesis scripts contain tens of commands in



order to make a design meet its timing and area goals. These
scripts are crafted by human experts. To produce best synthesis
scripts that are tuned to individual circuits, we design machine
learning agents that automatically generate step-by-step syn-
thesis scripts to meet target timing and delay goals. Second,
we enable physical-aware logic synthesis by integrating the
RePlAce [20] placement tool into the logic synthesis flow,
whereby global placement-based wire capacitance estimates
are used within logic synthesis to improve timing results.
Existing academic tools are oblivious to the outcomes of
subsequent steps in the design flow, and our ultimate goal is
to feed back wiring estimates as they are refined in physical
design steps (e.g., standard-cell placement and global routing)
to improve synthesis results.

B. Floorplan and PDN

Floorplanning and power delivery network synthesis are per-
formed by TritonFPlan, which has two major components. The
first component is integer programming-based macro block
packing that is aware of macro-level connectivity and is seeded
by a mixed-size (blocks and standard cells) global placement.
The second component is Tcl-based power delivery network
(PDN) generation following a safe-by-construction approach.
TritonFPlan requires the user to specify several config files,
e.g., IP global.cfg and IP local.cfg capture macro packing
rules, and PDN.cfg captures safe-by-construction metal and
via geometry information. These config files are necessitated
by the inability of academic open-source tool developers (or,
their tools) to see complete unencrypted design enablements
from the foundry. We discuss this below in Section IV. The
TritonFPlan tool uses mixed-size placer (RePlAce) for its
initial global placement. The generated macro global locations
provide a starting point from which multiple floorplan solu-
tions are created. For each of the generated floorplan solutions
with fixed macros and PDN, we use our placer (RePlAce)
again, to determine the best floorplan according to an estimated
total wirelength criterion. Limitations include support of only
rectangular floorplans, and macro counts less than 100.

C. Placement

RePlAce [3, 20] is a BSD-licensed open-source analytical
placer based on the electrostatics analogy. In OpenROAD,
RePlAce is used for mixed-size (macros and cells) placement
during floorplanning, for standard-cell placement within a
given floorplan, and during clock tree synthesis (CTS) [18] for
clock buffer legalization. Timing-driven placement is achieved
with integration of FLUTE [5] and OpenSTA [16], along with
a signal net reweighting iteration [6]. The timing-driven TD-
RePlAce tool takes input in standard LEF/DEF, Verilog, SDC
and Liberty formats, and incorporates a fast RC estimator for
parasitics extraction. Ongoing efforts aim to enable routability-
driven mode using commercial format (LEF/DEF/Verilog).
Figure 4 shows the RePlAce placement of a small RISC-
V based block (foundry 16nm technology) produced by the
University of Michigan internal design advisors subteam.

Fig. 4. Foundry 16nm RISC-V based design block from the University of
Michigan, after RePlAce mixed-size placement. Red color indicates macros
and blue color indicates standard cells.

D. Clock Tree Synthesis

TritonCTS [7, 18] performs clock tree synthesis (CTS) for
low-power, low-skew and low-latency clock distribution, based
on the GH-Tree (generalized H-Tree) paradigm of [7]. A
dynamic programming algorithm finds a clock tree topology
with minimum estimated power, consistent with given latency
and skew targets. Linear programming is used to perform sink
clustering and clock buffer placement. Leaf-level routing may
be performed using either the single-trunk Steiner tree or the
Prim-Dijkstra [1] algorithm.

In the layout generation flow, TritonCTS has interfaces
with the placer (RePlAce) and the router (TritonRoute [9]).
The placer is used for legalization of inserted clock buffers.
The router maps sink pins to GCELLs that should be used
for clock tree routing. TritonCTS inputs are LEF, placed
DEF, placed gate-level Verilog, a configuration file and library
characterization files. (For each foundry enablement, a one-
time library characterization is needed. Currently, this library
characterization is expected to be performed by some outside
entity (foundry or tool user) using commercial EDA tools.)
TritonCTS outputs are “buffered” placed DEF, “buffered”
gate-level Verilog, and clock tree global routing in ISPD18
route guides format [14]. TritonCTS is publicly available on
GitHub [18]. Early validations have been made using 16nm
and 28nm foundry enablements. Improvements to handle mul-
tiple clock sources, non-default routing rules, etc. are ongoing.

E. Routing

TritonRoute [9] consumes LEF and placed DEF, then per-
forms detailed routing for both signal nets and clock nets given
a global routing solution in route guide format [14]. Prior
to the detailed routing, TritonRoute preprocesses the global
routing solution using a fast approximation algorithm [10]
to ensure a Steiner tree structure for each net. Thus, con-
gestion and wirelength are minimized while net connectivity
is preserved in detailed routing stage. The detailed routing
problem is then iteratively solved on a layer-by-layer basis,
and each layer is partitioned into disjoint routing panels.
The panel routing is formulated as a maximum weighted
independent set (MWIS) problem and solved in parallel using
a mixed integer linear programming (MILP)-based approach.



The MWIS formulation optimally assigns tracks considering
(i) intra- and inter-layer connectivity, (ii) wirelength and via
minimization, and (iii) various design rules. By an alternating
panel routing strategy with multiple iterations, inter-panel and
inter-layer design rules are properly handled and track assign-
ments are maximized. To date, TritonRoute supports major
TSMC16 metal and cut spacing rules, i.e., LEF58 SPACING,
LEF58 SPACINGTABLE and LEF58 CUTCLASS. An early
evaluation shows approximately 10× reduction of spacing
rule violations in a TSMC16 design block. Detailed routing
flow with integration and optimization of local net routing is
the next step towards a 100%-completion, DRC-clean layout
capability.

III. CURRENT STATUS: OTHER ELEMENTS

Other elements of the OpenROAD project under develop-
ment include the above-mentioned “base technologies” (ma-
chine learning, partitioning, parallel optimization), a design
performance analysis backplane (parasitic extraction, static
timing analysis, and power/signal integrity), cloud infras-
tructure for tool/flow deployment and machine learning, the
“internal design advisors” task, and corresponding self-driving
layout generation capability in the package and PCB domains.
This section outlines the status of several of these project
elements.

A. Static Timing Analysis

OpenSTA [16] is a GPL3 open-sourced version of the
commercial Parallax timer. The Parallax timing engine has
been offered commercially for nearly two decades, and has
been incorporated into over a dozen EDA and IC compa-
nies’ timing analysis tools. OpenSTA is publicly available
on GitHub [16] since September 2018. The developer, James
Cherry, has added Arnoldi delay calculation, power reporting
and other enhancements since the original release. OpenSTA
has been confirmed to support multiple advanced foundry
nodes, and it supports standard timing report styles. To date,
the OpenSTA timer has been integrated into TD-RePlAce
(timing-driven enhancement of RePlAce), physical-aware syn-
thesis (Yosys [11]) and a gate-sizing tool (TritonSizer [19]).
Figure 5(a) shows a comparison of endpoint timing slacks
from OpenSTA and a commercial signoff timer. Figure 5(b)
shows the distribution of endpoint slack differences between
OpenSTA and the commercial signoff timer.

B. Parasitic Extraction

In OpenROAD’s approach, the parasitic extraction (PEX)
tool processes a foundry process design kit (PDK) to build
linear regression models for wire resistance, ground capaci-
tance, and coupling capacitances to wires on the same layer,
or in the adjacent layers above and below. A basic use case is
for another tool in the flow (e.g., CTS, global routing, timing
analysis) to call PEX, providing an input DEF file that consists
of the wire of interest and its neighbors. The output is provided
as a SPEF file that contains the extracted parasitics. Figure 6(b)
compares the actual and predicted values of the resistance and

Fig. 5. Comparison between OpenSTA and a leading signoff timer (Signoff)
for a small 28nm testcase. (a) Endpoint slacks of OpenSTA vs. Signoff timer.
(b) Histogram of endpoint slack differences between OpenSTA and Signoff
timer.

capacitance obtained from test nets to validate the regression
model, and shows a good fit. Anticipated evolutions include
interfacing the PEX functions to a possible future IDEA-
wide physical design database, and extending the model-fitting
approach to achieve low-overhead parasitic estimators for use
in timing-driven placement, crosstalk estimation during global
routing, etc.

C. Power Integrity

A key goal of our power integrity analysis effort is to enable
single-pass, correct-and-safe-by-construction specification of
the power delivery network (PDN) layout strategy across
the SoC. Our power delivery network (PDN) synthesis tool
tiles the chip area into regions, and selects one of a set of
available PDN wiring templates (cf. the “config” files noted
in the Floorplanning discussion, above) in each region. These
templates are stitchable so that they obey all design rules when
abutted. The PDN tool takes in a set of predefined templates
(Figure 6(a)), an early (floorplanning-stage) placed DEF for
a design, and available power analysis information (e.g., our
OpenSTA tool can provide instance-based power reporting).
A trained ML model then determines a safe template in each
region. An early prototype shows that the ML-based approach
can successfully deliver a PDN to satisfy a given (e.g., 1mV
static) IR drop specification.

D. Cloud Infrastructure

For users to take advantage of OpenROAD tools as well as
tools developed by other collaborators, a cloud infrastructure
effort aims to provide an end-to-end seamless user experience.
In our cloud deployment, users subscribe their Git repo to our
cloud system. Once a design change is pushed to the Git repo,
the design is automatically compiled by the OpenROAD flow
and the user receives a notification by email when the flow
is complete. The user can then download the outcome files
through a web browser. If needed, the user can also monitor
the progress of the flow on our web-based front end. Our cloud
deployment is elastic as it leverages more computing resources
when more users log into the service, or when a user requests
parallel processing capabilities. For instance, the service can
elastically deploy multiple machines in order to run a tool
(e.g., placer) with multiple random seeds to obtain a better
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Fig. 6. (a) Example PDN templates; and (b) validation of the regression
model for R, C in PEX.

result within a given wall time budget. Or, in conjunction with
global design partitioning, the cloud deployment can run each
design partition in parallel on a cloud instance, to maximize
parallel speedup and minimize design turnaround time.

E. METRICS 2.0

To enable large-scale applications of machine learning (ML)
and ultimately a self-driving OpenROAD flow, we are develop-
ing METRICS 2.0 [8], which can serve as a unified, compre-
hensive design data collection and storage infrastructure (see
[13]). A METRICS 2.0 dictionary provides a standardized list
of metrics suitable for collection during tool/flow execution,
to capture key design parameters as well as outcomes from
various tools in the design flow. We also propose a system
architecture based on JavaScript Object Notation (JSON) for
data logging, and MongoDB database [4] for data storage and
retrieval of the metrics. Figure 7 illustrates the METRICS 2.0
system architecture. The proposed architecture eliminates the
need to create database schemas and enables seamless data
collection. METRICS 2.0 is tightly coupled with machine-
learning frameworks such as TensorFlow, which provides easy
interfaces to read and write into MongoDB, and enables fast
deployment of machine learning algorithms.

F. Early SoC Planning

In light of NHIL and 24-hour turnaround time requirements,
it is important to initiate the OpenROAD tool chain with with
reliable tentative floorplans as flow starting points, to minimize
the likelihood of run failures. This is a key link between the
“system-level design” (IDEA TA-2) and “layout generation”
(IDEA TA-1, which we address in OpenROAD). Early floor-
plan estimates for the SoC can be enhanced by embedding
physical implementation information in each IP (e.g., us-
ing the vendor extension mechanism within industry-standard
IP-XACT descriptions), and by making use of technology-
and tool chain- specific parameters and statistical models.
Combining and elaborating such information enables early
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Fig. 7. Overall METRICS 2.0 system architecture.

area and performance estimates that can indicate doomed-
to-fail floorplan candidates or suggest design implementation
fine-tuning (hard-macro placement, grouping, register slice
insertions, etc.) in viable floorplans.

G. Integration and Testing

The individual tools described above comprise a tool chain
that produces an implemented design ready for final verifi-
cation and fabrication. Initial platform support is targeted for
CentOS 6, with tool- and flow-specific support maintained at
[17]. To evaluate the flow, non-tool developer entities in our
team (i.e., U. Michigan, Qualcomm and Arm) perform fine-
grained analyses on our tool outputs and provide target calibra-
tion metrics for tool developers. Here, we leverage a testcase
suite based around existing designs that have previously been
taped out; these designs range across complexity (from small
blocks to whole chips) and process (e.g., 16nm and 65nm).
Our suite of testcases also includes cutting-edge complex SoCs
that are currently in development. A continuous integration test
suite validates the tools individually during development and
tracks regression metrics and feature impact.

IV. LOOKING FORWARD

Our near-term efforts will continue development of the tools
and flow described above. More broadly, we will also seek to
address various technical, structural and cultural challenges
that have become apparent even at project outset.

One key technical challenge is to develop design automation
technologies as well as layout generation flows that can co-
optimize across the SoC, package (PKG) and PCB domains.
Today, SoC, PKG and PCB tools and flows are largely disjoint;
weeks if not months are required to converge across the three
designs with manual iterations. To deliver NHIL, 24-hour
turnaround time in the PKG and PCB domains, a Unified
Planning Tool that seamlessly coordinates among the three
databases and enables quick iterations is essential. Figure 8
illustrates our envisioned Unified Planning Tool. The Unified



Planning Tool would also include optimization engines, using
analytical and ML approaches to evaluate the complex trade-
offs across the three design spaces.

Fig. 8. Illustration of Unified Planning Tool.

Some other technical challenges include the following. (1)
The “small and expensive” nature of design process data
in IC design – where obtaining a single data point might
require three weeks to run through a tool flow – challenges
machine learning and development of “intelligent” tools and
flows. (2) The need for new, common standards for measuring
and modeling of hardware designs and design tools must be
compatible with the IP stances of foundries and commercial
EDA; this may shape the future opening of a “Linux of
EDA” to broad participation. And, (3) it will be difficult to
illuminate the critical junctures where “human intelligence” is
now required, yet must be replaced by “machine intelligence”,
in the hardware design process.

Several structural challenges stem from our status as aca-
demic tool developers of a tool chain that must produce
tapeout-ready GDSII. (1) OpenROAD tools will likely not be
foundry-qualified, which implies that OpenROAD tools and
tool developers will not be able to read encrypted advanced-
node PDKs. To achieve safety and correctness by construction
of the tapeout database, OpenROAD tools require config
files and one-time generation of “OpenROAD kit” elements,
for each foundry enablement. (2) OpenROAD’s analyses and
estimators for timing, parasitics and power/signal integrity are
not “signoff” verifiers. Thus, additional performance guard-
bands are required throughout the layout generation flow.
And, post-OpenROAD verifications may be performed by de-
signers and/or foundries. (3) OpenROAD tools are developed
and released by non-commercial entities. Commercial EDA
vendors receive bug/enhancement requests accompanied by a
testcase that exhibits the bug or behavior at issue. By contrast,
bug reports that we receive are unlikely to be accompanied
by testcases due to blocking NDA / IP restrictions. This
complicates the bug-fixing and enhancement process.

Finally, our outreach efforts seek culture change and en-
gagement across the community of potential developers and
tool users. For example, in the academic research world, a
lab’s code is its competitive advantage (or, potential startup),
and liberal open-sourcing is still rare (cf. [12]). We hope that
OpenROAD and the IDEA/POSH programs help drive culture
change in this regard. With regard to tool users, we observe
that commercial EDA tools are invariably driven to production-
worthiness by “power users” – i.e., paying customers who
have deep vested interests in the capability and maturation of

a given tool. Traditionally, power users expose a new tool to
leading-edge challenges and actively drive tool improvement.
For OpenROAD, finding our “power users” is a critical need,
especially since they would be able to improve tools and flows
at the source-code level.

V. CONCLUSION

In this paper, we have reviewed the scope and status of
OpenROAD, a DARPA IDEA project that aims to develop
a self-driving, open-source digital layout implementation tool
chain. The above is only a snapshot, taken six months into
a four-year project. We welcome feedback, participation and
contributions.
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