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ABSTRACT

This paper presents a novel enumerative approach, with
provable and efficient pruning techniques, for dual threshold
voltage (V;) assignment at the transistor level. Since the use
of low Vi may entail a substantial increase in leakage power,
we formulate the problem as one of combined optimization
for leakage-delay tradeoffs under V; optimization and sizing.
Based on an analysis of the effects of these two transforms
on the delay and leakage, we justify a two-step procedure
for performing this optimization. Results are presented on
the ISCAS85 benchmark suite favorably comparing our ap-
proach with an existing sensitivity-based optimizer.

1. INTRODUCTION

In deep submicron technologies where V; does not scale
with supply voltage, a strategy to improve circuit timing has
taken shape in the form of dual V; technology. The choice
of V; involves a tradeoff since the high Vi leads to higher
gate delay and lower standby leakage power dissipation while
the low V; leads to faster gates but with drastically higher
standby leakage power dissipation.

Static power-delay tradeoff optimization by dual V; as-
signment has been tackled previously in [1-3]. An impor-
tant drawback in [2,3] is that V; assignment is performed at
the gate-level, i.e., all of the transistors in a gate are forced
to have same V4, as opposed to considering each transis-
tor separately for assignment, and this eliminates a signif-
icant number of good circuit configurations. This acts as
our motivation for presenting an algorithm that works at
the transistor-level. In practice, process constraints may re-
quire the assignment of the same V; to a group of transistors,
and our method is general enough to handle such additional
constraints. Our V; assignment approach is based on ex-
plicit enumeration of all the design solutions, made efficient
by pruning techniques.

The gate delay as well as the leakage current depend on
the V; and the transistor size, and hence optimizing V; with-
out considering transistor sizing leaves a significant part of
the design space unexplored, and this forms a major draw-
back of [1-3]. The problem of simultaneous optimization was
first introduced in [4], which used a simplistic binary search
technique. The work in [5] considerably enhances prior work
in removing several of the limitations; however, it employs
a sensitivity-based engine to update transistor sizes as well
as Vi’s, and this may result in solutions far from optimal,
especially in the presence of stringent constraints.
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We examine the circuit optimization problem of mini-
mizing standby leakage power under area and timing con-
straints. During the design process, a circuit is expected to
meet a set of delay constraints and to occupy an area that
is no more than that allotted to it during floorplanning. It
can be shown upon proper formulation that the above prob-
lem is a mixed integer nonlinear program (MINLP), and
our experiments showed that the use of an accurate and
exact MINLP solver [6] required large CPU times even on
small circuits. Therefore, a computationally efficient, yet
accurate, heuristic is essential. The variation in the depen-
dence of the transistor drain current on V; in the ohmic
and subthreshold regions and the nature of a typical area-
delay tradeoff curve are used to draw a set of conclusions
that form the theoretical underpinnings of our two-step ap-
proach, which involves transistor sizing as first step, and
our V; assignment approach as the second step. Since our
V; assignment approach works at transistor level, it fits in
well with the transistor sizing, and thus leads to an efficient
exploration of the design space at transistor level.

2. LEAKAGE AND DELAY ESTIMATION

The effect of V; on leakage current can be seen from the
following BSIM equations for a single transistor:
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Here p10 is the zero bias electron mobility, n is the subthresh-
old slope coefficient, Vs and Vg, are the gate-to-source volt-
age and the drain-to-source voltage, respectively, Viperm is
the thermal voltage, and W and L are the transistor width
and length, respectively. In practice, for easy estimation
from SPICE parameters we fit Equation (1) as a function of
transistor V; and transistor width.

The evaluation of the leakage current of a gate can be
made efficient by using the concept of dominant states [5].
Stated in plain English, dominant leakage states, which ac-
count for 95% of leakage, for simple gates refer to the leakage
states with only one transistor off in the pull-up or pull-down
chain. This observation allows us to use the single transistor
BSIM leakage current model for leakage estimation, since for
a dominant state, each stack contains only one transistor in
the subthreshold region. To estimate leakage for optimiza-
tion purposes, the leakage model of Equation (1) can be
multiplied with the probability that the transistor is leaking
and the input state is dominant.

The gate delay models used in this work are adopted
from [7], and a similar precharacterization procedure is em-
ployed. In addition to being accurate in DSM technologies,
the model also possesses convexity properties for a fixed
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value of V;, and it is desirable to preserve these so that
they can be exploited by the area-delay tradeoff optimiza-
tion, to arrive at a good solution. However, when V; is
varied, even under a simple model for inverter delay [8], it
is easily verified that the delay is not a convex function of
the transistor V; (even assuming that V; could be changed
continuously). Therefore, we do not use V; as a characteri-
zation variable in our convex delay model, but instead, de-
velop multiple pin-to-pin models for each switching scenario,
where each model corresponds to a different combination of
Vi’s of transistors on the resistive path. To avoid develop-
ing large number of models for the dual V; case, we have
developed accurate equations to collapse two transistors of
different V3’s into only one “equivalent” transistor of either
high or low V;. We validated this collapsing procedure on an
extensive of data, and delay values were seen to be within
6% of the actual delay. Our experiments show that the ef-
fect of the V; of a transistor on the switching delay of the
previous stage, which is primarily manifested as a change in
the loading capacitance, is extremely small, and can safely
be neglected. Moreover, in DSM technologies this change is
nearly overshadowed by the interconnect capacitance. On a
0.1pm technology [9], the change was found to be under 2%
in most cases.

3. DUAL vy ASSIGNMENT

A V; assignment algorithm is presented in this section, and
is subsequently utilized in an unified approach for leakage
power minimization, presented in the next section.

3.1 Algorithm

A combinational circuit is represented as a directed acyclic
graph where each node corresponds to a gate and each edge
corresponds to an interconnection between gates. The graph
is decomposed into fanout-free regions (as in technology
mapping algorithms such as [10]), and the enumerative tech-
niques are used to select V;’s within each such region. We
assign a level to each gate using the topological sort algo-
rithm; the primary inputs correspond to level 0, while a
gate is at level ¢ if the maximum level among all its inputs
is 4—1. The enumeration, which starts from the primary in-
puts and proceeds in the order of increasing level, processes
every gate for its all possible V;-states, and calculates the
corresponding arrival times and leakage.

If we represent a high V; as 0 and a low V; as 1, then
the V; assignment, X, of a gate, can be encapsulated as a
binary number whose ¢* bit corresponds to the V; of the
¢'" transistor in the gate. A gate is then defined to be in a
Vi-state k if k is the decimal equivalent of the binary num-
ber, X;, representing the V; settings of the gate j. At any
particular gate, the enumeration stores all solutions that are
not suboptimal. This is done by maintaining a set of tuples
of the form {X, L, AR, AF, IS}, where X is the V;-state of
the gate under consideration, L is the total leakage of the
tree rooted at the node representing current gate, I.S rep-
resents the set of input tuples (one tuple corresponding to
each input), while AR and AF are the rise and fall arrival
time at the output. Our accurate gate delay model also uses
the input transition time as a variable, and hence we include
those in the tuples as well; however, these are omitted from
the discussion for simplicity. The routine get_new_tuple gen-
erates the output tuple set by setting the arrival times at
the gate inputs to those corresponding to the input tuples,
and then calculating the arrival times, AR and AF, at the

gate output and the corresponding leakage under allowable
Vi-settings for the gate. If a generated tuple is not provably
suboptimal, it is inserted in the tuple set of the gate j.

1. Algorithm : assign_vt

2 for each level ¢

3. for each gate j in level ¢

4 for each Vi-state k

5 for each set of tuple combinations
at the input nodes of j

6. get_new_tuple();

7. prune_tuple_set();

8. if multifanout gate

9. process_tree();

10. Algorithm : get_new_tuple

11. AR; = AF; = L; = 0;

12. L = leakage(j);

13. for each input k of gate j

14. evaluate ARy; = AFy + DRyj;

15. evaluate AFy; = ARy + DFy;;

16. L]‘ = Lj + Lg;

17. check for suboptimality;

18. if provably suboptimal then continue;
19. insert current tuple in the set of tuples,

tuple_set(j)
20. Algorithm : prune_tuple_set
21. for each tuple j in the set

22. for each tuple i|¢ > j, in the set of tuples

23. ifARiZPFXARj and AF; ZPFXAF]'
24. if L; > PF x Lj then remove

25. tuple ¢ from the set;

26. elseif AR; > PF x AR; and AF; > PF x AF;
27. if L; > PF x L; then remove

28. tuple 5 from the set;

29. proceed to next tuple;

30. Algorithm : process_tree
31. for each tuple at the node

32. if AR; < RR; and AF; < RFj

33. if L < L(mintuple)

34. mintuple = current tuple;

35. assign X (mintuple) to current gate;

36. input_queue insert I.S of mintuple;

37. while input_queue is not empty

38. current_tuple = pop input_queue;

39. current_gate = gate of current_tuple;
40. if V; assigned to current_gate, next;

41. assign X (current tuple) to current_gate;
42. if IS not empty insert IS in input_queue;

Figure 1: Pseudocode for V; assignment

At every multiple fanout node, an assignment of V; is
chosen for the tree rooted at that node based on the arrival
time constraint. At root node, the tuple that has the lowest
leakage among all of the tuples that meet the arrival time
constraints at that node is selected. If none of the tuples
can meet the constraints, the tuple that has minimum offset
from the required arrival time is selected. Based on the
ID’s of the tuples at each of its input nodes, the inputs are
assigned the corresponding Vi settings, and the backward
traversal is performed until the tree has been exhausted.

Figure 2 shows an example of the enumeration. Consider
a sample tuple, shown in bold face, at node j, which corre-
sponds to an inverter, where the number outside the brace
represents the ID of the tuple. The first value in the tuple is
2 which means that the V;-state is 2, corresponding to a V;
assignment of {1,0}, for the transistors of the gate j. The
second number represents the total local leakage, i.e., the
leakage of node j plus the leakage corresponding to its tran-
sitive fanins, the third and fourth values are AF and AR,
respectively, and the last field is a vector that holds the ID of



the input tuple. When this tuple propagation reaches node
m, which is a multifanout node, the best tuple that meets
the timing constraints is selected and the corresponding V;
is assigned to m. The algorithm then checks the ID’s of
input tuples, < 10,1 >, for the left and right child, respec-
tively, and assigns Vi’s corresponding to tuple 10 to node [
and corresponding to tuple 1 to node j, and so on.

Vt assigned

15 {1,15,3.3.1,<10,1>}

0 {15,5,3.2,3,<0,0>)

0 {3,1,1.5,1.6,<2>}

10 {4,7.5,2.32.5<1,1>} /7 1 231112.225)
,,,,,,

0 (23.15.1.1.<25) s
1 (23,11,1.2,<25}

0 BLISI6<2451y /Y W\ i

1 {2,3,1.1,12,<2,4>)

0 {02.5,13,6,<2,3>}
1 {12.1,12,6<235}
2 {1,2.2,9,8,<2,45}

Figure 2: Enumeration for V; assignment

3.2 Pruning techniques

Since the algorithm employs explicit enumeration, use of
pruning techniques is necessary to make it efficient. Due
to the dependence of the gate delay and transition time on
the fanout loading, there is no straightforward optimal sub-
structure property enabling use of dynamic programming.
Provably suboptimal tuples
A provably suboptimal tuple can be a tuple that satisfies
one of the following three properties:

(1) There exists another tuple whose arrival times and leak-
age current are all less than those in the current tuple.

(2) The rise (fall) time for the tuple, when it is added to the
low-V; delay from current gate to the root of the fanout-free
tree, results in a delay that exceeds the required rise (fall)
time at that multi-fanout gate.

(3) The tuple has rise and fall times such that when they
are added to the high-V; delay from the output of the gate
under consideration to the root of the tree, the resulting de-
lays both satisfy the required times at the multifanout gate,
but with a higher leakage than a previously computed tuple
that also satisfies those required times.

Quasi-suboptimal tuples

More aggressive pruning techniques are required to control
the number of tuples, especially when the fanout-free regions
are large. For this purpose, prune_tuple_set removes quasi-
suboptimal tuples. A tuple is quasi-suboptimal if there ex-
ists another tuple such that multiplication of the arrival
times and leakage of that tuple by a small prune factor makes
the current tuple provably suboptimal. In practice, different
pruning factors can be used for arrival times and leakage.

It is important to explain why the use of our pruning
techniques lead to the removal of a significant number of
tuples. While the number of tuples can theoretically increase
exponentially, this does not happen in practice.

The first reason for existence of suboptimal tuples is the
nature of enumeration technique. The extensive spread of
variables such as input arrival times, input transition times,
and V;-settings can produce very close tuples. For example,
consider two scenarios for an inverter:

Case 1: The V;-setting for the inverter is such that the nmos
transistor is set to high V;, and the input tuple has low ar-
rival times and high leakage.

Case 2: The V;-setting for the inverter is such that the nmos
transistor is set to low V4, and the input tuple has high ar-
rival times and low leakage.

In the first case, the inverter delay is high but the input
arrival times and the inverter leakage are low, and in the
second case inverter delay is low, due to low V; of switch-
ing nmos, but the arrival times and input leakage are low.
Hence the two tuples produced at the output can lie in close
proximity. In case of gates with higher number of inputs sev-
eral combinations of arrival times and V;-settings can lead
to generation of very close tuples.

Another reason for tuple pruning is the phenomenon of
input dominance. The concept can be explained using a
noninverting two-input gate, C, shown in Figure 3. The rise
and fall times in Tuple 1 at input A of the gate are both
higher than those in all of the tuples at input B. Assuming
a unit pin-to-pin delay from both input pins, it can be seen
that the input tuple combinations will create three tuples
at the output with the same arrival times, which are all
dictated by tuple at the input A. We say that the tuple
1 at input A dominates the tuples at input B. Out of the
three tuples at gate C, the highlighted tuple is the only
nonsuboptimal tuple, since it has the least leakage among
three tuples and only that tuple will be preserved, and the
struck out tuples will be pruned

1{0.2.5.1.3,0.6,<2.3>}
2{1,21,12,0.6.<2,3>}
B 3(122.09.08<2.45)

Figure 3: Input dominance

4. UNIFIED ALGORITHM

We propose a heuristic that separates the optimization
into two distinct steps: transistor sizing and dual V; assign-
ment. The key issue is to decide whether to carry out sizing
prior to V; assignment, or vice versa, and to analyze whether
such a separation can be logically justified. Let us consider
the first order equation for inverter delay [8], given below:
o= 20(Vy — 0.1Vpp) 2C [r—O.l

Bn(Vpp = V)2 BnVpp(l-—7)

1{02.5,14,16<23>) A

+ lzn(w - 201‘)] (2)
2
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where r is V3 /Vpp. Although Equation (2) may be numeri-
cally inaccurate in DSM technologies, it has a good fidelity
with accurate models. From Equations (1) and (2), we no-
tice the following trends:

Observation 1: The leakage current varies exponentially with
V4, but linearly with the transistor width.

Observation 2: Delay decreases linearly with increasing width,

and super-quadraticaly with decreasing V;.
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Let us examine a typical delay-area trade-off curve for ap-
plying only transistor sizing on a combinational circuit; an
example is shown in Figure 4. The curve shows a distinctive
knee region, beyond which the improvement in the delay per

unit increase in the area decreases significantly. This leads



us to the next observation:
Observation §: Up to the knee point, sizing results in a lin-
ear increase in the area, with a very small rate of increase.
Beyond this region, the area increases exponentially. Since
the leakage current varies linearly with the transistor width,
it shows the same trends as the area.

From these three observations, we can conclude that:
(1) Up to the knee of the curve, both sizing and V; opti-
mization cause the delay to reduce, but from Observation
3, their effects on the leakage power are different: while V;
alteration causes an exponential jump, a sizing step causes
a much more sedate and linear change.
(2) Beyond the knee of the curve, both sizing and V; al-
teration show an exponential increase in the leakage power,
while the latter is more effective at delay reduction.

Therefore, it makes engineering sense to use a two-stage
optimization as follows:
Step 1: Reduce delay by sizing until the knee of the area-
delay curve is reached and hence obtain linear increase in
the leakage current. We set all transistors to high V; and
formulate the transistor sizing problem as one of delay opti-
mization under area constraints. We use a sensitivity-based
heuristic similar to TILOS [11] for optimization in this step.
Step 2: Beyond the knee point, since the leakage current
increases exponentially regardless of whether the sizing is
used or the V; assignment is used, V; assignment alone can
be used since it is more effective in delay reduction, while
maintaining constant area. Hence, we perform dual V; as-
signment, for the sizes obtained in the first step. Based on
the arrival times obtained after sizing and the required times
at the output, rise and fall required times are assigned at
the output of every multifanout gate, using CPM.

S. RESULTS

The algorithms are implemented as a CAD tool called
SATVA (Sizing And Threshold Voltage Assignment), and
the technology parameters provided by a 0.1pym model [9]
are used in the experimentation. The probability values
are obtained using a probability propagation routine, where
all of the inputs are assigned a probability, Pi1(i) = 0.5,
where P (i) represents the probability that the signal ¢ is
at logic 1. Before application of Step 2, delays from every
gate to root of the fanout free tree to which it belongs are
calculated and stored, for both all high-V; and all low-V;
settings, and are used in provable pruning. The experiments
are carried out on a Sun Ultra 10. ISCAS85 benchmark
circuits, mapped to simple gates, are used as inputs to our
optimization algorithm.

For the purpose of evaluating the efficacy of V; assignment
algorithm under constant transistor sizes, we implemented
a priority-based backtracking (PB) approach similar to [1],
and both algorithms are run at transistor-level. Our al-
gorithm resulted in 4x improvement in leakage on average
compared to PB.

Table 1 provides results of optimization by our tool and
by a sensitivity-based algorithm similar to [5]. The first
column lists the circuit name and the target area, and the
second and third columns provide the original and the tar-
get delays, respectively. We use the circuit configuration
obtained after the sizing step of our tool as the input to
SBA. The remaining columns list the leakage current and
CPU times for the two methods. It can be seen that our
tool delivers a large performance improvement over SBA.

Circuit Delay (ps) Leakage (nA) CPU (s)
A (um) | Orig | Target | SBA | SATVA | SBA [ SATVA

C1908 | 2240 1570 923 969 519 192

391 1460 1025 1110 568 440

1340 1365 1411 824 175

C2670 | 2615 1830 1374 1374 407 94

564 1700 1482 1516 560 96

1570 1795 1700 879 114

C3540 | 3155 2210 1965 1990 1167 196

788 2050 2336 2218 1726 895

1890 2905 2600 5556 1945

C5315 | 2786 1950 2669 2658 1233 317
1163 1810 2856 2769 1714 317
1670 3365 2918 4900 322

C6288 | 7760 5430 5275 3831 5400 992
1080 5040 6657 4583 9400 991
4650 8903 5392 9436 993

C7552 | 2280 1600 4197 4112 10600 6378
1646 1480 4891 4498 11700 6406
1370 6632 5129 11125 6448

Table 1: Comparison of SBA [5] and SATVA.

From the results, we can see that our algorithm performs
approximately the same as SBA on loose constraints, but
the quality of the results improves, as expected, when the
constraints are tightened, it performs little worse as com-
pared to SBA on smaller circuits, but vast improvements
are obtained for large circuits. For example, the average
improvement for C6288 and C7552, is 21%.

We also tested our algorithm when a set of transistors is
constrained to have the same V;, we performed stack-level
(all transistors in a stack have same V;) and gate-level as-
signments. This requires that enumeration need consider
only those V;-states where the stack-level and the gate-level
assignment constraints are satisfied, respectively. Our re-
sults showed that assignment at transistor level results in
3.5% improvement on average in leakage compared to stack-
level, and 32% compared to gate-level, underscoring the rel-
evance of an approach that can work at these finer levels.
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