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Abstract  
The simulation of on-chip inductance using PEEC-based circuit 
analysis methods often requires the solution of a subproblem 
where an extracted inductance matrix must be multiplied by a 
current vector, an operation with a high computational cost. This 
paper presents a highly accurate technique, based on a 
precorrected-FFT approach, that speeds up this calculation. 
Instead of computing the inductance matrix explicitly, the 
method exploits the properties of the inductance calculation 
procedure while implicitly considering the effects of all of the 
inductors in the layout. An optimized implementation of the 
method has been applied to accurately simulate large industrial 
circuits with up to 121,000 inductors and nearly 7 billion mutual 
inductive couplings in about 20 minutes. Techniques for trading 
off the CPU time with the accuracy using different approximation 
orders and grid constructions are also illustrated. Comparisons 
with a block diagonal sparsification method in terms of accuracy, 
memory and speed demonstrate that our method is an excellent 
approach for simulating on-chip inductance in a large circuit.  
 
1. Introduction 
The fast and accurate simulation of on-chip inductance is a 
growing problem as technologies shrink further and low-k 
dielectrics are used to diminish capacitive effects.  Inductive 
effects are important in determining power supply integrity and 
timing/noise analysis, especially for global clock networks, signal 
buses and supply grids for high-performance microprocessors.  

One of the major problems in determining inductance has 
been associated with the fact that wire inductances are defined 
over current loops, and that the current loops are dependent on 
the circuit context of the switching wires. The partial element 
equivalent circuit (PEEC) model [1] has been developed to solve 
this chicken-and-egg problem and does not require the current 
return paths to be predetermined.  The PEEC approach introduces 
the concept of partial inductance of a wire or a wire segment, 
corresponding to a return path at infinity.  The partial self-
inductance is defined as the inductance of a wire segment that is 
in its own magnetic field, while the partial mutual inductance is 
defined between two wire segments, each of which is in the 
magnetic field produced by the current through the other. For two 
wire segments k and m, the partial mutual inductance is given by:  
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where li and ai (i=k or m) are the length and cross section area of 
wire segment i. rkm is the distance between any two points on 

segment k and m. kmA
v

is the magnetic vector potential along 
segment k due to the current Im in segment m, given by: 
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Here, simplified closed-form formulae for partial self- and 
mutual inductances of typical wire topologies that appear in 
integrated circuit environments are available in [2].   

One drawback of using the PEEC method directly is that it 
results in a dense inductance matrix that causes a high 
computational overhead for a simulator.  Although many entries 
in this matrix are small and have negligible effects, zeroing them 
out may cause the resulting inductance matrix to lose its desirable 
positive definiteness property [3], which is a necessary condition 
for the matrix to represent a physically realizable inductor 
system. Several efforts have been made to sparsify the inductance 
matrix while maintaining this property, such as the shift-and-
truncate method [3,4], return-limited inductances [5], block 
diagonal method [6] and K matrix [7,8]. 

The shortcomings common to all of these methods are 
twofold. First, all these methods localize the magnetic field by a 
window size outside which couplings may be ignored. The 
principal problem is that it is difficult to definitively demarcate a 
region such that an aggressor wire segment outside this local 
interaction region is too weak to have a significant effect on a 
victim wire segment within it. Second, although the individual 
couplings that are ignored may be small, it is difficult to 
determine the cumulative effect of ignoring a larger set of such 
couplings without any knowledge of the current distributions.  

FastHenry [9] is a multipole-accelerated method for 
inductance extraction. However, it works in frequency domain 
and ignores the effects of capacitance on the estimation of current 
return path. In order to obtain the time domain simulation, an 
accurate compact model has to be constructed, which is not an 
easy procedure.  

In this paper, we propose a precorrected-FFT method that, 
instead of entirely dropping long-range couplings, approximates 
them, thereby overcoming the two shortcomings existing in the 
sparsification of inductance matrices. The main idea of this 
method is to represent the long-range part of the vector potential 
by point currents on a uniform grid and nearby interactions by 
direct calculations. The grid representation permits the use of the 
discrete Fast Fourier Transform (FFT) for fast potential 
calculations. Because of the decoupling of the short and long-
range parts of the potentials, this algorithm can be applied to 
problems with irregular discretizations.  

The basic precorrected-FFT method presented in this paper is 
inspired by the method in [10] for capacitance extraction, which 
also demonstrates that for many realistic structures, the 
precorrected-FFT method is faster and uses less memory 
compared with the multipole-accelerated method. In our work, 
the precorrected-FFT method is modified to be applied in a 
different context that is specific to the requirements of simulation 
of on-chip inductance, so that this work is by no means a mere 
incremental improvement.  Unlike [10], we do not focus on 
extracting an inductance matrix M, but rather, directly consider 
how the inductance matrix is used in fast simulation algorithms.  
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As described in Section 2, many simulators do not require M to 
be explicitly determined, but instead, require the computation of 
the product of M with a current vector I.  The approach 
developed in this paper accelerates the procedure that is used to 
directly determine the M × I product without explicitly finding M.  
Several considerations are incorporated to make the algorithm 
efficient and applicable to large industrial circuits and 
complicated layouts. First, since mutually perpendicular 
segments do not have any inductive interactions, it is possible to 
apply the precorrected-FFT method to wire segments in the two 
perpendicular directions separately.  This simplification is 
applicable to inductance systems and not to capacitance system. 
Second, different from the derivation of 2D integration in the 
capacitance extraction, the application of the precorrected-FFT in 
inductance problem involves a complicated derivation of 3D 
integration. Significant effort has to be made to obtain the exact 
and compact closed form formulae for accurate and efficient 
simulations. Third, since IC chips typically have much larger 
sizes in the two planar dimensions than in the third (i.e., they tend 
to be “flat”), we show that a two-dimensional grid may be used 
instead of a three-dimensional grid.   

A comprehensive PEEC model, as described in [6], is used in 
this paper. We demonstrate the application of the precorrected-
FFT method within a simulation flow based on PRIMA [11], on 
circuits of up to 121,000 inductors in PEEC model and nearly 7 
billion mutual inductive couplings. It is the first implementation 
that incorporates accelerated PEEC approach and PRIMA to 
investigate industrial sized problems and give out time domain 
simulations. These experiments demonstrate the speed, memory 
consumption and accuracy of the precorrected-FFT method as 
compared to the block diagonal method [6], that is a heuristic 
sparsification technique based on a simple partition of the circuit 
topology, neglecting mutual inductances between partitions.. We 
also illustrate how tradeoffs may be made in order to obtain 
higher speed implementations with a small reduction in accuracy.  
 
2. Motivation and problem formulation   
It is well known that the basic PEEC model results in dense 
inductance matrices. The partial inductances of an n-wire 
segment system can be written as an n×n symmetric, positive 
semidefinite matrix M ∈ Rnxn, which may be incorporated into a 
circuit model of R, L, C and active elements in the circuit.  If the 
circuit is linear, it can be solved efficiently using model order 
reduction techniques such as AWE [12] or PRIMA. In either 
method, we must calculate moments, which requires finding the 
product of M with a known current vector I ∈ Rnx1: 
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Here, we assume that Im is the fictitious current in segment m 
and

kmA
r is the magnetic vector potential on wire segment k due to 

Im and can be determined by the expressions in (2). Each entry 
Mkm in matrix M is the partial inductance between wire segment k 
and m, given by (1) and can be calculated using empirical [2] or 
closed form [13] formulae. The k th entry in the M × I product, 

corresponding to the victim wire segment k, is 
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integration of the magnetic vector potential over wire segment k 
caused by the current in each aggressor wire segment. 

If the dense inductance matrix M is used, the computational 
cost for the matrix-vector product is very high: for a system with 
n variables, this is O(n2). The larger the circuit, the larger may be 
the number of moments and ports, and the heavier is the overhead 
of calculating this matrix-vector product. Therefore, methods for 
sparsifying the M matrix have been widely understood as being 
vital to solving systems with inductances in an efficient manner.  

On closer examination, we observe that in order to solve the 
circuit, it is not M that needs to be calculated, but the product of 
M with a given current vector I.  This motivates our work, and we 
present a method to efficiently find the product of M with a given 
current vector, using the precorrected-FFT approach to accelerate 
the computation. In this work, we use PRIMA as the simulation 
engine to test the results of the algorithm. This algorithm can also 
be incorporated in time domain simulators. 
 
3. Precorrected-FFT method 
The detailed explanation of the precorrected-FFT method can be 
found in [10] for capacitance extraction. Here, we present a 
simple description of this method in the magnetic field 
environment. The precorrected-FFT method is based on dividing 
the region under analysis into a grid.  In the description of the 
algorithm, we will begin by using a three-dimensional grid, 
although we will show in the next section that in practice, a two-
dimensional grid can also work well in an integrated circuit 
environment. 

Consider the three-dimensional topology of wires that 
represents the circuit under consideration. After the wires have 
been cut into wire segments to be represented using the PEEC 
model, the circuit can be subdivided into a k× l× m array of cells, 
each containing a set of wire segments. The contribution to the 
values of ∑ ∫

=

•
n

m
kkkm

k

daldA
a1

)1(
rr  of wire segments within a cell 

under consideration (the “victim cell”) that is caused by wires in 
other cells (the “aggressor cells”) can be classified into two 
categories: long-range interactions and short-range interactions. 
The central idea of the precorrected-FFT approach is to represent 
the current distribution in wire segments in the aggressor cell by 
using a small number of weighted point currents on the grid that 
can accurately approximate the vector potential for faraway 
victim cells. After this, the potential at grid points caused by the 
grid currents is found by a discrete convolution that can be easily 
performed using the FFT.  

There are four steps in the precorrected-FFT approach to 
calculate M×I: 
1. Projection:  The first step in the precorrected-FFT algorithm 
is to construct the grid projection operator W.  Using W, the long-
range part of the magnetic vector potential due to the current 
distribution in a given cell can be represented by a small number 
of currents lying on grid points throughout the volume of the cell. 
Thus, the real current distribution can be replaced by a set of grid 
point currents: 

)4(rg WII =  
where Ig and Ir are the grid current vector and real current vector, 
respectively. The boundary condition that is maintained during 
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projection is that the vector potentials at a set of test points on a 
sphere surrounding the cell should match the vector potentials 
due to the actual wires.  Since the grid currents are a 
representation of the real current distribution, the grid can be 
coarser or finer than the actual problem discretization.  
2. FFT:  Once the real currents are projected to the grid, the 
grid potentials due to the grid currents are computed through a 
multi-dimensional convolution, given by:   

( )5gg HIA =  

where Ag is the grid potential and H is the contribution to the grid 
potential induced by unit point currents at grid points. This 
convolution can be calculated very fast by a multi-dimensional 
FFT computation, which proceeds by automatically considering 
all pairs of aggressor-victim combinations within the grid. 
3. Interpolation:  After the grid potential is calculated using the 

FFT, the values of ∑ ∫
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can be obtained through interpolation of the potentials on grid 
points throughout the cell that the victim conductor lies in. This 
step is basically the inverse process of the projection step, and the 
interpolation operator is WT, which is the transpose of the 
projection operator and can be obtained by the theorem, proved 
in [10]. 
4. Precorrection:  The grid representation of the current 
distribution in a cell is only accurate for potential calculations 
that correspond to long-range interactions. In practice, nearby 
interactions have the largest contribution to the total induced 
potentials, and therefore, these must be treated directly and 
accurately.  Since the nearby interactions have already been 
included in the potential calculation after the above three steps, 

the last step constructs the precorrection operator M~  which 
subtracts this inaccurate part from the result of the interpolation 
step before the accurate measure of nearby interactions is added 
in. 

Combining the above steps, the induced voltages are: 
IHWWMMIV T )

~
( +==           (6) 

where W and M~ are both sparse matrices, and H can also be 
constructed as a sparse matrix for an efficient implementation of 
FFT. 

Since VLSI chips are thin and flat, we choose to use three-
dimensional grid but with only one cell in the ẑ  (thickness) 
direction. There are three parameters that need to be determined 
before the precorrected-FFT algorithm is applied to a circuit: p, q 
and d. Here, parameter p is the number of grid points on each 
edge of a cell, while parameter q is the number of nearby cells 
which are considered in the precorrection step. The first nearest 
neighbors to each cell are defined as all cells that have a vertex in 
common with the considered cell, including the cell itself. 
Parameter d is the cell size, defined as the length of an edge of a 
cell in the x̂  and ŷ  directions, which we will take to be equal. If 
n is the number of wire segments in the circuit, the computational 
complexity of the entire precorrected-FFT procedure is O(n log 
n) [10]. If p and q are fixed, there is an optimal cell size that 
yields the minimum value of cost. In this sense, the method for 
choosing the cell size is somewhat easier and more reliable than 
the methods used in [4][6] to find the local interaction region, 
because in the precorrected-FFT method, we only need to look 
for a minimum value of CPU or memory cost and a consideration 
of accuracy is relatively easier to define. 

 

4. Experimental results 
A set of experiments is carried out on a 400MHz Sun UltraSparc-
II computer server to test the accuracy of the response from the 
precorrected-FFT method, and to compare the results with those 
of the block diagonal method [6] in terms of accuracy, speed and 
memory cost. The test circuit is a four metal layer conductor 
structure on layers M6, M7, M8 and M9 of a nine-layer chip, as 
illustrated in the top view of the structure in Figure 1. It lies 
within an area whose width is 330µm and thickness is 5µm. The 
circuit consists of three parallel signal wires, each with 0.8µm 
width, 0.8µm spacing and 0.5µm thickness. The power/ground 
wires are distributed densely in the four layers and the signal 
wires are on M8. The width of the test circuits is fixed throughout 
the experiments and the length changes along with the length of 
the signal wires in different experiments. The driver sizes for the 
three signal wires are identical and are altered with the wire 
length in order to set the near-end transition time to 40ps. The 
drivers are made to switch at the same time so that the inductance 
effect is maximized and the error incurred by the precorrected-
FFT method can be determined for a worst-case condition. In the 
last part of this section, the experiments on a large industrial 
clock net are carried out the test the efficiency of the 
precorrected-FFT method in on-chip inductance simulation. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Top view of the test chip with three parallel signal lines 
on M8. The dark background represents the dense distribution of 
supply lines throughout the four metal layers. (Not to scale) 
 
4.1 Accuracy of the precorrected-FFT method 
In these experiments, p is set to 4, and the nearest neighbors and 
the next nearest neighbors are included in the direct interaction 
region. The cell sizes in the x and y direction are each chosen to 
be 15µm, while in the thickness direction, it is set to 7µm, such 
that the test structure is at the center of the cell. The radius of the 
collocation sphere is chosen to be 2.5 times the cell size. A 
simulation for the same circuit is also carried out with the block 
diagonal approximation. The partition size in the block diagonal 
approach is 180µm×150µm, which is much larger than the direct 
interaction region of 75µm×75µm. Figure 2 shows a comparison 
of the results from the precorrected-FFT and block diagonal 
methods with the accurate waveforms for 900µm long wires, 
showing waveforms at both the driver and receiver sides of the 
middle wire. The accurate waveforms are obtained by using the 
full inductance matrix in PRIMA without any approximation, 
while the approximate waveforms using the precorrected-FFT or 
block diagonal method with the same PRIMA simulator. In all 
the experiments in Section 4.1 and 4.2, there are 13 ports and the 
number of moments per port in PRIMA implementation is 5, as 
in [6], and it has been demonstrated that the response from the 
reduced order model converges here even if more moments are 
used in the simulation.  
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There are six waveforms in Figure 2, although only four are 
clearly visible since the waveforms from the precorrected-FFT 
almost completely overlap with those from the accurate 
simulation. The block diagonal waveforms at the near and far 
ends are marked (a) and (b), respectively. The largest error in the 
response from precorrected-FFT is less than 1mV. With about 
100mV oscillation magnitude induced by inductance, the relative 
error of the oscillation magnitude is 0.1%. The relative error in 
the 50% delay for the response from precorrected-FFT is even 
smaller. Even though for a given victim line segment, more 
aggressor line segments are considered in the direct interaction 
region in the block diagonal method than in precorrected-FFT, 
the error in the response from the former is still larger than that of 
the latter. The reason for this is that the accumulated errors in the 
block-diagonal approach caused by the dropped mutual 
inductance terms is significant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Comparison of waveforms from the precorrected-FFT 
and the accurate simulation at the driver and receiver sides of the 
middle wire. Waveforms from the precorrected-FFT and the 
accurate simulation are indistinguishable.  
 

Because of the high accuracy that can be obtained by the 
precorrected-FFT method for this example, we observe that we 
can sacrifice some of the accuracy for higher speed. Different 
orders of approximation are tested to study the relation between 
speed, memory requirements and accuracy. The layout tested is 
similar to the above experiment but the length of the signal wires 
is extended to 5400µm, which is the largest tested wire length, so 
as to show the largest reduction in accuracy with the coarsening 
of the grid. Since there are more than 31,000 inductors in this 
circuit, including all of the inductors of signal wires and supply 
wires, nearly one billion mutual inductances are required for 
accurate simulation. It is therefore impossible to simulate for the 
accurate waveforms even in PRIMA, let alone in the time 
domain, and the use of an approach such as ours is essential. To 
simulate the response most accurately, p is set to 4, the cell size is 
set to be 15µm, and the first, second and third nearest neighbors 
are considered in the precorrection step. The response obtained 
from this setup can reasonably be considered as accurate. 

Other precorrected-FFT simulations are carried out with 
lower accuracy and a coarser grid, where only the nearest 
neighbors are considered in the direct interaction region and the 
cell size is 30µm, which is double that in the above experiment. 
The cell size and the size of the direct interaction region are fixed 
in these experiments. The grids are variously chosen to be three-
dimensional with p = 4, p = 3, p = 2, and two-dimensional with p 
= 4, p = 3, p = 2. The two-dimensional grid is in the plane that is 
parallel to the x-y plane and through the point that corresponds to 
the mid-point of the thickness of the test structure. There is only 

one grid point in the thickness direction. In the two-dimensional 
case, the collocation sphere reduces to a collocation circle in the 
x-y plane.  

It is expected that reducing the problem to 2-D, using larger 
cell sizes and smaller values of p, and reducing the size of the 
direct interaction region will each contribute to some loss in 
accuracy, with an a faster computational speed and reduced 
memory requirements. The waveforms obtained at the driver and 
receiver sides of the middle wire with different levels of 
accuracy, corresponding to p = 2, 3 and 4 are very close and are 
not shown here. We find that the error in the 50% delay is 
insignificant for the three cases, but the relative error 
corresponding to the overshoot/undershoot is discernible, and is 
listed in the last column of Table 1. This table also lists the 
memory requirements and speed for each level of approximation. 
The setup time is the most time-consuming step in the entire 
algorithm, and is further divided into two parts. The first part 
corresponds to the calculation of the inductance values needed 
for the construction of the precorrection matrix, which is equal 
for each order of approximation, while the second relates to the 
time required for the calculation of the W, H and M

~  matrices. For 
p = 3 under a 3-D grid, the error at the peak is less than 1mV. The 
relative error in the oscillation magnitude at that point is 1%, 
while the speed is increased by 45% as compared with the 
accurate result. If p is further reduced to 2 under a 3-D grid, the 
error is 9mV but the speed is improved by an additional 16% 
compared to the p = 3 case. The 2-D grid representation with p = 
2 results in the largest error of about 10mV and a similar relative 
error, but the speed is increased only by 6% as compared to its 3-
D counterpart. The reason for this relatively low improvement is 
that in the case of p = 2, the precorrected-FFT is rather fast and 
the time consumed in the calculation of W, H and M

~  matrices is 
only a small part of the total setup time, so that even a large 
increase in the speed of calculation of W, H and M

~  matrices will 
not yield a significant reduction of the total run time. Another 
reason is that the number of grid points per cell is only reduced 
by half here by going from the three dimensions to two. On the 
other hand, if we reduce the 3-D grid to 2-D with p=4, the speed 
can be increased by 22% because the number of grid points per 
cell is reduced from 43=64 to 42=16, and the time required for the 
calculation of W, H and M

~  matrices plays a more important role 
in the total setup time. In this case, the accuracy is still high even 
under a 2-D grid. The memory requirements show similar trends.  
 
4.2 Comparison with the block diagonal method  
In this section, the memory consumption and speed of these two 
methods are compared for structures of different wire lengths, 
using a Matlab implementation. Performance results using an 
optimized C++ implementation are reported in Section 4.3. The 
lengths of the signal wires in different experiments are set to 
900µm, 1800µm, 3600µm, 4500µm and 5400µm. The block 
diagonal partition size is chosen to be 180µm ×150µm, and for 
the precorrected-FFT method, a 2-D grid is imposed with p=2, 
and the first nearest neighbors are considered for the 
precorrection step. The cell size is set to 30µm. Figure 3 shows 
the waveforms computed by the two methods at the receiver end 
of the middle wire for wire lengths of 900µm and 5400µm. The 
accuracy, memory requirements and speed for different wire 
lengths for the block diagonal and precorrected-FFT methods are 
listed in Table 2. For the wire lengths of 900µm and 1800µm, the 
results of the precorrected-FFT and block diagonal methods are 

 

Far end 

Near end 

(a) 

(b) 
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similar to each other, and the block diagonal method is faster. 
However, as the wire length increases, the differences in the 50% 
delay and oscillation magnitude are larger. For example, the 50% 
delay calculated by the precorrected-FFT and block diagonal 
methods differ by about 5% for a wire length of 3600µm. The 
difference increases to 8% and 12.5% for lengths of 4500µm and 
5400µm, respectively. For wire lengths that exceed 1800µm, the 
precorrected-FFT and block diagonal methods perform their 
computations at approximately the same speed, but the former 
has nearly half the memory requirements as the latter since the 
partition size for the block diagonal method is much larger than 
the direct interaction region in the precorrected-FFT, due to 
which the number of inductances per wire segment to be 
calculated by the former is much larger than that for the latter. As 
the circuit size increases, the setup time and memory are seen to 
increase at a faster rate for the block diagonal method. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3: Simulation results at the receiver side of the middle 
wire from the precorrected-FFT and block diagonal methods for 
different wire lengths. (a) 900µm, PC-FFT (b) 900µm, block 
diagonal (c) 5400µm, PC-FFT (d) 5400µm, block diagonal.  
 

Similar trends are seen for the differences in the oscillation 
magnitude as for 50% delay. The precorrected-FFT method 
predicts a more reasonable trend in the overshoot magnitude for 
different wire lengths: the overshoot increases as the wire length 
is increased from 900µm to 1800µm, and then decreases 
gradually as the wires grow longer and resistive effects take over. 
However, the trend predicted by the block diagonal method is 
different: the overshoot magnitude increases from 900µm to 
1800µm long wires, and then decreases if the wire length 
increases from 1800µm to 4500µm, as in the case of the 
precorrected-FFT method. However, when the wire length 
increases from 4500µm to 5400µm, the overshoot is not reduced 
but is increased in the block diagonal method, which is clearly 
inconsistent with expectations. The differences between the 
results from the two methods are larger for longer wires.  

Table 3 lists the overshoots and the run time of the 
responses at the receiver side of the 5400µm wire calculated by 
the precorrected-FFT and block diagonal methods, with different 
partition sizes of 30µm×30µm, 180µm×150µm, 330µm×150µm, 
330µm×300µm, 330µm×600µm and 330µm×900µm. It is clear 
that the overshoots given by the block diagonal method do not 
converge as the block size is increased, and vary somewhat 
unpredictably. When the partition width increases from 180µm to 
330µm, the 300mV bump disappears: the reason may be that 
more power/ground wires are included in each partition, and the 

inductance effect is greatly reduced. If the partition length is 
increased from 150µm to 300µm and then to 600µm and 900µm, 
with a 330µm partition width, the overshoot increases and nears 
the result from the precorrected-FFT method. It is impractical to 
increase the partition size further because the simulation time for 
330µm×600µm partition is 6hrs, and includes 26.6M mutual 
inductances, while the simulation time for 330µm×900µm 
partition is 12hrs, and uses up about 3Gb memory. On the other 
hand, the precorrected-FFT method requires less than one hour 
and only 110MB memory. We also test the same circuit with a 
higher level of accuracy in the precorrected-FFT method with the 
fifth nearest cells included in the precorrection step and the 
overshoot is only 2mV different. The trends in the overshoots and 
run time from the two methods indicate that the precorrected-FFT 
converges easily, and therefore is a better candidate for fast 
simulation of large inductive circuits for higher accuracy. 

The problem faced here by the block-diagonal method is 
common to most of the existing algorithms in on-chip inductance 
extraction. As the circuit size is increased, the local interaction 
region should be larger to maintain the same accuracy in the 
simulation. However, it is hard to predict this interaction region a 
priori, and for large circuits, increasing the interaction region 
gradually is impractical as it could result in very long simulation 
times. The precorrected-FFT method, on the other hand, 
overcomes this difficulty by including the calculation of far away 
inductance interactions using the grid representation. 
 
 
 
 
 
 
 
 
 
 
Figure 4: Top view of the layout structure of a global clock net  

(A: driver input, B: driver output, C: receiver input) 
 
4.3. Application of precorrected-FFT with optimized 
implementation on signal lines and a large clock net 
In addition to a Matlab-based implementation of the 
precorrected-FFT method, an optimized version using C++ was 
also implemented. To demonstrate the efficiency of the 
precorrected-FFT method, layout structures with different length 
of signal wires, as depicted in Section 4.2, and a large global 
clock net of an industrial giga-hertz microprocessor are simulated 
using this optimized implementation of the precorrected-FFT 
method. 

For layout structures with different length of signal wires, 
the number of resistances, capacitances and inductors in circuits 
and the total CPU times of the simulations in the precorrected-
FFT method are listed in Table 4. A three-dimensional grid is 
imposed with p=3, and the first nearest neighbors are considered 
for the precorrection step. The cell size is set to 30µm. The 
simulations in the precorrected-FFT method can be very fast. For 
the circuit with 5400µm signal wire, which includes 32.3K 
resistances, 64.5K capacitances and 32.3K inductors, the total 
CPU time is about 6 mins. 

The layout of the clock net is shown in Figure 4 and has 4 
ports, 12 sinks and 121065 inductors, which corresponds to 7.3G 
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inductance terms. Using optimized code that implements our 
method, the run time for PRIMA to generate the reduced order 
model is 21 minutes using a three-dimensional grid, and 2-D 
precorrected-FFT is expected to be even faster. The responses 
from the simulation under the RC model, the precorrected-FFT 
and block diagonal methods are shown in Figure 5, and the layout 
and experimental parameters are listed in Table 5. The partition 
size in the block diagonal method and the direct interaction 
region in the precorrected-FFT procedure have approximately the 
same area. On-chip inductance is seen strongly affect the 
response. The 50% delay from the precorrected-FFT method is 
130ps, compared with an 86ps delay predicted by the RC model. 
Relative to the 50% delay point for the far end response under an 
RC-only model, the precorrected-FFT method shows a shift of 
17ps, while the shift from the block diagonal method is only 6ps. 
In addition, the differences between the 10%-90% transition time 
at the near and far end responses under an RC simulation and 
under the precorrected-FFT based simulation are 53ps and 70ps 
respectively, while the corresponding results from the block 
diagonal method are 20ps and 90ps. Therefore, in this example, 
compared with the precorrected-FFT results, the block diagonal 
method underestimates the inductance effect on the transition 
time at the near end by 62% and overestimates the effect on the 
transition time at the far end by 28.5%.  
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Responses from simulation under an RC-only model, 
the precorrected-FFT method and the block diagonal method for 
the near and far ends. A: driver input waveform, B and C: driver 
output and receiver input waveform, respectively, under an RC-
only model, D and E: driver output and receiver input waveform, 
respectively, calculated using the precorrected-FFT method, F 
and G: driver output and receiver input waveform, respectively, 
calculated by the block diagonal method. 
 
5. Conclusion 
A precorrected-FFT algorithm for fast and accurate simulation of 
inductive systems is proposed in this paper, in which long-range 
components of the magnetic vector potential are approximated by 
grid currents, while nearby interactions are calculated directly. 
All inductance interactions are considered in computing the 
product of the inductance matrix with a given current vector, so 
that the induced voltages as well as the waveforms at the nodes of 
interest are calculated accurately. The method is demonstrated on 
large circuits and is shown to be faster, less memory intensive 

and more accurate than the block diagonal algorithm. Different 
approximations in the method, including using a two-dimensional 
grid structure, are tested and show that lowering the order of the 
approximation greatly improves the speed and memory 
consumption without a significant loss in accuracy. 
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Table 1: A comparison of the accuracy, memory requirements and CPU time for different parameter settings for the precorrected-FFT in the 
simulation of three 5400µm long signal wires. Here, “2-D” and “3-D” correspond to the two-dimensional and three-dimensional cases, 
respectively. The total CPU time corresponds to the time required for the entire simulation, including the time required by the precorrected-
FFT computations. 

Setup time (s) 
 Total CPU 

time (s) Inductance 
values 

W, H , M
~  

matrices 

Memory 
requirements 

(Mb) 

Relative error of 
over/undershoot 

2-D 2917 1060 148 110 13% p=2 
3-D 3094 1060 302 113 12% 
2-D 3118 1060 312 113 1.3% p=3 
3-D 3682 1060 858 156 <1% 
2-D 3175 1060 354 117 <1% p=4 
3-D 4090 1060 1196 172 <1% 

 
Table 2: A tabulation of the accuracy, memory requirements and CPU time for different circuit sizes using the block diagonal (BD) and 
precorrected-FFT (PCFFT) methods. The total CPU time corresponds to the time for the entire simulation, including the time required by the 
block diagonal or precorrected-FFT methods. 

Total CPU time (s) Setup time (s) Memory requirement (Mb) Relative differences  
BD PCFFT BD PCFFT BD PCFFT 50% delay Over/Undershoot 

900µm 578 683 334 450 66 43 <0.1% 14% 

1800µm 1056 1097 571 630 95 56 1% 0.5% 

3600µm 1993 1991 1042 1010 153 89 5% 10% 
4500µm 2516 2555 1285 1150 184 97 8% 19% 
5400µm 3235 2917 1522 1220 210 110 12.5% >50% 

 
Table 3: Overshoots and run times at the receiver side of the middle wire with the length of 5400µm from the precorrected-FFT method 
(PCFFT) and the block diagonal method (BD) with different partition sizes varying from 30µm×30µm to 330µm×900µm. 

BD 
 PCFFT 30µm×

30µm 
180µm×
150µm 

330µm×
150µm 

330µm×
300µm 

330µm×
600µm 

330µm×
900µm 

Overshoot 151mV 120mV 300mV 120mV 123mV 142mV 161mV 
Run time 2917s 681s 3235s 5032s 9700s 6hrs. 12hrs. 

 
Table 4: Circuit parameters and run times for layouts with different length of signal wires from the precorrected-FFT method. 

Length of signal wires No. of resistances No. of capacitances No. of inductors Total CPU time (s) 

900µm 7.3K 14.7K 7.3K ~ 60 
1800µm 12.3K 24.7K 12.3K 137 
3600µm 22.3K 44.6K 22.3K 261 
4500µm 27.3K 54.6K 27.3K 306 
5400µm 32.3K 64.5K 32.3K 358 

 
Table 5: Layout and experimental parameters (X, Y, Z: x, y and z directions in Figure 4) 

No. of sinks/ports No. of R/L/C No. of M No. of nodes Runtime 
12/4 160K/121K/400K 7.3G 245K 21mins 

Cell size in X/Y/Z No. of cells in direct 
interaction region 

No.of grid points in 
X/Y/Z per cell 

No. of cells in X/Y No. of collocation 
points 

74.97/74.50/4.968 9 3/3/2 64/64 144 
 


