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Abstract— Thermal simulation has become increasingly important
in chip design especially in the nanometer regime, where theon-
chip hot spots severely degrade the performance and reliability of
the circuit and increase the leakage power. In this paper, wepresent
a highly efficient and accurate thermal simulation algorithm that is
capable of performing full-chip temperature calculations at the cell
level. The algorithm is a combination of several important numer-
ical techniques including the Green function method, the discrete
cosine transform (DCT), and the frequency domain computations.
Experimental results show that our algorithm can achieve orders of
magnitude speedup compared with previous Green function based
algorithms while maintaining the same accuracy.

I. INTRODUCTION

Thermal simulation algorithms in chip design can be roughlydivided
into two categories based on whether the meshing of the entire substrate is
necessary during the simulation process. The generic thermal simulation
algorithms such as the finite difference method (FDM) and thefinite
element method (FEM) used in [1] and [2] enjoy the advantagesof high
flexibility in handling different kinds of boundary conditions in thermal
problems and the capability of achieving high accuracy. However, the
requirement of meshing the entire substrate and later solving a large system
of linear equations in the simulations using these methods makes them
relatively inefficient. In [3], the thermal-ADI algorithm was proposed to
efficiently solve the transient thermal problems using a meshing scheme
similar to that used in the FDM. However, for steady-state analysis, the
ADI algorithm can also become slow if the initial guess of thetemperature
distribution is far from the final solution.

The boundary element method (BEM) constitutes another class of ther-
mal simulation algorithms in which the volume meshing of thesubstrate is
completely avoided. An important underlying concept in theBEM is the
Green function which describes the temperature distribution in the chip
when a unit point power source is present. In [4] and [5], the analytical
forms of the Green function were derived by assuming that thechip was
infinitely large horizontally. One significant advantage ofthe analytical
forms of the Green function is that they are very cheap to evaluate and
hence can be easily incorporated into optimization procedures where the
Green function needs to be evaluated many times. However, byassuming
that the chip is infinitely large horizontally, the derived Green functions
tend to severely underestimate the temperature, although they can correctly
identify the locations of the hot spots as shown in [4]. In [6], a Green
function that is suitable for the rectangular shaped chip geometry was
presented and look-up tables were established based on the Green function
to assist the efficient evaluation of the temperature field. Nevertheless,
the cost of this algorithm can become prohibitive for cell level full-chip
thermal simulations where both the number of heat sources and the number
of field regions are large.

In [7], an efficient thermal simulation algorithm based on the solution of
the finite difference equations using the multigrid approach was proposed,
and it has the capability of performing the full-chip thermal analysis.
In this paper, we present another highly efficient and accurate full-
chip thermal simulation algorithm that is based on the Greenfunction
method, the discrete cosine transform (DCT), and the frequency domain
computations. Since the temperature field can be obtained byconvolving
the power distribution with the underlying Green function,using the
frequency domain computations in conjunction with the DCT will result in
a significant improvement in efficiency as can be achieved in many signal
processing works where the time or space domain convolutionis replaced
by the frequency domain analysis. The functional eigen-decomposition
approach used in the substrate parasitic extraction work in[8] is also a
specific implementation of the frequency domain analysis. Our algorithm
takes a piece-wise constant power density map as the input and generates
a piece-wise constant temperature map as the output. The primary steps
of the algorithm include

1) Obtain the frequency domain representation of the power density
map using the 2D DCT.
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2) Calculate the frequency domain representation of the temperature
map by multiplying each frequency component of the power density
map by the corresponding frequency response of the linear system
determined by the Green function.

3) Use a 2D inverse discrete cosine transform (IDCT) to obtain the
temperature map from its frequency domain representation.

Both the 2D DCT and the 2D IDCT can be calculated efficiently using the
2D fast Fourier transform (FFT) inO((M ·N)×log(M ·N)) time, where
M ·N is the total number of grid cells in the power density map, which is
also the total number of grid cells in the resulting temperature map. This
is a significant improvement over theO((M ·N)2) time complexity of the
algorithm presented in [6]. Experimental results show thatthe algorithm
proposed in this paper can achieve orders of magnitude speedup over the
algorithm in [6], while still maintaining the same accuracy.

II. PROBLEM FORMULATION
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Fig. 1. Schematic of a VLSI chip with packaging (a) IC chip andthe packaging
structure (b) simplified model of the chip and packaging.

Fig. 1(a) shows an IC chip with the associated packaging, andFig. 1(b)
shows a schematic of the structure in Fig. 1(a) where the packaging
including the heat spreader and the heat sink has been simplified but the
multilayered structure of the chip is explicitly shown. Thesteady state
temperature distribution inside the chip are governed by the Poisson’s
equation

∇2
T (r) = −

g(r)

kl(r)

(1)

where r = (x, y, z), T (r) is the temperature (°C) distribution inside
the chip, g(r) is the volume power density (W/m3), and kl(r) is the
thermal conductivity (W/(m·°C)) of the layer where pointr is located [9].
The vertical surfaces and the top surface of the chip are assumed to
be adiabatic [10], and the bottom surface of the chip is assumed to be
convective, with an effective heat transfer coefficienth (W/(m2·°C)) [11].
In mathematical forms, these boundary conditions can be expressed as
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whereTa is the ambient temperature, andkN is the thermal conductivity
of the bottom layer of the chip. In addition, we enforce the continuity
conditions at the interface between adjacent layers withinthe multilayered
chip, i.e.,

T (r)|z=−di+ε = T (r)|z=−di−ε (5)
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(6)

whereε is an infinitely small quantity andki is the thermal conductivity
of the ith material layer in the multilayered chip structure.



III. FULL -CHIP THERMAL SIMULATION ALGORITHM

A. The Green function of the rectangular-shaped multilayeredstructure
Let G(r, r′), with r = (x, y, z) andr

′ = (x′, y′, z′), be the distribution
of temperature aboveTa in the multilayer when a unit point power source
of 1W is placed at positionr′. ThenG(r, r′) satisfies the equation

∇2
G(r, r

′) = −
δ(r − r

′)

kl(r)

(7)

and the boundary conditions
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where δ(r, r′) = δ(x − x′)δ(y − y′)δ(z − z′) is the three-dimensional
Dirac delta function, andG(r, r′) is the Green function. The temperature
field under an arbitrary power density distribution can be obtained easily
as

T (r) = Ta +
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Using a derivation similar to that presented in [12], the Green function
can be written in the form
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whereZ′

mn(z, z′)′s are functions of only thez coordinates of the source
and field points.

B. Full-chip thermal simulation algorithm
In the following analysis, we assume that both the heat sources and the

field regions are located on discrete horizontal planes. Since the vertical
dimensions of the devices are much smaller than that of the silicon chip,
this assumption is reasonable for most practical purposes.For a particular
pair of source and field planes, i.e., for a particularz and z′, the Green
function can be written as
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The temperature distribution on the field plane due to the heat sources on
the source plane is given by

T (x, y) = Ta +
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wherePd(x′, y′) is the power density distribution on the source plane. The
convolution integral in (16) can be considered as the governing equation
of a linear system determined by the Green functionG(x, y, x′, y′).

As stated previously, the first step of our algorithm is to obtain the
frequency domain representation of the power density map inthe form
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It is easy to show thatφij(x, y) satisfies the equation

λijφij(x, y) =
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where

λij =

8
<
:

abCij if i = j = 0
1
2 abCij if i = 0, j 6=0 or i6=0, j = 0
1
4 abCij if i6=0, j 6=0

(20)

is the response of the linear system to the frequency component φij(x, y).
After the frequency domain representation of the power density distribution
in the source plane is obtained, the temperature distribution in the field
plane can be calculated easily by

T (x, y) = Ta +

∞X

i=0

∞X

j=0

λijaijφij(x, y) (21)

As will be shown next, both the frequency decomposition in (17) and the
double-summation in (21) can be calculated efficiently using the DCT and
IDCT through the FFT.
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Fig. 2. The arrangement of theM×N grid cells on the source plane.

Now we assume that both the source plane and the field plane are
divided into M×N rectangular grid cells of equal size as shown in Fig.
2, and the power density in each grid cell on the source plane is uniform,
i.e., the power density distribution can be written in the piece-wise constant
form
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and ∆x = a
M
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. Pmn is the power density of themnth grid
cell. Substituting (22) into (17) and using the orthogonality property of
the cosine functions in the integral sense, we obtain
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where
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Note that to accurately represent the power density distribution
Pd(x

′, y′) using (17), the theoretical upper limit of the double summation
should be infinity. In practical implementations, however,the summation
must be truncated to ensure a reasonable runtime. Since (17)is essentially
the Fourier expansion ofPd(x

′, y′), a natural criterion for determining the
truncation point is that enough “energy” contained inPd(x

′, y′) is covered
by the truncated Fourier expansion. Mathematically, we have
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Substituting (22) into the left hand side of (26), we obtain
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which can be considered as a form of the Parseval’s theorem. The
truncation pointsM ′ andN ′ are then determined by
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where η is the proportion of the “energy” of the space domain signal
Pd(x

′, y′) that must be covered by the truncated Fourier expansion. In
practice, we found that settingη to 90% will usually be enough to obtain
very accurate results in temperature calculations.

Note that for0≤i<M and0≤j<N , the double summation in (24) can
be considered as a term in the 2D type-II DCT [13] of the power density
matrix P . For i≥M or j≥N , we can always find integerss1 ands2 such
that i = 2s1M±î andj = 2s2N±ĵ where0≤î<M and0≤ĵ<N . Hence,
for any i and j, we always have

aij = ±Aij
ePîĵ (30)
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with 0≤î<M and 0≤ĵ<N is the 2D type-II DCT of theP matrix and
the sign of (30) is determined by whethers1 and s2 are even or odd
numbers. Equation (31) can be calculated efficiently using the 2D FFT in
O((M ·N)×log(M ·N)) time. After the 2D DCT matrixeP is obtained,
the calculation ofaij simply involves computing the coefficientAij and
finding the corresponding termePîĵ .

From (18) and (21), the temperature distributionT (x, y) can now be
written as
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and the average temperature of themnth grid cell can be obtained by
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As stated previously, anyi≥M andj≥N can be written asi = 2s1M±î
and j = 2s2N±ĵ such that0≤î<M , 0≤ĵ<N and s1,s2 are integers.
Using the periodicity of the cosine function, we can finally castTmn into
the form
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Lîĵcos
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whereLîĵ = Kîĵ
ePîĵ andKîĵ can be calculated as follows
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Kîĵ =
64MN

π4
sin

2

 
îπ
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ĵπ

2N

!
X

i < M′

i = 2s1M±î
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Input:

• Chip geometry and physical properties of the material layers.
• Power density map - matrixP .

Output: Temperature distribution map - matrixT .
Algorithm:

1) Calculate the Green function coefficientsCij
′s;

2) Calculate the frequency responses of the systemλij
′s;

3) Calculate the type-II 2D DCT of the power density matrixeP = 2DDCT(P );
4) TSE = 1

MN

PM−1
m=0

PN−1
n=0 P 2

mn;
5) M ′ = M, N ′ = N ;

ASE =
PM′−1

i=0

PN′−1
j=0 sija2

ij ;
while ( ASE < η×TSE )

M ′ = M ′ + M, N ′ = N ′ + N ;
UpdateASE;

end while;
6) Calculate the matrixK;
7) Calculate the matrixL with Lîĵ = Kîĵ

ePîĵ ;
8) Calculate the temperature distribution map using the type-II 2D IDCT T =

Ta + 2DIDCT(L);

Fig. 3. Thermal simulation algorithm using the Green function method, the DCT,
and the frequency domain computations.

After the coefficientsK′

îĵ
s are calculated, the matrixL can be easily

obtained by point-wise multiplying the matricesK and eP . The double
summation in (35) can then be calculated efficiently using the 2D IDCT.

The complete thermal simulation algorithm using the Green function
method, the DCT, and the frequency domain computations is shown in
Fig. 3. The asymptotic time complexity of the algorithm isO((M ·N) ×
log(M ·N)) where M ·N is the total number of grid cells. This is a
significant improvement over theO((M ·N)2) complexity of the algorithm
given in [6]. Note that up to now, we have focused on the effect
of one source layer on the temperature distribution of the field layer.
When multiple source layers are present, such as in the emerging 3D
IC technology, their effects can be calculated individually and summed
up. The ambient temperatureTa should only appear once in the final
summation.

IV. EXPERIMENTAL RESULTS

A. Accuracy and Efficiency of the Algorithm
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Fig. 4. Power density and temperature distribution of an example chip (a) power
density distribution (b) temperature distribution.

Because the method presented in [6] is accurate except for the very small
truncation error of the Green function, we use the result in [6] as the bench-
mark to test the accuracy and efficiency of our algorithm. Fig. 4 shows the
power distribution of an example chip and the calculated temperature map
using the algorithm proposed in this paper. The heat sourcesare assumed
to be located on the top surface of the chip and the size of the temperature
map is 64×64. The chip has dimensions of 3.3mm×3.3mm×0.5mm. The
thermal conductivity of silicon is 148W/(m·°C) and the bottom surface
of the chip has an effective heat transfer coefficient of 8700W/(m2·°C).
We require our algorithm to achieve a similar accuracy as that in [6] by
choosingη in (29) appropriately, i.e., within 1% error compared with the
results from commercial computational fluid dynamic softwares, and the
runtimes of the two algorithms are compared. Each runtime isdivided
into two parts, i.e., the time spent on the steps that are independent of
the input power density matrix and hence can be pre-calculated outside
the optimization loop in thermal-aware designs, and the time spent on
the steps that depend on the input power density matrix and hence must
be executed within the optimization loop. For both algorithms, the Green
function coefficientsCij

′s can always be pre-calculated and stored. In
addition, the look-up tables in the algorithm in [6] can be pre-calculated
while the frequency responsesλij

′s in our algorithm can be pre-calculated.
For the pre-calculated steps, the runtime is dominated by the computation



of the coefficientsCij
′s in both algorithms, which may take about 95sec

to obtain a 2048×2048C matrix. However, since these steps only need to
be executed once for each die geometry and then used many times in later
thermal simulations, the amortized cost is usually extremely small and
we will ignore this part of the runtime in further analysis. Experimental
results show that for the steps that are not pre-calculated,the runtime of our
algorithm using MATLAB is 0.09sec while that of the algorithm in [6] is
128sec. Note that the runtime of the algorithm in [6] is linear with respect
to the number of heat sources and there are only 13 heat sources in the
example given here. For cell level full-chip simulations where the number
of heat sources is significantly larger, the advantages of our algorithm will
become even more obvious.

B. Cell Level Full-Chip Thermal Simulation
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Fig. 5. Cell level power density and temperature distribution of a 1cm×1cm chip
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In this subsection, we show an example of cell level full-chip thermal
simulations. We consider a chip with dimensions of 1cm×1cm×0.5mm
and the same physical properties as the chip used in the previous example.
There are 1024×1024 square grid cells of equal size located on the top
surface of the chip and a 1024×1024 temperature distribution map of the
cell layer is calculated. Fig. 5 shows the input power density map and
the resulting temperature map. The time it takes for MATLAB to obtain
this temperature map containing 1.05M grid cells is only 6.4sec excluding
the time for the pre-calculations while the runtime of the algorithm in [6]
becomes intractable.

V. DISCUSSIONS- STRATEGIES FORPERFORMING THETHERMAL
SIMULATIONS WITH LOCAL HIGH ACCURACY REQUIREMENTS

The situation frequently arises in real design environments where the
accuracy requirements on the thermal simulation differ from place to place
on the same chip. For example, in mixed signal designs where the analog
circuits are fabricated on the same chip as the digital circuits, the analog
blocks often have more stringent accuracy requirements on the thermal
simulation because the operations of the analog circuits are more sensitive
to temperature. For these kinds of problems, a better strategy can be
adopted to accelerate the runtime of the algorithm further.The key idea
is to use a coarse grid to divide the source and field layers such that each
grid cell can contain several logic gates or analog functional units. The
power density of each grid cell is calculated by summing up the power
dissipations of all the logic gates and analog functional units located in it
and divide the sum by the area of the grid cell. A coarse temperature map
is then obtained from the coarse power density map using the algorithm
presented in section III and is used for the digital blocks onthe chip. Note
that we must ensure that the coarse grid is fine enough for the digital
blocks but they may not achieve the accuracy requirements ofthe analog
blocks.
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Fig. 6. A mixed signal chip where the analog block has higher requirement on
the accuracy of the thermal simulation.

Fig. 6 shows a chip that is divided intoM×N coarse grid cells each
of which contains several logic gates or analog functional units, and let
the shaded area represent the analog block. AnM×N temperature map
is first obtained. The inaccuracies in the temperature calculations, besides
that due to the truncation of the eigen-decomposition of thepower density
map, will come from two sources which include

• Assuming that the power density in each grid cell is uniform.
• Only the average temperature of each grid cell is calculated, i.e., all

the logic gates and analog functional units inside the same grid cell
obtain the same calculated temperature.

Now assume that we need to calculate the temperature of the analog
functional unit located in theijth grid cell and represented by the black
rectangle more accurately. LetTij andTij,kl be the average temperature of
the ijth grid cell and the contribution of the average power density of the
klth grid cell to the average temperature of theijth grid cell in the coarse
grid temperature calculations respectively, and letTa.c. represent the more
accurate average temperature of the analog functional unit. We divide the
grid cells into two categories, i.e., those with close interactions with the
ijth grid cell (denoted byCIij) and those without close interactions with
theijth grid cell. The effects of the logic gates and analog functional units
that are contained in the grid cells belonging toCIij are re-calculated for
increased accuracy. For example, we can put theijth grid cell and all the
grid cells surrounding it into the first category and all the other grid cells
into the second category. If higher accuracy is required, then more grid
cells should be put into the first category. The temperatureTa.c. can then
be calculated using

Ta.c. = Tij −
X

kl∈CIij

Tij,kl +
X

s
T

gate and functional unit
s (40)

where T gate and functional unit
s is the contribution toTa.c. from the sth

logic gate or analog functional unit in the grid cells that have close
interactions with theijth grid cell. BothTij,kl andT gate and functional unit

s

can be calculated efficiently using the table look-up approach given in [6]
and will not be reiterated here.

VI. CONCLUSIONS

In this paper, we presented a cell level full-chip thermal simulation
algorithm that is a combination of the Green function method, the DCT,
and the frequency domain computations. Experimental results show that
our algorithm can achieve orders of magnitude speedup compared with
previous Green function based thermal simulation algorithms while still
maintain the same accuracy. The simulation of a chip containing 1.05M
grid cells only takes about 6.4sec after the pre-calculations have been
performed. In addition, the strategies that can be used for the problems
that have local high accuracy requirements on temperature calculations are
also discussed.
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