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ABSTRACT
As integrated circuit technologies move below 10 nm, Electromi-
gration (EM) has become an issue of great concern for the longterm
reliability due to the stricter performance, thermal and power re-
quirements. The problem of EM becomes even more pronounced
in power grids due to the large unidirectional currents flowing in
these structures. The attention for EM analysis during the past
years has been drawn to accurate physics-based models describ-
ing the interplay between the electron wind force and the back
stress force, in a single Partial Differential Equation (PDE) involv-
ing wire stress. In this paper, we present a fast semi-analytical
approach for the solution of the stress PDE at discrete spatial points
in multi-segment lines of power grids, which allows the analyt-
ical calculation of EM stress independently at any time in these
lines. Our method exploits the specific form of the discrete stress
coefficient matrix whose eigenvalues and eigenvectors are known
beforehand. Thus, a closed-form equation can be constructed with
almost linear time complexity without the need of time discretiza-
tion. This closed-form equation can be subsequently used at any
given time in transient stress analysis. Our experimental results,
using the industrial IBM power grid benchmarks, demonstrate that
our method has excellent accuracy compared to the industrial tool
COMSOL while being orders of magnitude times faster.
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1 INTRODUCTION
Electromigration (EM) has become a great concern for the semi-
conductor industry in recent years. EM failures are an inevitable
consequence of the rising current demands and the technology
downscaling, which can lead to several open- or short-circuits in
the metal interconnects on the chip [1, 2]. The above has made EM
analysis an integral part of modern VLSI design methodologies [3].

Traditional EM analysis approach is composed by a two-stage
process, the application of the Blech criterion [4] and then the
Black’s equation [5]. The first formula serves in distinguishing the
"immortal" lines from the ones that will potentially encounter an
EM failure. For the rest of the lines, that are not considered EM
safe, Black’s equation predicts their mean time to failure. However,
these methods are heuristic in nature and, having been developed
for older technologies, are shown to be inaccurate for proper EM
analysis in modern chips [6].

Contrary to the above empirical methods, Korhonen et al. [7]
have developed an exact physics-based model which is expressed
as a diffusion-type partial differential equation (PDE) for each seg-
ment of a metal interconnect. The resulting model describes the
interaction between the wind force of the electron momentum and
the compressive stress force created by the accumulation of metal
atoms, in a single PDE involving stress and expressing its temporal
evolution along the wire. Several EM stress analysis methodologies
based on the solution of Korhonen’s equation, have focused on
calculating the steady-state stress [8] when equilibrium is reached
along the wire. Then a wire segment is deemed as "immortal" if
its steady-state stress is below a critical stress value. However, the
time to reach steady-state can surpass, by a large margin, the ex-
pected lifetime of the chip. In this context, transient stress analysis
is useful, which calculates the temporal stress behavior during the
chip lifetime. A wire segment is then considered as susceptible to
EM failure only if its stress exceeds the critical value during the
lifetime of the chip.
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Previous approaches for computing transient stress response
can be divided into two main classes. Firstly, numerical methods
such as [9–11] are very popular due to their simplicity, and they
are already integrated into commercial tools such as COMSOL. The
main attribute of these methods is that they perform discretization
of space and time, and are in principle applicable to a wide spectrum
of geometries due to the spatial discretization. However, these
methods come with a large performance cost due to the temporal
discretization, especially for simulating typical chip lifetimes in the
order of decades, since transient analysis needs to be performed
point-after-point in time.

On the other hand, analytical methods for solving Korhonen’s
equation keep both space and time continuous, and are much better
suited to large-scale systems and long chip lifetimes when they are
applicable. Previous analytical approaches [12, 13] calculate infinite
series solutions for very small geometries, consisting of up to four
wire segments. A considerably more general analytical approach is
proposed in [14], which introduces the novel concept of stress re-
flections and can be applied to general multi-segment lines with an
arbitrary number of segments. Nevertheless, all analytical methods
involve the approximation of infinite series with a finite number of
terms, whose number is dependent on both line length and time
and cannot be known beforehand. Another analytical approach was
proposed in [15], but it also involves finite-term approximation of
infinite series and also resorts to expensive numerical techniques
for the calculation of eigenvalues.

In this paper, we present a novel semi-analytical approach to the
solution of the KorhonenâĂŹs equation for multi-segment lines
(such as typically found in power grids), which discretizes only
space while keeping the time continuous. The main contributions
of this paper are summarized hereafter. First, our method can calcu-
late stress for any given input time, providing a simple closed-form
matrix equation that can be reused for any number of input times.
We note that the major benefit of keeping time continuous is al-
lowing the calculation of stress at any time directly (especially for
long chip lifetimes, which can render numerical time integration
completely prohibitive), while spatial discretization is much less
important because even in fully analytical methods we still com-
pute stress at specific discrete spatial points. Second, in contrast
to fully analytical solutions which involve approximations such
as truncation of infinite series to undefined number of terms, our
method does not make any approximation in the calculation of
stress for the given time. Third, the calculation of stress for the
input time is performed simultaneously at all spatial discrete points
with almost linear complexity, as it involves the application of the
Fast Fouier Transform (FFT) in what is essentially a variant of a
Fast Poisson Solver [16]. Our experiments on industrial large-scale
benchmarks prove the scalability of our method, while its efficiency
is validated against COMSOL by achieving great speedups.

The rest of this paper is organized as follows. Section 2 provides
a basic background on EM analysis due to void nucleation and void
growth. Then, in Section 3 we present our main contributions in the
analytical solution of the Korhonen’s diffusion equation. Section
4 demonstrates the experimental results of the application of our
method on the large-scale industrial IBM benchmarks as well as its
comparison with COMSOL. Finally, Section 5 completes our study
where the conclusions are drawn.

2 BACKGROUND
2.1 EM Stress Analysis on an Interconnect Line
As the current flows in the wire, two opposing forces are exerted on
the metal atoms1, the first one being an electrostatic force Ff ield
which results from the electric field’s effect on the atoms and points
to a direction opposite to the electron flow (Fig. 1). The second
force Fwind is generated by the momentum exchange between
the conducting electrons that come into collision with the atoms
and is in the same direction as the electric field. The latter is the
predominant force since the electrostatic force is relatively small
due to the shielding electrons [17].

Figure 1: The two forces that act on the Cu atoms [3].

If the total force (in the direction of the wind force) exceeds the
activation energy Ea , then the phenomenon of EM begins and metal
atoms move towards the anode. As time passes, the change in the
wire volume, as well as the enduring unidirectional current, will
increase hydrostatic stress by creating tensile stress at the cathode
and compressive stress at the anode of the wire. The resulting
concentration gradient generates a new force, the Fback_str ess ,
which acts against the electron wind force and takes the place of
Ff ield since its effect becomes relatively negligible. It is important
to model the results of this back-stress force since if the stress
reaches a critical level, it can lead to the creation of voids (void
nucleation) at the cathode of the line and hillock formation at the
anode [3], which subsequently lead to open circuits and the end of
the lifetime for the wire.

It is well known that for modern Cu dual damascene (Cu DD)
interconnect technology, with capping and barrier layers, there is
no mass transfer across layers, and all EM-induced metal migration
occurs within the same layer [18]. In practical power grids, there
might be very short leads, "stubs", that connect the line to vias,
but they can be considered unimportant to the evolution of the
phenomenon of EM. Therefore, a large interconnect system such as
a power grid can be analyzed layer-by-layer. Furthermore, power
grids in modern chips tend to use unidirectional routing within
each layer of the mesh-like orthogonal-wire structures and can
therefore be decomposed into multi-segment lines [14]. Taking the
above into consideration, it suffices to examine each multi-segment
line separately, thus this paper focuses on the analysis of 1D multi-
segment line structures, where each segment could potentially carry
a different current density.

1Metal atoms and metal ions are thought as equivalent in the context of this paper.



2.2 Korhonen’s Model
In order to examine the stress, the most established model is the
Korhonen’s PDE [7], or stress diffusion equation:

∂σ

∂t
=
∂

∂x

[
κ

(
∂σ

∂x
+ β j

)]
(1)

Here, β = eρZ ∗/Ω and κ = DαBΩ/(kBT ) with Dα = Doe
−Ea/kT

being the diffusion coefficient and Ea the activation energy; j is the
current density through the the specific segment of the wire, e is
the electron charge, ρ is the electrical resistivity of the wire, Z ∗ is
the effective charge number, Ω is the atomic volume for the metal;
Do is the diffusivity constant, B is the bulk modulus for the metal,
kB is the Boltzmann’s constant and T is the temperature; t is time
and x is the spatial coordinate.

Figure 2: Anm-segment interconnect line.

A multi-segment interconnect line consists of line segments
with different current densities that are separated by vias. For anm-
segment interconnect line, shown in Fig. 2, Korhonen’s equation (1)
holds in each segmentk = 1, . . . ,m of the line. This is supplemented
by the following boundary conditions (BCs), which must hold for
all time points [19]:
BC 1. At the terminal points x = 0 (cathode) and x = lm (anode),
the atomic flux must be zero:(

∂σ

∂x

�����x=0
+ β j1

)
= 0 , *

,

∂σ

∂x

�����x=lm
+ β jm+

-
= 0 (2)

BC 2. At the intersection lk between segments k and k + 1, the
atomic flux must be continuous:

*
,

∂σk
∂x

�����x=lk
+ β jk +

-
= *
,

∂σk+1
∂x

�����x=lk
+ β jk+1+

-
(3)

BC 3. At the intersection lk between segments k and k + 1, the
stress itself must be continuous:

σk
���x=lk = σk+1

���x=lk (4)

2.3 Spatial Discretization of the wire
In this subsection, we apply the finite-difference method (FDM) to
discretize the spatial derivative in Korhonen’s equation (1), in order
to obtain a system of ordinary differential equations (ODEs) for the
multi-segment wire.

Let n be the number of discretization points along the spatial
coordinate x . Typically each of them wire segments in Fig. 2 will
be discretized into one or more elements, so that n ≥ m. As an
example, we see in Fig. 3 a two-segment line that is discretized with
a spatial step ∆x into six discrete points: two zero-flux terminal
points, one via intersection point, and three internal points. As can
be seen in the figure, there are also two more discretization points
outside the geometry, which are solely used for the formulation of
the FDM equations for the terminal (zero-flux) points.

Figure 3: Spatial discretization of a two-segment wire.

By applying a finite difference approximation of the spatial de-
rivative in (1), we get for every discretized point i = 1, . . . ,n of the
wire:

∂σi
∂t
≡ σ̇i = κ

( σi+1−σi
∆x

)
−

( σi−σi−1
∆x

)
∆x

=
κ

∆x2
(σi+1 − 2σi + σi−1)

(5)

The FDM approximations for the endpoints of the multi-segment
wire are obtained by eliminating, in (5), the non-physical points
that are outside the geometry, through the zero-flux BCs (2). For
the cathode we apply the backward difference:

σ1 − σ0
∆x

+ β j1 = 0 (6)

while for the anode we use the forward difference:

σn+1 − σn
∆x

+ β jm = 0 (7)

Note that the spatial derivatives in (2) are approximated in the direc-
tion of increasing x (the convention used in [7] is that x increases
in the direction of electron current, i.e. opposite to the conventional
current). By applying (5) for i = 1 and i = n, and eliminating σ0 and
σn+1 from (6) and (7) respectively, we arrive at the FDM equations
for σ1 and σn :

σ̇1 =
κ

∆x2
(σ2 − σ1) +

κ

∆x
β j1

σ̇n =
κ

∆x2
(−σn + σn−1) −

κ

∆x
β jm

(8)

For the via intersection points, the FDM approximation results
by spatially discretizing (1) and applying the continuous-flux BCs
(3). Specifically for the point connecting segments k and k + 1, the
FDM approximation is:

σ̇i =
κ

∆x2
(σi−1 − 2σi + σi+1) +

κ

∆x
β (jk+1 − jk ) (9)

Writing the FDM approximation for all discrete points from (5),
(8), and (9), we arrive at the following system of ODEs:



σ̇1
σ̇2
...

σ̇n−1
σ̇n



=
κ

∆x2



−1 1 0 · · · 0 0
1 −2 1 · · · 0 0
...

...
. . .

. . .
...

...

0 0 · · · 1 −2 1
0 0 · · · 0 1 −1





σ1
σ2
...

σn−1
σn



+
κβ

∆x
D



j1
...

jm



(10)



where D is an n ×m matrix with elements d11 = 1, dnm = −1, and
dik = −1, di,k+1 = 1 for the discrete points i that connect segments
k and k + 1 (and zeros everywhere else). For example, the matrix D
for the six-point two-segment wire of Fig. 3 is:

D =



1 0
0 0
−1 1
0 0
0 0
0 −1



(11)

3 ANALYTICAL SOLUTION OF TRANSIENT
STRESS VIA EIGENDECOMPOSITION

The ODE system (10) has the familiar form of a linear time-invariant
(LTI) system:

σ̇ (t ) = Aσ (t ) + Bj (12)

with B = κβ
∆x D and:

A =
κ

∆x2



−1 1 0 · · · 0 0
1 −2 1 · · · 0 0
...

...
. . .

. . .
...

...

0 0 · · · 1 −2 1
0 0 · · · 0 1 −1



(13)

The analytical solution of (12) can be obtained as the convolution
integral [20]:

σ (t ) = eAtσ (0) +
∫ t

0
eA(t−τ ) Bjdτ (14)

where σ (0) is the vector of initial stress conditions at the n dis-
cretized points. We note that due to nonuniform coefficients of
thermal expansion of the materials, there can exist a residual ther-
mal stress σT ,i at every point i of the line, which constitutes the
initial stress condition at i . However, and without loss of generality,
we can assume the absence of residual thermal stress so that the
initial stress is set to σ (0) = 0 everywhere.

If A = VΛV−1 is the eigendecomposition of A, then it is well-
known [20] that eAt = VeΛtV−1, and thus (14) becomes (for σ (0) =
0):

σ (t ) =

∫ t

0
VeΛ(t−τ )V−1Bjdτ = V

(∫ t

0
eΛ(t−τ ) dτ

)
V−1Bj (15)

Since Λ is diagonal, the matrix integral in the above equation has
the form:

∫ t

0
eΛ(t−τ ) dτ =



∫ t
0 eλ1 (t−τ ) dτ

. . . ∫ t
0 eλn (t−τ ) dτ



(16)

where λj , j = 1, . . . ,n are the (not generally distinct) eigenvalues
of A. Each of the above integrals can be computed analytically as:∫ t

0
eλj (t−τ ) dτ =


−
eλj (t−τ )

λj



τ=t

τ=0
=

eλj t − 1
λj

(17)

Note that if one eigenvalue equals zero, then the corresponding
integral is simply

∫ t
0 dτ = t .

Now, for the specific matrix A with the form (13), it was shown
in [21] that its eigendecomposition can be determined beforehand.
Specifically, A has n distinct eigenvalues which are given by:

λj =
κ

∆x 2

(
2 cos (j−1)π

n − 2
)
, j = 1, . . . ,n (18)

along with n orthonormal eigenvectors (such that V−1 = VT ) with
elements:

vi, j =



√
1
n , j = 1√
2
n cos (2i−1) (j−1)π

2n , j = 2, . . . ,n
i = 1, . . . ,n

(19)
Moreover (and more importantly), the products VT r and Vr of the
matrices VT ,V with an arbitrary vector r amount to performing
respectively a Discrete Cosine Transform of type-II (DCT-II) and
an Inverse Discrete Cosine Transform of type-II (IDCT-II) [22] on
r, both of which can be computed with near-linear complexity
O (n logn) (instead of the quadratic complexity O (n2) of general
matrix-vector products) using Fast Fourier Transform. This is simi-
lar to a fast Poisson solver like [16] in one dimension.

By inserting (17) into (15), we arrive at the following analytical
solution for stress at any given time for the pre-selected discrete
points of the multi-segment line:

σ (t ) = VL(t )VT Bj (20)

where:

L(t ) =



t
eλ2t−1
λ2

. . .
eλnt−1
λn



(21)

and λj , j = 2, . . . ,n are given by (18).
The above enable us to construct a procedure of near-linear

complexity (in the number of discretization points) for computing
stress at any given time at the discretized points, which can be
decomposed into initial one-time operations and the main stress
calculation for the given time. This is presented in the following
Algorithm 1 and Algorithm 2 respectively:

Algorithm 1: Initial Formulation

Input: parameters κ and β , discretization step ∆x , vector of
segment intersection coordinates l = [l1, . . . , lm]T
(lm ≡ L equals the line length), vector of segment
current densities j = [j1, . . . , jm]T

Output: vector of eigenvalues λ, intermediate vector x
1. # of discretization points n = L

∆x

2. Construct B = κβ
∆x D, with D as in (11)

3. Calculate r = Bj
4. Perform DCT-II on vector r to obtain intermediate vector x
5. Compute eigenvalues λ = [0, λ2, . . . , λn]T from (18)



Algorithm 2: Transient Stress Calculation

Input: vector of eigenvalues λ = [0, λ2, . . . , λn]T , intermediate
vector x, time t

Output: vector of EM stress σ (t ) at the discretized points at
time t

1. Form the diagonal matrix L(t) for the given time t from (21)
2. Calculate q = L(t )x
3. Perform IDCT-II on vector q to obtain the final vector σ (t )
of EM stress at time t

Complexity Analysis. Algorithm 1 has an one-time cost since
it only needs to be executed once in order to compute matrices that
are time-invariant. The two most computationally expensive steps
of the algorithm are the calculation of vector r in Step 3 and the
DCT-II of r in Step 4, which have asymptotic complexity O (nm)
and O (n logn) respectively. Since typicallym ≪ n, the algorithm
is near-linear in n.

In Algorithm 2, both Step 1 and Step 2 are O (n) since L is a
diagonal matrix, while the IDCT-II has computational complexity
of O (n logn). Thus, Algorithm 2 has also asymptotic complexity
O (n logn) and is near-linear in n.

To take it a step further, if the proposed method is applied on a
complete power grid for EM analysis, Algorithm 2 can be executed
entirely in parallel for the different lines of the power grid (task-
level parallelization), since each line can be handled independently
as remarked in Section 2. Furthermore, a large amount of data-level
parallelization is included in the formulation of matrix L(t ) as well
as the DCT-II/IDCT-II computational kernels.

4 NUMERICAL RESULTS
In this section, we present our numerical results in order to val-
idate the proposed analytical method of Section 3. The first part
of the experimental evaluation consists of a proof-of-concept trial
using an artificial five-segment line, which is described in Section
4.1. Then, in Section 4.2, we employ our method on the publicly-
available IBM Power Grid [23] (IBMPG) benchmarks in order to
illustrate the applicability of our method in large-scale designs. For
all benchmarks, we assume them to be Cu DD interconnects in
order to ensure the separate analysis of each layer and of each line
of the power grid.

For all experiments, the proposed method was implemented 2 in
MATLAB R2021a and was compared to the industrial FEM-based
tool, COMSOL. The specifications for this technology are listed in
Table 1. Finally, all the above were run on a Windows machine with
32GB memory and a 3.6GHz i7 processor with 4 × 8 cores.

4.1 Artificial 5-Segment Line
For the first experiment, we have created an artificial straight-
line benchmark of total length 100µm with five segments of 20µm,
25µm, 15µm, 10µm and 20µm with corresponding constant current
densities of −2 × 1010 A/m2, 1 × 1010 A/m2, 1.5 × 1010 A/m2,
−1 × 1010 A/m2 and 0.5 × 1010 A/m2.

2Github repository: https://github.com/oaxelou/EM_analytical

Table 1: Cu DD interconnect typical values for transient EM
simulation [24].

Symbol Physical quantity Value
e Electron charge 1.609 × 10−19 C
ρ Electrical resistivity 2.25 × 10−8Ω m
Z∗ Effective charge number 1
Ω Atomic volume for the metal 1.182 × 10−29m3

D0 Diffusivity constant 1.3 × 10−9m2/s
B Bolk modulus for the metal 28 GPa
kB Boltzmann’s constant 1.3806 × 10−23 J/K
T Temperature 378K

Taking into consideration the lifetime of modern circuits, we
demonstrate the stress build-up at t = 6.38 × 108s, which corre-
sponds to 20 years, as well as at t = 107s and t = 108s. We compare
the results of our method with COMSOL and use as discretization
step ∆x = 1µm. As can be seen in Fig. 4, our method matches almost
perfectly well with the COMSOL simulation, with relative error
well below 0.5%, without the need for denser discetization.

However, it needs to be pointed out that since COMSOL dis-
cretizes the space coordinate using FEM techniques, the correspon-
dence between our FDM-discretized space and COMSOL can vary.
This problem is more pronounced in larger circuits with fine dis-
cretization where the error that is added, due to the approximation
of FDM by FEM methods, is accumulated and affects both the cor-
respondence on the x axis (the spatial points) as well as the value
of stress at those points, since it is spatially dependent.

Figure 4: (top) Accuracy comparison of our proposed
method with COMSOL on an artificial 5-segment line at
t = 1e7s, t = 1e8s and t = 20 years, and (bottom) their rel-
ative errors.

https://github.com/oaxelou/EM_analytical


Table 2: IBM Benchmarks Characteristics.

IBMPG #lines avg. line total avg. #segm.
Benchmark length (m) #segm per line
IBMPG1 1717 0.00540 29750 17.33
IBMPG2 1271 0.00532 125668 98.87
IBMPG3 7640 10.37635 835071 109.30
IBMPG4 5160 0.00762 932492 180.72
IBMPG5 3840 0.01149 1076571 280.36
IBMPG6 8521 3.01821 1648621 193.48

4.2 IBM Power Grid Benchmarks
In this section, we employ our method on the large publicly avail-
able IBM benchmarks in order to prove the scalability of our method.

In Table 2, we provide the characteristics of the IBM benchmarks.
More specifically, column #lines describes the total number of lines
of each power grid; avg. line length describes the average length of
the lines; total #segm provides information on the total number of
segments on the power grid and avg. #segm. per line offers an aver-
age value of the segments that compose a line of the corresponding
power grid.

For this experiment, we performed EM stress analysis on the
whole power grid at t = 20 years using our method and compared
our results with the FEM-based solver, COMSOL. We analyze each
line separately and independently and as the number of segments
might be slightly different, we report the the average runtime per
line. For both methods, the discretization step was set to the same
value. However, and as was mentioned in Section 4.1, due to the
FEM approximation of FDM, we expect an error, especially for
the larger benchmarks. Moreover, and as a consequence of the
large runtimes of the latter, we only ran COMSOL on a number of
representative lines. We collected the average value of the above-
mentioned results in Table 3. In particular, in column avg length we
provide the average length of the lines of the corresponding power
grid; avg #segm is the average number of segments of the lines; discr.
step is the discretization step for the spatial coordinate and avg #discr
points per line is the average number of the resulting discretization
points on the lines of the power grid. Then, we provide the average
runtimes of our method and the corresponding average runtimes
of COMSOL, as well as the speedup that our method achieved.

The results show that our method can be three orders of mag-
nitude faster than COMSOL, with speedup ranging from 25.84×
to 257.6×. This high speedup is a result of many factors. First and
foremost, COMSOL performs a numerical transient analysis using
an adaptive timestep. It induces a large overhead to iteratively cal-
culate the stress as a function of time since the formula needs to be
evaluated in all previous time points in order to obtain the current.

In contrast, our closed-form equation directly calculates the
transient stress without discretizing time, so there is no trade-off
in this context between accuracy and performance no matter the
point in time where we want to find the stress. Furthermore, it
needs to be pointed out that the formulation time of our method is
an one-time cost that doesn’t need to be repeated for every time
we want to perform EM stress analysis. This means, subsequently,
that the proposed method can be used for both transient analysis
and EM-failure test. For better understanding, we demonstrate an

Figure 5: EM stress across a line of IBMPG1 atmultiple times
using the proposed method.

example of transient analysis is illustrated in Fig. 5 where we run
EM stress analysis at 7 timestamps with analytical formulation time
2.27s and total execution time being 2.73s.

Finally, all of the above are depicted in the scalability of the two
methods under test. On the one hand, the runtimes of COMSOL
tend to follow an exponential pattern which does not permit the
method to be applied on large scale circuits, hence our limitation
in the number of lines that we could test. On the other hand, and
by observing the results, one can comprehend the almost linear
complexity of our methodology, which was proven in Section 3.

Figure 6: (top) Current density profile of an IBMPG5 bench-
mark line, and (bottom) comparison of the corresponding
stress across the line at t = 20 years using the proposed
method and COMSOL.



Table 3: Runtime comparison of proposed methodology with COMSOL on IBMPG Benchmarks at t = 20 years.

Power Grid discr. avg #discr Proposed semi-Analytical methodology COMSOL

Benchmark step points Formulation Execution Total Time (s) Speedup(µm) per line time (s) time (s) time (s)
IBMPG1 1 5396.35 2.92289 0.41958 3.34247 86.38134 25.84×
IBMPG2 1 5318.33 0.63518 0.10559 0.74077 70.53742 95.22×
IBMPG3 1000 10377.81 6.40641 1.31453 7.72094 1474.84011 191.02×
IBMPG4 1 7620.81 1.81713 0.27706 2.09419 466.86929 222.94×
IBMPG5 1 11492.19 3.24564 0.56583 3.81147 325.79535 85.48×
IBMPG6 400 7546.93 5.02081 0.83445 5.85526 1508.34254 257.6×

In addition to the performance scalability, in Fig. 6, we provide a
comparison on accuracy between the proposed method and COM-
SOL on a line of IBMPG5 benchmark at t = 20 years with the same
discretization step as depicted in Table 3. It is easily noticeable that
the EM analysis is almost indistinguishable across all points.

5 CONCLUSION
In this paper, we proposed a fast semi-analytical approach for the
solution of the EM hydrostratic stress at discrete spatial points in
multi-segment lines of power grids. Our method creates a formula
which can be used to independently provide the value of stress
at any time. More specifically, our method takes advantage of the
specific tridiagonal form of the system matrix whose eigenvalues
and eigenvectors are known in advance and creates a closed-form
equation with almost linear time complexity that is very easily
parallelizable. The resulting equation can be used for transient
analysis of the EM stress. Experimental results of our method on
the large scale IBM benchmarks, in comparison with the industrial
FEM-based solver COMSOL, illustrated almost perfect agreement
with the latter while being up to 258× faster. Finally, we demonstrate
that, due to the excellent runtimes, our method can be efficiently
employed for a complete power grid EM analysis.
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