
BeGAN: Power Grid Benchmark Generation Using a
Process-portable GAN-based Methodology

Vidya A. Chhabria*, Kishor Kunal*, Masoud Zabihi*, and Sachin S. Sapatnekar
University of Minnesota, Minneapolis, MN 55455

Abstract—Evaluating CAD solutions to physical implementation prob-
lems has been extremely challenging due to the unavailability of modern
benchmarks in the public domain. This work aims to address this
challenge by proposing a process-portable machine learning (ML)-
based methodology for synthesizing synthetic power delivery network
(PDN) benchmarks that obfuscate intellectual property information.
In particular, the proposed approach leverages generative adversarial
networks (GAN) and transfer learning techniques to create realistic PDN
benchmarks from a small set of available real circuit data. BeGAN
generates thousands of PDN benchmarks with significant histogram
correlation (p-value ≤ 0.05), demonstrating its realism and an average L1
Norm of more than 7.1%, highlighting its IP obfuscation capabilities. The
original and thousands of ML-generated synthetic PDN benchmarks for
four different open-source technologies are released in the public domain
to advance research in this field.

I. INTRODUCTION

The performance of new EDA algorithms and tools must be validated
against prior art by testing their performance on a representative set of
benchmark circuits. For this reason, circuit benchmarks have served
as a linchpin in advancing EDA research for decades. Synthesis
benchmarks [1]–[5] have driven design and test for many decades;
placement and routing benchmarks [6]–[8] have prompted new ap-
proaches in physical design that have enabled new generations of
open-source and commercial tools; power delivery network (PDN)
benchmarks [9]–[11] have served as standard testcases for a large
volume of work on the analysis and optimization of IR drop and
electromigration (EM) reliability. However, benchmarks may become
obsolete [12] and must constantly be updated to address technology
scaling, new design classes, and new constraints. The process of
releasing public-domain benchmarks is laborious, requires intense
volunteer effort, and must overcome secrecy hurdles before release.

It is important to note that the paucity of benchmarks is not limited
to public-domain benchmarks for academia. In principle, industry
research and development groups have access to advanced circuits,
implemented in cutting edge technologies. However, this apparent
“problem of plenty” hides the fact that deriving meaningful bench-
marks involves the labor-intensive process of curating information
from design databases, overcoming internal barriers across groups
within companies. Benchmarks must be extracted at an appropriate
level of abstraction to exercise a specific tool within the design flow,
while successfully encapsulating IP information in both design and
technology. A design house or an EDA vendor who works with
multiple companies may be contractually limited in sharing designs
across projects. Moreover, the designers who create the design data
are typically preoccupied with their current project and pressing
deadlines, and have limited time to extract data from older designs.

As a result, in both academia and industry, EDA tool developers
must work with a limited number of benchmarks that are relevant
to a specific technology node or design style. A larger variety of
testcases would serve to stress-test new algorithms and tools to make
them more robust. The importance of generating realistic design data
is compounded by a growing interest in machine learning (ML) based
EDA, which has engendered a strong need for large benchmark suites
for ML training, validation, and test sets.

* (equal contribution)

To overcome these problems, we propose BeGAN, an ML-based
methodology for realistic, synthetic PDN benchmark generation. We
employ generative adversarial networks (GANs) [13] to extract the
characteristics of real current maps (CMs) in a training set and
generate a large set of realistic synthetic PDN benchmarks (CMs
and PDNs) that preserve these characteristics. GANs have been used
in the ML world to synthesize images, based on training sets of many
thousands of images, that are as realistic to the human eye as real
images [14]–[16]. In the context of benchmark generation, we face
a further constraint that our GAN-based approach must be trained
on limited data: unlike image GANs that are trained on numerous
widely available images, it is near-impossible to curate a database
of thousands of real circuits even in industry. We use insights from
recent work on training GANs using small datasets [17], [18].

Figure 1: Current maps of (a) IBM power grid benchmark with
uniform currents per region. (b) a RISC-V core.

We demonstrate our methodology by focusing on PDN benchmarks
for static IR/EM analysis and PDN synthesis. While PDN benchmarks
have been released in the past [10], [19], the methods used to
generate them are ad hoc and do not focus on the generalizability
of the benchmarking methodology across technologies and designs.
In addition, existing PDN benchmarks [9], [10] are dated, few in
number, and unsuitable for evaluating state-of-the-art CAD solutions
for several reasons:

1) Old technology: These benchmarks use old technology with Al
interconnect, 1.8V supply voltages, and most via resistances are
zero. Today’s interconnects now use Cu wires; supply voltages
are much lower; and via resistances are significant.

2) Unrealistic assumptions to protect IP: The benchmarks pro-
vide region wise uniform currents, but realistic analysis requires
finer granularity. Fig. 1 compares the CM of the IBM bench-
marks with that of a modern RISC-V core.

3) Limited number of benchmarks: The available PDN bench-
marks show little diversity and all use the same underlying cur-
rent distribution. A wider diversity of benchmarks is particularly
useful for trending research that applies supervised ML to PDN
problems [20]–[23].

4) Extremely high static IR drop: Typically static IR drop values
are within 5% of VDD, but these benchmarks display worst-case
IR drops of up to 44% of VDD.

The main contributions of BeGAN are as follows:
1) We propose a generalizable GAN and transfer learning-based

methodology for PDN benchmark generation.

2) We demonstrate the use of this methodology across four different
technologies (including a commercial 12nm FinFET node) and
show that the generated PDN benchmarks (CMs and power
grids) protect IP while maintaining key benchmark traits.

3) We release [24] a suite of real circuit benchmarks and thousands
of BeGAN PDN benchmarks for each (publicly-available) tech-
nology in the public domain.

Next, in Section II, we outline our overall approach to PDN
benchmark generation. The details of the GAN-based ML approach
are described in Section III, followed by a description and evaluation
of the generated benchmarks in Section IV and V.

II. PDN BENCHMARK GENERATION FRAMEWORK

A. A PDN benchmark

PDN benchmarks are useful to evaluate PDN synthesis [20] and PDN
analysis methodologies [21]. The former requires benchmarks that
provide current distributions while the latter requires current distri-
butions, power pad locations, and synthesized PDNs. The common
key aspect in the benchmarks is the current distribution, which models
the place and route information for the design through block locations
and power values per block.

In this work, we focus on the primary challenge of generating
realistic CMs, i.e., 2-D spatial distributions of the current sources. For
these CMs, PDN topologies and power pad locations for the PDN
analysis problem can be generated by using open-source available
software such as OpeNPDN [20].

Typical power grid benchmarks [11] model the PDN in the form
of a circuit netlist consisting of resistors, voltage, and current sources
as shown in Fig. 2. The resistor values are derived from the structure
of the PDN, the voltage sources from the power pads, and the current
sources from the location and current drawn by each instance.

Figure 2: (a) A multilayer PDN stack and (b) its circuit netlist model.

A public domain release of several CMs present issues on two fronts:

• Since CMs encode information of the underlying design (cell
locations) and technology libraries (current values), they may
include sensitive IP that must be obfuscated.

• As mentioned in Section I, in both academia and industry, it
is difficult to obtain a sufficiently large number of designs to
exercise conventional or ML-based EDA tools.

BeGAN overcomes the above two issues by leveraging GANs to
generate thousands of IP-obfuscated CMs in a process-portable
manner. Using a small number (typically < 10) of CMs associated
with real circuits, and our GAN-generated maps maintain the key
traits of the original circuits while protecting IP. The rest of the
benchmark, i.e., the PDN structure and bump assignments, is obtained
from OpeNPDN [20] by using a combination of valid PDN templates
and bump assignment strategies.

B. BeGAN framework

The BeGAN framework shown in Fig. 3 highlights our two-staged
process-portable PDN benchmark generation method. The bench-
marks are generated in the form of circuit netlists. The first stage
is the GAN-based CM generation (Fig. 3(left)), and the second stage
is the circuit generation stage which includes power grid synthesis
and power bump assignment using OpeNPDN (Fig. 3(right)). The
primary new technical challenge we address in this paper is in the
first stage, which uses a GAN to generate realistic CMs representing
patterns seen in real circuits.

1) GAN training for current maps: GANs are trained by a pair
of neural networks, a generator and a discriminator, which operate
adversarially, and can be understood as a two-player zero-sum game.
During adversarial training, the discriminator distinguishes between
the real data and synthetic data from the output of the generator and
provides feedback to the generator to adjust its weights. The generator
aims to produce a realistic synthetic output while the discriminator
learns to avoid being fooled by the synthetic data from the generator
by comparing the generated images to ground truth training images.
Depending on whether the generator or the discriminator “wins,” the
weights of the loser are iteratively adjusted.

Typically, GANs have a large number of parameters: for example,
the widely-used DCGAN [14] architecture has 36M trainable param-
eters. Traditional approaches for training GANs have relied on large
datasets with thousands of points [25]. In the IC world, the number of
realistically available datasets is minimal, even when we augment the
training data with image variants generated by traditional techniques
such as image shift, zoom, rotation, or flip. A conventional approach
is prone to overfitting on limited data.

GAN transfer learning-based training

Training

Satellite

image-based

GAN training

Current map-

based GAN

fine-tuning

Source dataset

Urban satellite

images

Target dataset

Real circuit

data

BeGAN PDN benchmark generation

Power grid synthesisCurrent map

generation

Trained GAN

Current maps

OpeNPDN power

grid synthesis

PDN

templates

Power

bumps

GAN-generated

circuit benchmarks

TL

Figure 3: Overview of BeGAN benchmark generation: GANs are
trained using TL to generate current maps. PDNs and power pad

locations are generated using OpeNPDN [20].

We leverage recent advances [17], [18] on image generation
from small datasets that are motivated by the high expense of data
collection or privacy issues. In our approach, summarized in Fig. 3
(green box), we first pretrain a GAN using a large set of synthetic
process-technology-independent images in a source dataset that have
similar characteristics as on-chip CMs. Next, we tune this pretrained
GAN model using transfer learning (TL) from a source dataset to a
target dataset of CMs from a small set of real circuit designs at a
specific technology node generated by the OpenROAD flow [26]. The
pretraining of the GAN with the source dataset is process-technology-
independent, i.e., the same model can be reused across technologies.
A new process node only demands fine-tuning the pretrained weights
for the new target dataset, ensuring our methodology is process-
portable with a low computational cost. During inference, the GAN
can rapidly generate thousands of CMs that maintain the key features
of the real maps.

2) Benchmark circuit generation using OpeNPDN: Once the cur-
rent pattern is generated, in the second stage, we supply interconnect
and package parameters to OpeNPDN [20], an existing PDN topology
generator to build a power grid for each CM. OpeNPDN uses the
concept of PDN templates where each template is a DRC-correct,

2

valid building block of the PDN that varies in its metal layer
utilization and hence equivalent resistance. For each CM in a specific
technology, OpeNPDN uses various combinations of existing PDN
templates from the existing set to create unique PDNs for each of
the GAN-generated CMs. The VDD/VSS IO locations are based on a
standard flip-chip package with different power assignment strategies,
which aid in the diversity of the dataset.

For the circuit netlist, the intermediate metal layers of the syn-
thesized PDN stripes are discretized into nodes at via locations, and
the uppermost and lowermost layer stripes are discretized at a small,
fixed interval to snap the current sources and voltage sources to the
closest PDN node accurately. The resistance value for each element
is based on the length, width, and per-unit resistances of the PDN
segment in that specific technology.

With the above BeGAN framework, we have released thousands
of circuit benchmarks on GitHub [24]. The benchmarks are released
for three different open-source technologies, FreePDK45 with the
Nangate Open Cell Library [26], SkyWater130nm (HD) [27], and
ASAP 7nm [28]. However, due to the process-portable nature of our
methodology, the same approach may be used with proprietary pa-
rameters as we have demonstrated with a commercial 12nm FinFET
technology.

III. GAN AND TL-BASED CURRENT MAP GENERATION

A. Synthetic image generation for GAN pretraining

A TL-based GAN training methodology helps overcome challenges
pertaining to the limited number of available benchmarks. To employ
the framework highlighted in Fig. 3 (green boxes), we must syntheti-
cally generate a set of source benchmarks that are sufficiently similar
to the target datasets [25]. However, this is not a trivial extension of
existing ML-world methods: a very domain-specific issue that must
be overcome is the generation of the generic data images that are used
in the source dataset. A vital aspect for the successful application of
TL to training the GAN is to ensure similarity between the source
and target datasets [25] as a pretrained source model is only fine-
tuned during training with limited data. Moreover, the selection of
the GAN architecture plays a vital role in ensuring that the target
dataset performs incremental tuning on the pretrained model.

To guide the choice of synthetic images, we examine some key
characteristics of chip-level CMs:
• Chips are placed and routed using Manhattan geometries and

often contain rectangular macros or blockages.
• Due to well-known limitations on chip power and dark-silicon

trends, the number of current hot spots is small.
• Modern chips are packaged using C4 technology with area IO,

due to which chip hotspots have a relatively small footprint and
may occur anywhere in the chip.

Figure 4: Urban satellite image and a derived CM.

Many of the features of chips with macros map on well to satellite
images of urban areas in the United States where many features
have straight edges, as illustrated by the example in Fig. 4. For

example, the shapes and relative sizes of building rooftops (violet
rectangles) are similar to macro blocks; the roads (red rectangles)
form Manhattan geometries, and are similar to channels between
macro blocks that may contain random logic; small, round boulevard
trees (within the green rectangle) appear similar to current hotspots;
and multiple smaller objects with different color intensities can be
mapped to local current variations spread across the design. As shown
in the figure, after appropriate color transformations, the spatial
correlations of the satellite images (when converted to intensity
distributions) are similar to CM heatmaps.

As we note from the transformation in Fig. 4, the image colors
at left must be transformed to those at right to obtain a “chip-like”
CM. In real designs, CMs are drawn on a jet scale colormap where a
red color maps to high current density and a blue color maps to low
current density. We also observe that in general, macros have lower
current density, and the constrained channels have a higher number
of hotspots. Our first transformation from the colormap of a satellite
image to a jet colormap maps the color green (representing trees) to
yellow/red, corresponding to higher current densities in hotspots.

Our next transformation matches the color density to that of real
chip CMs, taken from the images of the small set of available circuits.
Each RGB color pixel can have a value between 0–255. For a map to
be realistic the average of these values across all pixels should not be
too high, otherwise it will represent an unrealistic design with very
large hotpots. We observed that the average value in CM images
lies between 10% to 40% of the maximum of 255. In contrast, a
transformed satellite image may have all pixels in a high range, which
does not represent a valid chip CM. To avoid this, we scale the
average color value of the transformed satellite images to a mean
value, chosen randomly in the realistic range (10–40% of 255). As a
result, the overall image, which has a preponderance of gray/brown
colors, is mapped to a largely blue colormap with some hotspots.

We will show in Section IV that this transformation is successful
in creating a viable source dataset, whose quality is superior to other
families of images that were used as candidates for the source dataset.

Figure 5: Architecture of SNGAN for image generation.

B. GAN architecture

Since their introduction six years ago [13], there have been rapid
advances in the area of GANs. Some notable works include DC-
GAN [14], ProGAN [29], StyleGAN [15], BigGAN [30], and
SNGAN [31]. We choose SNGAN as our source model because it has
a well-written code base, making it easy to adapt to our application,
and because its compute power requirements are modest as compared
to alternatives such as BigGAN.

The SNGAN model has 90M trainable parameters and operates
on images of size 128×128 pixels. The pitch of the M1 power rail
and M4 power stripe above it is 2.4µm and 56µm respectively in a

3

45nm technology. At this granularity, a 128×128 current resolution
is sufficient for a chip of 1mm×1mm where a pixel represents the
current within a 7.8µm×7.8µm area, which is much lower than
the M4 pitch. A notable feature of SNGAN is that it addresses
instability issues in GAN training, by using spectral normalization of
model weights to stabilize the training of the discriminator. Spectral
normalization constrains the Lipschitz constant for regularization by
controlling the spectral norm of each layer, thus providing better
results and lower computational cost.

The SNGAN generator model is shown in Fig. 5, where the input is
a latent vector z ∈ R128 ∼ N (0, I), that is randomly sampled from
a truncated normal distribution, with the truncation threshold set to
0.4. Truncating the latent vector z improves the quality of generated
samples at the cost of reduction in sample variety [30]. The first
layer is a dense layer that maps the latent vector z to 4× 4× 1024
dimensional intermediate features. Next, it uses five ResBlock layers
that help in image denoising by directly transferring the coarse images
across deconvolution networks. Each of these ResBlock layers, shown
at left in the picture, is composed of two 3 × 3 convolution layers
with nearest-neighbor upsampling, conditional batch normalization
and ReLU layers, as shown by the inset at left in the figure. Finally,
the generator has a batch normalization layer, and a tanh activation
function that generates an output image of size 128× 128.

The discriminator, shown at right in the figure, uses an input
RGB image. Five stages of downsampling are performed on this
image using ResBlock, followed by ReLU activation and global sum
pooling, which, respectively, help to address the vanishing gradient
and to stabilize the training. The final dense layer classifies the input
image as a real or synthetic CM. For our applications, we train
SNGAN on 4,167 urban satellite images so that it learns a set of
weights for multiple filters that extract useful features in the training
data.

C. Transfer learning model

During the transfer learning step, the training data is a small set of
current density maps derived from real chips. We use the pretrained
generator model of the SNGAN topology in Fig. 6. Instead of training
new filters from scratch, a combination of the pretrained filters can
be fine-tuned for the target domain, represented by our small dataset.
In place of a discriminator, we use a loss function L to measure the
distance of generated image to the target image.

Figure 6: Transfer learning model using the pretrained SNGAN.

Our fine-tuning step uses a scale-and-shift transformation to each
hidden activation of the generator as the transfer method [17]. Thus,
the GAN does not require a full update of the entire model, but only
learns scale-and-shift parameters to control the activation of filters,
reducing the number of trainable parameters. For each channel of the
hidden layer distribution, we update the filters as shown in Fig. 7:

Wnew
l = γl ·W old

l + βl (1)

Here, W old
l represents the convolution filter in the lth layer of

the generator, Wnew
l represents the set of updated weights after

adaptation, γl represents the scale parameter for adaptation, and βl
represents the shift parameter. The initial values of these parameters
are γl = 1 and βl = 0 ∀ l and are updated by back-propagation dur-
ing training. The scale-and-shift parameter is applied independently
to each of the convolution layers of the five ResBlock layers (Fig. 5)
to adapt the pretrained convolution filters in the generative model on
the target dataset of CMs from real designs. We also update the γ
and β parameters for class conditional batch normalization and the
fully connected layers in the generator.

Figure 7: Scale-and-shift filters used for transfer learning.

The generator is trained using supervised learning as in Generative
Latent Optimization (GLO) [32], by simultaneously estimating the
latent vector z for all training data such that the generated data is
close to the image in the training dataset. GLO leverages the inductive
bias of deep ConvNets and learns to map learnable latent vectors to
samples in a target dataset by minimizing reconstruction loss.

The loss function, L, used during training measures the distance
of the generated image to the target image [17]:

L = ||x−Gnew(z + ε)||1 +
∑

l ||C
l(x)− Cl(Gnew(z + ε)))||1

+ L2 regularization(z, γ, β) (2)

The first component is the L1 loss, measured as the L1 Norm of pixel-
wise distance between the generated images Gnew(z+ε) and the cor-
responding target input images x, where, ε is a small random vector
to avoid local minima. The second component is the perceptual loss
between generated images and target input images, and is included
based on recent works that have shown that high-quality images can
be generated using perceptual loss [33]. This loss component is the
sum, over all layers l, of the L1 Norm of differences between high-
level image features, Cl(x), that are extracted by passing both the
generated and target images through pretrained VGG16 convolutional
neural networks. The final component performs L2 regularization of
training parameters Z, γ, and β to avoid overfitting.

IV. EVALUATION OF BEGAN-GENERATED CURRENT MAPS

For our experiments, we collect two datasets:
• A large dataset (24,000 datapoints) of urban satellite images

from Google Maps, filtered down manually to 4,167 images
with characteristics such as Manhattan edges, and a reasonable
number, size, and distribution of trees (hotspots in the heat map).

• A small dataset of 10 circuit CMs using designs from [26]
The circuit designs correspond to open-source RTL designs avail-

able at [26], where the number of standard cells ranges from 10,000
to 300,000 instances, and the number of macros ranges from 0 to
30. We further subdivide the circuit-based CMs into two categories
(Fig. 8) based on macro placement and current distribution: “Set 1”
contains designs with no macros and with relatively uniform current
distribution across the die, while “Set 2” contains designs with a
large number of macros that result in nonuniform CMs. The layouts
for “Set 1” are synthesized across four different technology nodes:
ASAP 7nm, GF 12nm, FreePDK45 with Nangate Open Cell Library,
and SkyWater 130nm(HD) using [26] with four circuit CMs in each
set. These layouts are used to generate CMs: as an example, Fig. 9
illustrates CMs for the JPEG design across four technology nodes,
showing significant differences across technology nodes. BeGAN is

4

trained on the features of each technology node separately. “Set 2”
is synthesized only for the 45nm node due to the limited availability
of memory compilers required to generate the macros present in the
designs. For this node, “Set 2” contains six circuit CMs.

Figure 8: Example CMs (A/µm2) in “Set 1” (left) and “Set 2”(right)
on a 45nm technology node.

Figure 9: CMs of JPEG design from “Set 1” across four pdks ASAP
7nm (top-left), GF 12nm (top-right), FreePDK45 with Nangate Open

Cell library (bottom-left), SkyWater 130nm(HD) (bottom-right)

We use the filtered urban satellite images for training the GAN
once and then use TL to retrain the GANs on multiple sets of design
CMs. During TL the scale-and-shift parameters are tuned based on
the circuit designs. Each circuit CM in the set is of a different size
representing the die area of the chip. However, for training the GAN
we must use CMs of a fixed size to maintain consistency with the
urban satellite images for the successful application of TL. Therefore,
we convert the circuit CM representing the die area into a CM matrix
with a fixed size of 128 × 128, where each value of the matrix is
calculated by dividing the total current value within each region by
the area of the region. This matrix is then converted to a 3-channel jet
colormap image with pixel values between 0 to 255. During inference,
the GAN generates a 3-channel RGB image of size 128× 128 with
intensity values from 0 to 255, representing a CM image.

We consider two problems to understand the strengths of this
model: a quality problem to ensure that it can generate a large variety
of high-quality CMs, and a reconstruction problem to verify that the
model does not leak out training data.

A. Quality of GAN-generated CM Images
To quantify the quality of generated CM images, we propose to use
three metrics to select and/or evaluate CM images based on their

features and their correlation with the original CMs.
The chi-square (χ2) test compares the histograms of the BeGAN-
generated and real CMs. Histograms are generated by dividing the
0–255 pixel values for each color channel into eight bins and counting
the number of pixels in a particular interval of the bins, which are
then min-max normalized. We use the chi-square metric to select CM
images that show a high correlation between generated and original
CM histograms. For the ith bin, if Oi and Ei are, respectively, the
frequency of the BeGAN-generated and the circuit CMs,

χ2 =
∑k

i=1(Oi − Ei)
2/Ei (3)

The χ2 test determines whether there is an association between two
histograms. A lower χ2 value is better and a higher value indicates
that two histograms are independent. For an identical histogram of
current densities (note that identical histograms do not mean that the
CM images are identical, because the histogram condenses informa-
tion from the CM images), the χ2 metric is zero, and it increases
with the disparity between histograms. For an eight-bin histogram
comparison, a χ2 value more than 20 will result in a significance
value below 0.05, meaning that the histograms are independent. We
select the images with a statistically significant correlation between
min-max normalized histograms (p-value ≤ 0.05).

Histogram correlation ensures that the total amount of area with
high current density remains correlated but these areas may have
different spatial distributions: two CM images having the same
histograms can look different based on the position of hotspots. We
ensure structural and spatial correlation between the hotspots using
FID and EMD metrics from the machine learning world.
The Fréchet Inception Distance (FID) score is a standard ML-
world metric that measures the quality of GAN-generated images.
The FID score uses the Inception V3 network to capture computer-
vision-specific features of a given image, and is calculated using the
mean and covariance of these features. According to [34], there is a
linear correlation between the FID score and the quality of images,
where a lower FID corresponds to better quality images.

FID = ||µ1–µ2||2 + Tr(C1 + C2–2 ∗
√

(C1 ∗ C2)) (4)

Here, µ1 and µ2 are the feature-wise means of the real and generated
image features, C1 and C2 are the covariance matrices of the real
and generated image features, and Tr(.) finds the trace of a matrix.
The Sliced Wasserstein Distance (SWD) factorizes 2-D distribu-
tions of the CM images into 1-D distributions and then calculates
the Wasserstein distance, also commonly known as earth mover’s
distance (EMD), between these 1-D distributions. EMD is intuitively
explainable as the minimum cost of turning one 1-D topology (“pile
of dirt”), representing a hotspot, into another, where the cost is the
amount of dirt moved times the distance by which it is moved.

EMD(P,Q) =

(
m∑
i=1

n∑
j=1

fi,jdi,j

)/(
m∑
i=1

n∑
j=1

fi,j

)
(5)

Here, we assume the input CM distribution P has n clusters (groups
of hotspot pixels projected on the 1-D plane) and the generated CM Q
has m clusters. We denote the distance between the mean of clusters
i and j by di,j , and the movement from cluster i of P to cluster j of
q that minimizes the overall cost by fi,j . A low EMD corresponds
to a high correlation in the spatial variance.
Using the three metrics: We use the χ2 test as a filter to discard
insufficiently correlated CM images, and then use FID and SWD to
check the similarity metrics of the remaining CM images. Table I
shows the FID and SWD metrics for BeGAN, starting with either
urban satellite images or ImageNet for training the GAN. We use
the L1 Norm to show sufficient difference of the generated CM
images from the original CM images, as discussed in the next section.
The FID score is calculated between the selected set of CM images

5

Figure 10: Comparison of generated CM images from satellite images
use the satellite images (first and second) and ImageNet trained model

(third and fourth) for a 45nm technology.

Table I: Comparative scores for different models (lower values imply
better correlation [34], [29]).

Generated
maps

ImageNet CMs Satellite CMs
FID SWD L1 FID SWD L1

Set1 (7nm) 238.26 781.43 0.256 151.20 687.58 0.193
Set1 (12nm) 232.45 800.46 0.243 150.25 549.44 0.149
Set1 (45nm) 322.52 200.54 0.221 148.73 141.74 0.071
Set1 (130nm) 207.41 628.43 0.043 192.18 517.56 0.15
Set2 (45nm) 248.31 190.34 0.154 153.90 160.34 0.089

(selected from generated CM images after χ2 test) and the set of input
CM images associated with real CMs. The SWD and L1 scores are
calculated by comparing the generated CM images to the highest
correlated input CM image, and the mean value across all selected
CM images is reported in the table.

Our first set of results trains the scale-and-shift parameters of the
generator, pretrained on two datasets: ImageNet and the transformed
urban satellite image dataset described in Section III. In Table I
we can see that the GAN that is pretrained on satellite images
consistently has a lower FID and SWD score, thus producing better
quality CM images, than a GAN pretrained on ImageNet. This
demonstrates that the filters learned by the GAN model on these
Manhattan features in satellite images are essential to BeGAN, and
the use of an arbitrary dataset yields results with fewer details. The
results on four technology nodes – 7nm, 12nm, 45nm, and 130nm for
“Set 1” – demonstrate that our methodology can easily be extended to
different technology nodes. “Set 2” consists of designs with memory
blocks, and shows the applicability of our method to memory-based
designs.

Fig. 10 shows a comparative example of generated CM images with
the closest correlation to the original CM images in Fig. 8. The first
two CM images are generated using satellite images while the third
and fourth CM images are generated using the ImageNet pretrained
model. We observe that BeGAN-generated CM images have better
characteristic features. This difference gets highlighted specifically
between the second and fourth CMs of “Set 2” where the designs
are macro dominated.

B. Obfuscation of input data
Next, we check for obfuscation provided by GAN-generated CM
images using Manhattan distance metric. commonly used in Trojan
detection [35] to validate substantial difference between the BeGAN-
generated CM images and original CM images:

An important criterion for benchmark generation is that the circuit
training dataset should be irreproducible from the generated images,
i.e., the BeGAN-generated images should not allow the training data
to be reconstructed exactly. Though inverting a generator is difficult,
noting that a single output CM image may map to multiple latent
vectors z, there are some approaches to recover latent vectors [36]
used during generation. These methods work by training z to mini-
mize ‖CM(z)−CM(z′)‖ but for the generator to be fully invertible,
errors should be near-zero for all target images. Our choice of GLO
as the loss function forces the generator to reconstruct the entire
dataset, which adds an averaging loss and avoids overfitting to any
particular training data [32].

We test for overfitting by observing the distribution of L1 Norm
between generated CM image and input CM images. Fig. 11 shows
the L1 Norm between the generated CM images of Set 1 in the ASAP
7nm technology node. We can see that we have more than 10% loss
with a mean (µ) of 0.193 and standard deviation (σ) of 0.04, which
shows considerable obfuscation of data. Based on this, we can see that
the model produces diverse set of CM images and does not produce
images identical to any input image. A similar distribution has been
observed for other sets of generated data, and the mean values are
listed in Table I.

Figure 11: Distribution of L1 Norm between generated CM image and
input CM image on ASAP 7nm data (µ: 0.19, σ: 0.05).

C. Significant distribution of CM Images
The input latent space for BeGAN is a 128-dimensional hyperspace
with each point drawn from a Gaussian distribution and for each
of these points new CM images are generated. Based on this large
number of possible input distributions, BeGAN can generate a large
number of CMs. If we consider a finite level of precision ε, the
number of generated images is finite, even if it is large. For a random
distribution, the level of precision is the maximum value the true
mean can deviate from the sample mean estimation (pi). Since we
do not know the distribution of the generated CM images, we assume
that the sample mean (pi−1) represents the true mean once we move
beyond a minimum threshold of data-points (we set this threshold to
500). Our stopping criterion is:

∆pi = pi − pi−1 ≤ ε, i ≥ 500 (6)

We choose an ε value of 0.01 (average change pixel values by
four, across 128 × 128 × 3 images) to generate thousands of
CMs with acceptable coverage. This ensures sufficient variety in the
benchmarks: Fig 12 shows some of the randomly generated CM
images, visually showing that the BeGAN-generated CM images
cover a diverse set of characteristics.

Figure 12: Randomly sampled CM images from BeGAN-generated
CMs of “Set 1” GF 12nm technology.

The pretraining of the GAN and TL tuning is performed on a
NVIDIA Tesla V100 GPU. The pretraining of the SNGAN model
with the satellite images has been done for 450,000 iterations, and
takes nine days. During transfer learning, all models are trained for
10,000 training iterations with 25 input CM images generated by
flipping and rotating the original CM images. We use the Adam
optimizer with initial learning rate of 0.1. During transfer learning,
we update the scale and shift parameters for each batch normalization
filter and the fully connected layer in the generator, accounting for a
total of 16,506 parameters. The transfer learning takes two hours for
training and can generate a new CM image in less than a millisecond.

6

V. EVALUATION OF BEGAN-GENERATED PDN BENCHMARKS

The GAN-generated CM images are 3-channel 128×128-sized RGB
images with intensity values from 0 to 255. For each GAN-generated
CM, we use scaling and coarsening techniques to move to a “chip-
like” current map where each pixel represents the current in a
fixed size region of the generated benchmark. The scaling method
translates the intensity value distributions of the GAN-generated CMs
to chip current magnitudes, while the coarsening technique deals with
mapping the 128×128-sized CM to a die area.

The scaling technique first converts the 3-channel input to a single
channel distribution by converting the RGB CM to gray scale. Next,
the CM is multiplied by a chosen current value (constrained by a
minimum and maximum value specified in the technology library file)
to generate current distribution of the right order for that technology.
The freedom of choice in this scaling value allows this parameter
to act as a tunable knob to generate diverse current intensity values
from the GAN-generated image. The coarsening technique assumes
an input die size and averages the current across all the pixels in that
region. For example, if the die size is 512 × 512, each pixel in the
128 × 128 current map is averaged across a 4 × 4 area to generate
CMs for a specific die-size. Note that for sufficient diversity in die
sizes for each generated benchmark, we choose a random die size
that lies in the range of the real CM sizes in that technology.

For each CM, in both the real circuit set and the scaled and GAN-
generated set, we generate two varieties of the PDN: (i) using OpeN-
PDN [20], which generates an irregular power grid using predefined
PDN templates, and (ii) using the OpenROAD flow [26], which builds
a uniform predefined power grid. We use the thousands of GAN-
generated CMs and perform PDN synthesis to generate thousands of
circuits for across all the four technologies including commercial GF
12nm PDK termed as BeGAN benchmarks. We release both the real
and BeGAN benchmarks publicly [24] for the open-source available
ASAP 7nm, SkyWater 130nm, and FreePDK45 technologies. Each
released benchmark is in SPICE format and consists of a current
map, its corresponding power grid, and power bump locations for a
standard flip-chip package.

A. Realism in BeGAN benchmarks
In addition to the machine learning world metrics discussed in

Section IV-A, we also evaluate the BeGAN benchmarks from a VLSI
world standpoint using worst-case IR drop, average IR drop, and
hotspot intensities across the full-chip as metrics.

Table II summarizes the average and worst-case IR drop of a few
representative samples of BeGAN benchmarks and the real bench-
marks for GF12 nm and Nangate 45nm technologies.1 The worst-case
and average IR drop of the representative BeGAN benchmarks are
within a small range (≈ 1.0mV) of real circuit benchmarks. The
numbers also are in the range of industry-standard static IR drop.
(0.5%–5% of VDD). We also compare the number of %Hotspot
regions, where a hotspot region is defined as a 5µm×5µm area on the
chip where the average IR drop is greater than 4mV. On each line of
the table, we show a representative BeGAN benchmark with similar
IR drop and %Hotspot characteristics. The very small differences
in the table indicate that the BeGAN-generated current maps have
hotspots of similar intensities when compared to the original circuit
and maintain the key features of the original data.

B. Diversity in BeGAN PDN benchmarks
Besides maintaining realism, as described in Section IV-A and V-A,

in this section we highlight (i) the diversity of the PDN in BeGAN
benchmarks by evaluating instance-level and PDN-node level IR
drops, and (ii) the flexibility of our methodology in producing a
diverse set of testcases that can challenge tool developers.

1IR drop statistics for the other technologies across thousands of designs
generated by BeGAN are available on GitHub [24].

Table II: IR drop statistics for the original circuits with OpenROAD
power grids and four representative BeGAN benchmarks generated in

GF 12nm and eight representative benchmarks in FreePDK45.

Tech. Original circuits Randomly sampled BeGAN benchmarks

Design
Worst

IR drop
(mV)

Avg.
IR drop

(mV)

% Hotspot
regions

BeGAN
benchmark

Worst
IR drop

(mV)

Avg.
IR drop

(mV)

% Hotspot
regions

12nm

AES 1.88 1.16 0 BeGAN1 3.51 2.11 0
Dynamic node 0.94 0.68 0 BeGAN2 2.00 1.60 0

Ibex 4.84 3.61 20.41 BeGAN3 4.73 2.86 18.00
JPEG 5.53 3.34 23.98 BeGAN4 5.55 2.63 18.48

45nm

AES 5.91 2.56 8.61 BeGAN5 5.62 2.74 7.32
Swerv 2.85 1.64 0 BeGAN6 2.17 1.33 0
Ibex 10.73 3.50 23.05 BeGAN7 9.57 4.71 29.12

JPEG 7.90 5.18 88.45 BeGAN8 8.48 4.35 79.96
BP BE 4.91 2.00 2.53 BeGAN9 4.51 2.23 1.8
BP FE 5.14 1.81 3.46 BeGAN10 5.13 2.36 4.8

BP 5.22 2.26 2.12 BeGAN11 5.36 2.57 1.36
BP multi 4.94 2.22 0.68 BeGAN12 4.52 2.28 0.69

Figure 13: Instance-level IR drop heatmaps for (a) AES, (b)
Dynamic node, (c) Ibex, and (d) JPEG in GF 12nm technology.

A challenge faced by tool developers in academia and industry is
the unavailability of an adequately diverse test suite to evaluate their
solutions. In particular, this diversity has more value for supervised
ML-based solutions to PDN related problems [21], [22], [37] where
the model is only as good as the data it is trained on.

While global full-chip metrics such as worst-case IR drop and
average IR drop across the BeGAN benchmarks are comparable to
the original benchmarks (Section V-A), the detailed instance-level
IR drop contours across the entire BeGAN benchmark set and the
original benchmarks show significant differences such as changes in
IR drop hotspot locations. Fig. 13 and Fig. 14 show the instance-
level IR drop distributions of the original benchmarks and BeGAN
benchmarks in 12nm technology, respectively. The differences in the
contours are attributed to a unique combination of the GAN-generated
CM, a synthesized PDN (regular or irregular), and a C4 bump
assignment pattern in each BeGAN benchmark. We further highlight
the differences in the PDN topologies across the BeGAN benchmarks
by plotting per-PDN node histograms of IR drop as shown in Fig. 15.
The histograms show a different distribution across the benchmarks
due to a different PDN synthesized across the GAN-generated CM
with different number of PDN nodes. The histograms are compared
against the histograms of the original benchmarks. The figures show
that the average PDN node IR drop is similar (less than 1mV
difference) across benchmarks, i.e., inheriting the traits of the original
benchmarks and the differences lie in the histogram distributions
across the range of static IR drops, demonstrating diversity in the
PDN topologies while maintaining realism.

BeGAN, as an automatic benchmark generation framework, has
two knobs to increase IR drop distribution diversity of the bench-
marks: (i) changing the current scaling knob based on the technology-
specific minimum and maximum current constraints and (ii) changing
the PDN templates which amounts to a change in PDN density.

Fig. 16 shows the difference in the per PDN node IR drop
histograms of the BeGAN4 benchmark after changing (a) the current
by 2× and then re-synthesizing the PDN using OpeNPDN and (b)
shuffling the OpeNPDN templates. These two knobs can aid to variety
in the generated benchmarks. The first knob which scales current
forces OpeNPDN to select denser templates, the second knob allows
a user-specified set of templates. In this case we choose sparser
templates decreasing the number of PDN nodes and increasing the

7

Figure 14: Instance-level IR drop heatmaps for (a) BeGAN1, (b)
BeGAN2, (c) BeGAN3, and (d) BeGAN4 in GF 12nm technology.

Figure 15: PDN node IR drop histograms for (a) Ibex, (b) BeGAN3,
(c) JPEG, and (d) BeGAN4 benchmarks with similar mean and

worst-case IR drop but different per-PDN node IR drop distributions.

worst-case IR drop from 5.5mV (Fig. 15(d)) to 8.8mV (Fig. 16).

VI. CONCLUSION

We propose BeGAN, a benchmark generation methodology, and
demonstrate it for static PDN-related applications. The methodology
overcomes the challenges involved with the unavailability of data,
and IP obfuscation by using GANs and transfer learning to generate
realistic current maps of any specified chip size. The automatically-
generated benchmarks can aid data augmentation techniques for ML-
based CAD solutions in a world with limited data, or can be used as
a standalone test set to evaluate solutions related to PDN synthesis
and analysis problems. The benchmarks are released on GitHub [24].
Acknowledgments: This work was supported in part by the DARPA
IDEA program, the Louise Dosdall Fellowship, and by a University
of Minnesota Doctoral Dissertation Fellowship. We would like to
thank the Cadence Voltus team in Austin TX, especially Albert Zeng
and Chao Jiao, for pointing out and clarifying the problem.

Figure 16: PDN node IR drop histograms for BeGAN with (a) scaled
current and resynthesized PDN, and (b) changed OpeNPDN templates.

REFERENCES

[1] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
benchmark circuits and a targeted translator in FORTRAN,” in ISCAS,
1985. (Distributed by magnetic tape to attendees of the special session,
“Recent algorithms for gate-level ATPG for fault simulation and their
performance assessment.”).

[2] F. Brglez, et al., “Combinational profiles of sequential benchmark
circuits,” in Proc. ISCAS, pp. 1929–1934, 1989.

[3] F. Corno, et al., “RT-level ITC’99 benchmarks and first ATPG results,”
IEEE Des. Test, vol. 17, pp. 44–53, Jul/Sep 2000.

[4] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0,” tech. rep., MCNC Technical Report, 1991.

[5] C. Albrecht, “IWLS 2005 benchmarks,” 2005. iwls.org/iwls2005/
benchmark presentation.pdf.

[6] G.-J. Nam, et al., “The ISPD2005 placement contest and benchmark
suite,” in Proc. ISPD, pp. 216–220, 2005.

[7] G.-J. Nam, et al., “The ISPD global routing benchmark suite,” in Proc.
ISPD, pp. 156–159, 2008.

[8] W.-H. Liu, et al., “ISPD 2019 initial detailed routing contest and
benchmark with advanced routing rules,” in Proc. ISPD, 2019.

[9] S. Nassif, “Power grid analysis benchmarks,” in Proc. ASP-DAC,
pp. 376–381, 2008.

[10] “IBM power grid benchmarks.” web.ece.ucsb.edu/∼lip/PGBenchmarks/
ibmpgbench.html.

[11] Z. Li, et al., “2012 TAU power grid simulation contest: Benchmark suite
and results,” in Proc. ICCAD, pp. 478–481, 2012.

[12] R. Aitken, “Time to retire our benchmarks,” IEEE Des. Test, p. 88, 2010.
[13] I. J. Goodfellow, et al., “Generative adversarial networks,” in Proc.

NeurIPS, pp. 2672–2680, 2014.
[14] A. Radford, et al., “Unsupervised representation learning with deep

convolutional generative adversarial networks,” arxiv:1511.06434, 2016.
[15] T. Karras, et al., “A style-based generator architecture for generative

adversarial networks,” in Proc. CVPR, pp. 4396–4405, 2019.
[16] T. Karras, et al., “Analyzing and improving the image quality of

stylegan,” in Proc. CVPR, pp. 8107–8116, 2020.
[17] A. Noguchi and T. Harada, “Image generation from small datasets via

batch statistics adaptation,” in Proc. ICCV, pp. 2750–2758, 2019.
[18] M. Zhao, et al., “On leveraging pretrained GANs for limited-data

generation,” in Proc. ICML, pp. 11340–11351, 2020.
[19] P.-W. Luo, et al., “Benchmarking for research in power delivery networks

of three-dimensional integrated circuits,” in Proc. ISPD, pp. 17–24, 2013.
[20] V. A. Chhabria, et al., “Template-based PDN synthesis in floorplan and

placement using classifier and CNN techniques,” in Proc. ASP-DAC,
pp. 44–49, 2020.

[21] V. A. Chhabria, et al., “Thermal and IR drop analysis using convolutional
encoder-decoder networks,” in Proc. ASP-DAC, pp. 690–696, 2021.

[22] Z. Xie, et al., “PowerNet: Transferable dynamic IR drop estimation via
maximum convolutional neural network,” in Proc. ASP-DAC, pp. 13–18,
2020.

[23] Y.-C. Fang, et al., “Machine-learning-based dynamic IR drop prediction
for ECO,” in Proc. ICCAD, pp. 1–7, 2018.

[24] “BeGAN-benchmarks.” github.com/UMN-EDA/BeGAN-benchmarks.
[25] Y. Wang, et al., “Transferring GANs: generating images from limited

data,” in Proc. ECCV, pp. 220–236, 2018.
[26] “The OpenROAD project.” github.com/The-OpenROAD-Project.
[27] “SkyWater 130nm PDK.” github.com/google/skywater-pdk.
[28] L. T. Clark, et al., “ASAP7: A 7-nm FinFET predictive process design

kit,” Microelectronics Journal, vol. 53, pp. 105–115, July 2016.
[29] T. Karras, et al., “Progressive growing of GANs for improved quality,

stability, and variation,” in Proc. ICLR, 2018.
[30] A. Brock, et al., “Large scale GAN training for high fidelity natural

image synthesis,” in Proc. ICLR, 2019.
[31] T. Miyato, et al., “Spectral normalization for generative adversarial

networks,” in Proc. ICLR, 2018.
[32] P. Bojanowski, et al., “Optimizing the latent space of generative net-

works,” in Proc. ICML, pp. 600–609, 2018.
[33] J. Johnson, et al., “Perceptual losses for real-time style transfer and

super-resolution,” in Proc. ECCV, pp. 694–711, 2016.
[34] M. Heusel, et al., “GANs trained by a two time-scale update rule

converge to a local Nash equilibrium,” in Proc. NeurIPS, pp. 6629–
6640, 2017.

[35] K. Hu, et al., “High-sensitivity hardware trojan detection using multi-
modal characterization,” in Proc. DATE, pp. 1271–1276, 2013.

[36] Z. C. Lipton and S. Tripathi, “Precise recovery of latent vectors from
generative adversarial networks,” in ICLR Workshop, 2017.

[37] V. A. Chhabria, et al., “MAVIREC: ML-aided vectored IR-drop estima-
tion and classification,” in Proc. DATE, pp. 1825–1826, 2021.

8

