
Speeding up Pipelined Circuits through a
Combination of Gate Sizing and Clock Skew Optimization

Harsha Sathyamurthy Sachin S. Sapatnekar John P. Fishburn

Mentor Graphics Department of ECE AT&T Bell Laboratories

1001 Ridder Park Drive Iowa State University 600 Mountain Avenue

San Jose, CA 95131. Ames, IA 50011. Murray Hill, NJ 07974.

Abstract

An algorithm for unifying the techniques of gate sizing and
clock skew optimization for acyclic pipelines is presented in this

paper. In the design of circuits under very tight timing speci-
�cations, the area overhead of gate sizing can be considerable.

The procedure utilizes the idea of cycle-borrowing using clock
skew optimization to relax the stringency of the timing spec-

i�cation on the critical stages of the pipeline. Experimental
results verify that cycle-borrowing using sizing+skew results in
a better overall area-delay tradeo� than with sizing alone.

1 Introduction

The problem of optimizing acyclic pipelines has attracted
considerable interest of late. This paper presents a method for

speeding up acyclic pipelined circuits through a combination of
two techniques: gate sizing and clock skew optimization. Each

technique has been utilized in isolation for speeding up circuits;
we unify them to arrive at an optimal design.

Gate sizing is a well-known technique and several CAD tools

have been developed to perform this optimization [1, 2]. Given
the circuit topology, the delay of a combinational circuit can

be controlled by varying the sizes of transistors in the circuit.
In coarse terms, the circuit delay can usually be reduced by

increasing the sizes of gates in the circuit, entailing the penalty
of increased circuit area and power dissipation; this trade-o�

is the gate sizing problem. We stress here that this method
is applied individually to each combinational subcircuit of a
sequential circuit. The problem is commonly formulated as

minimize Area subject to Delay � Pspec (1)

or minimize P subject to Area � Aspec (2)

where P is the clock period. In the former case, a goal period
is speci�ed, which restricts the delay of each combinational seg-

ment. In the latter formulation, the clock period is minimized
subject to a speci�cation, Aspec, on the area. Area is typically
measured as the sum of all the transistor channel widths.

To understand the problem of clock skew optimization, it is
important to recognize that due to di�erences in interconnect

delays on the clock distribution network of integrated circuits,
there is typically a skew between the arrival times of clock sig-

nals at the 
ip-
ops (FF's). One approach that has been fol-
lowed by several researchers is to design the clock distribution

network so as to ensure zero clock skew. An alternative ap-
proach [3,4] views clock skews as a manageable resource rather
than a liability, and manipulates clock skews to advantage by

intentionally introducing skews to improve the performance of
the circuit. This process of selecting the optimal skews is the

problem of clock skew optimization.
To illustrate the bene�ts of clock skew optimization, consider

the following example. In Figure 1, if the combinational subcir-
cuits CC1 and CC2 have delays of 6 and 14 units, respectively,

then with zero skew, the fastest allowable clock has a period of
14 units. If a skew of -4 units is applied to the clock line to latch

B, the circuit can run at a clock period of 10 units. Algorithms
for skew optimization were presented in [3,4], where clock skew
optimization problemwas formulated as a linear program (LP).

Combinational

       block

Combinational

       block

FF FFFF

A B C

Ck Ck CkCC1 CC 2

Figure 1: The advantages of nonzero clock skew.

We now motivate the need for using skew optimization in

conjunctionwith sizing. The general character of the area-delay
tradeo� for sizing alone (without using skew optimization) is

shown by the curve in Figure 2. For a loose delay speci�cation,
the area penalty is not very large, but for tighter speci�cations,
it becomes extremely large. Referring to Figure 1, the use of

skew optimization in conjunction with sizing would allow CC2
to steal a part of the clock cycle for CC1, thereby allowing

it a larger timing budget and a correspondingly smaller area
penalty. For example, in Figure 2, this may allow CC2 to move

from position A to position B. Correspondingly,CC1 may move
frompositionC to positionD. The nonlinearityof the area-delay
tradeo� curve ensures that the area corresponding to moving

CC1 from C to D is smaller than the area savings corresponding
to moving CC2 from A to B.
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Figure 2: Using sizing in conjunction with clock skew.

In this paper, we present an algorithm for unifying clock

skew optimization and transistor sizing. The algorithm is di-
rected towards circuits with edge-triggered FF's. The solution
may be arrived at in two steps. In Step 1, the circuit delay

is minimized and the long path constraints satis�ed, ignoring
the short path constraints. Next, in Step 2, the short path

constraint violations are resolved by padding the circuit with
bu�ers as necessary. This paper focuses on the solution of the

Step 1, and adaptations of techniques such as [5] may be used
to reconcile short path violations. The technique is illustrated



on single-phase clocked circuits containing edge-triggered FF's.

It was previously thought that it was extremely hard to

achieve a good solution to the sizing+skew problem under El-
more delays. To the best of of our knowledge, this is the �rst
piece of work that shows that Step 1 corresponds to a convex

optimization problem, which implies that it is easy to �nd a
solution to this subproblem. Therefore, if, as is likely for prac-

tical circuits, the number of short path violations in the �nal
circuit is relatively small, Step 2 will perturb the solution by

only a small amount, and the above technique will work well
for practical circuits. Another contribution of this work is in
the application of PERT to acyclic sequential circuits to detect

long path constraint violations.

The organization of this paper is as follows. Section 2 for-

mally states the problem to be solved, followed by an overview
of the algorithm in Section 3. The procedure for detecting long

path constraint violations is described in Section 4. The entire
algorithm is then presented in Section 5. Finally, experimental

results are provided in Sections 6.

2 Statement of the Clock Skew Optimization Problem

2.1 The Clock Skew Optimization Problem

For each FF pair (FFi,FFj), let xi, xj be the skews at the

FF's FFi and FFj respectively and d(i; j) be the delay of the
combinational block between them (with d(i; j) being the mini-

mum delay and d(i; j) being the maximum delay). Let Thold be

the FF hold time and Tsetup be the FF setup time. Two types of
timing errors may exist, corresponding to double-clocking (short
path violations) and zero-clocking (long-path violations). It has

been shown in [3] that the minimization of the clock period can
be written as an LP, with constraints re
ecting the absence of

zero-clocking and double-clocking conditions. The LP may be
stated as:

minimize P

subject to xi + d(i; j) � xj + Thold � �;

xi + d(i; j) + Tsetup � xj + P + �

where the factor � models the uncertainty in the skews. If one

can guarantee that in the manufactured circuit, the skew at
each FF k, x̂k, will be within the range [xk � �=2; xk + �=2],
where xk is the design value of the skew, then the di�erence

between any skews, (x̂i� x̂j) in the manufactured circuit, must
be within � of the design value of (xi � xj).

In the case where all gate delays are constant, the above
optimization problem is an LP in the skew variables and the

clock period [3]. If we consider the gate delays as functions

of the gate sizes, then d(i; j) and d(i; j) are functions of the
gate sizes, and the optimization problem is considerably more

complex. We will elaborate on this in Section 3.

2.2 Is Clock Skew Optimization Safe?

A commonmisconception that persists among circuit design-
ers about changing clock skews is that it is believed to be an
\unsafe" optimization, in that a small change in the gate de-

lays may cause a precariously balanced circuit to malfunction.
In fact, this is not so; one can build in safety margins [3, 4]

that ensure that skewing errors do not disrupt circuit function-
ality. These safety margins ensure that the circuit will operate

in the presence of unintentional process-dependent skew varia-
tions. Introducingdeliberate delayswithin the clocking network

has been a tactic that has long been used by designers [6], and
this may be adapted to build �xed-skew clock networks [7].

In fact, it is a misconception to believe that zero skew is

entirely safe. To see this, consider a shift register consisting of
register A whose output is connected to register B with no com-

binational logic between the two. Even for a circuit designed for
zero skew, a small unintentional positive skew at register B will
cause double-clocking. Such problems may be avoided by the

use of these safety margins and the introduction of deliberate
nonzero skew: a small amount of deliberate positive skew at A

provides an e�ective safety margin against double-clocking.

3 Formulation of the Problem

The combinationof clock skew optimization and sizing into a
single framework was thought to be too intractable a problem to

solve [3]. A recent approach in [8] used piecewise linear models
to arrive at a solution, setting up the combined problem as
an LP. However, the accuracy of such models is limited, and

hence it is desirable to investigate techniques that use the more
accurate Elmore delay model directly.

The problem of sizing with skew optimization is stated as:

minimize Area

subject to xi + d(i; j) + Tsetup � xj + P + � (3)

�Xmax � xi � Xmax (4)

where d(i; j) is a function of the gate sizes in the circuit, P is
the speci�ed clock period, andXmax is the maximum allowable

skew magnitude. The Area objective function is approximated
as the sum of all transistor sizes. Note that only long-path
constraints have been considered.

The area of the clocking network is not included here for two
reasons. Firstly, it is di�cult to derive a relation between the

skews and the clocking network area (however, as we will show,
safeguards may be added to prevent the clocking network area
from becoming exceedingly large). Secondly, the complexity

of routing the clock network is such that it is not possible to
predict whether a nonzero skew clock tree will necessarily utilize

more routing resources than a zero-skew tree.

However, we make the observation that for large clock skew
magnitudes, the clock tree is likely to consume large routing

resources. Therefore, to ensure that the expense of clock rout-
ing does not run amuck, we introduce the constraint (4). This

constraint may easily be incorporated into our solution.

Under the Elmore delay model, it can be shown [1] that
the gate delays are posynomial functions [9] of the gate sizes.

A posynomial function in x can be transformed into a convex
function in z using the mapping xi = ezi . Based on this fact, it

was pointed out in [3] that the above optimization problem is a
signomial programming problem [9], which makes it di�cult to

arrive at a good solution to the problem.

Each long path constraint is of the form

d(i; j) + xi � xj � K; (5)

where d(i; j) is some posynomial function of the transistor sizes,

xi and xj are clock delays to the source and destination FF's,
andK is a constant. The left-hand side of this inequality is not

a posynomial because of the negative coe�cient of xj. If the
logarithmic substitution, x = ez, were performed for each clock

skew and transistor size variable x in this inequality, the result
would not be a convex constraint.



However, if we substitute w = ez for each transistor width

w appearing in d(i; j), while leaving xi and xj alone, then the

result is a convex constraint: the left-hand side of (5) is the

sum of d(i; j) (which is convex in the z variables) and xi � xj,
which is linear (hence convex), in xi and xj . This result holds

for general sequential circuits, and not just acyclic pipelines.

More generally, if the variables in an optimization prob-

lem can be divided into two separate classes w1; � � � ; wn, and
x1; � � � ; xm, and if each constraint is of the form

P (w1; :::;wn) + C(x1; :::; xm) � K; (6)

where P is posynomial, C is convex, and K is a constant, then

the problem can be transformed into a convex program by sub-
stituting wi = ezi while leaving the xi variables alone.

The solution of the problem proceeds as follows. The opti-
mization approach is divided into two stages that are repeated

iteratively. In the �rst, violations of the clocking constraints
must be detected. We present a modi�cation of the PERT pro-
cedure for delay estimation, generalized to handle sequential

circuits, in Section 4. Next, a critical path is de�ned and iden-
ti�ed, and the size of the most sensitive gate on this path is

bumped up by a small amount. The iterations continue until
all long path-constraints are satis�ed for the given clock period.

4 Detection of Long-Path Constraint Violations

4.1 The \Delay" of a Flip-Flop

PERT is a method for �nding the longest/shortest path in

a directed acyclic graph (DAG) that arises out of a system of
di�erence constraints. Here, we present a generalization to se-

quential circuits of the PERT method that has been used ex-
tensively for delay estimation in combinational circuits.

The technique for representing combinational blocks by dif-
ference constraints, and therefore, by DAG's is well-known. For

sequential circuits, one also has to deal with the problem of
representing FF's. In this section, it is shown that the input
delay-output \delay" for FF's can also be represented by a dif-

ference constraint. Note that the word \delay," when used in
reference to FF's, is applied in a loose sense here. It refers not

to the propagation delay of the gates within the FF, but to a
mathematical tool used to apply PERT.

For acyclic pipelines, the composite set of these and the dif-
ference constraints for each gate can be represented by a DAG,

on which PERT may be applied to identify the gates on the
critical path in the sequential circuit. It is noteworthy that the
circuit will remain a DAG only when the pipeline is acyclic; if

not, methods such as loop unrolling will have to be utilized.
It will now be shown that in an acyclic sequential circuit, a

memory element is equivalent to a \delay" of Tsetup � P � �.
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Figure 3: Modi�ed PERT

Consider Figure 3(a). From (3) we have xi + Gmaxdelay +
Tsetup � xj + P + �. where xi is the latest arrival time at the
input of gateG, xj is the latest arrival time at the input of gate

H. Note that Gmaxdelay is not necessarily the delay of a single
gate, but can, in general, be the delay of a path from FFi to

FFj . Writing xi + Gmaxdelay as dG, the latest arrival time at
the input of FFj , we have the following di�erence constraint

dG + Tsetup � xj + P + �

i.e. xj � dG � Tsetup � P � � (7)

For a regular combinational gate, as shown in Figure 3(b),
if dG1 and dG2 are the latest arrival times at the input of G2

and G3, then we have the di�erence constraint, dG2 � dG1 �

delay(G2). From this, we see that G2 and FFj behave analo-

gously, i.e., FFj behaves like a gatewith a delay of Tsetup�P��.
The value xj also represents the skew associated with the

FF. Therefore, a violation occurs if at the end of PERT, the

arrival time at a primary output is greater than zero, since the
skew at each primary input or output is zero and unchangeable.

(Notice that if the arrival time at a primary output is � 0, we
have a nonnegative slack for the long path constraints.)

4.2 The Delay of a Gate

The method used here for modeling the delay of a gate has

been used extensively and successfully in several gate sizing al-
gorithms, and is not original. The delay of each gate is calcu-

lated by replacing it by an equivalent inverter with parameters
WN andWP corresponding to the equivalentn and p transistor

sizes, respectively. Each gate is replaced by an RC tree whose
Elmore delay is taken to be the delay of the gate, as in [1].

5 Unifying Sizing and Clock Skew Optimization

This section presents an overview of the algorithm. In the

delay model presented in Section 4, a gate is represented by an
equivalent inverter. The n- and p-transistors of the gate are
sized independently. Initially, all gate sizes are set to the mini-

mum value. Each iteration performs the following steps:
(1) A timing analysis is conductedon the sequential circuit using

PERT to identify paths that fail to satisfy the delay constraint.
A violation occurs if the rise/fall delay at a PO is � 0. Start-

ing from the PO with the maximum violation, a critical path is
traced back to a PI. For circuits with inverting gates, the criti-
cal path is an alternating sequence of rise and fall transitions.

(2) The sensitivity of each gate along the critical path is com-
puted, and the most sensitive gate is identi�ed. If this gate is

undergoing a rise (fall) transition, the p-(n-)channel width for
this gate is increased by a multiplicative factor, bumpsize.

In each iteration, the delay of the critical path is expected
to be reduced by a small amount. However, any change on
the current critical path is liable to have repercussions on the

delays of other paths in the circuit, and hence, as in [1], we
use a bumpsize that is just above 1.0. The algorithm continues

until all timing requirements are met, or until the sensitivity of
the most sensitive gate in the most critical path is � 0. In the

latter case, any increase in channel widths results only in an
increase in delay, and the speci�ed clock period is unachievable.

The optimal skew values fall out as a natural consequence of
this procedure: the arrival time at an FF output, as calculated
by PERT, is the optimal skew to be applied to that FF.

6 Experimental Results

The algorithm has been implemented in a C program, SAC-
SOFON (Sizing And Clock Skew Optimization For One-phase



clocked Networks). Experimental results are provided on sev-
eral circuits, described in Table 1. The circuits marked with a
\y" are single-stage pipelines; the results on these circuits with

and without skew optimization must be identical since skew
adjustments can only be made on internal FF's.

Table 1: Input Circuit Description

Circuit # Gates # Stages # FF's # PI's # PO's

add2y 15 1 5 3 2
inv10y 10 1 2 1 1
r500y 520 1 40 20 20
mcnc 744 3 24 10 8
r 2 279 2 26 15 5
r 4 496 4 35 15 4
r 6 1370 6 78 25 10
r 10 1687 10 91 25 6
r 15 2986 15 142 25 9
r 20 4043 20 176 20 7

y single-stage pipelines

Experimental results on these circuits, using transistor siz-
ing with and without clock skew optimization, are presented in

Table 2. The column labeled Pmax corresponds to the clock
period of an unsized circuit where all clock skews are set to

0, and Pspec is the speci�ed clock period to be achieved. The
percentage increases in circuit area as a result of sizing are, re-
spectively, �nsk

Area
and �sk

Area
. The corresponding CPU times

for SACSOFON on a Sun Sparcstation 10 are also shown.

Table 2: Combining Clock Skew Optimization and Sizing

Circuit Pmax Pspec �nsk
Area

�sk
Area

CPU CPU

(ns) (ns) (0skew) (skew) (0skew) (skew)

add2y 5.38 3.55 46.00% 0.36s 0.36s
inv10y 5.76 4.25 55.13% 0.32s 0.32s
r500y 48.59 30.00 3.79% 15.94s 15.94s

mcnc 77.74 18.0 - z 42.75% - 107.6s
r 2 28.95 12.0 31.09% 23.69% 15.9s 14.8s
r 4 26.31 12.0 32.68% 23.98% 45.1s 55.9s
r 6 36.11 14.0 45.88% 32.10% 482.2s 396.7s
r 10 36.40 14.0 36.22% 26.51% 618.6s 488.6s
r 15 38.76 14.0 44.71% 31.82% 2885.5s 2305.5s
r 20 40.38 14.0 38.00% 26.51% 3656.9s 2830.8s

y single-stage pipelines z unachievable speci�cation
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Figure 4: Increase in area vs. clock period for r 6

In Table 2, for both sizing with and without clock skew op-

timization, a bump size of 1.25 is used and no limit on the
increase in area is imposed. (It may be recalled that the bump

size is the factor by which the size of the most sensitive transis-
tor is increased in each iteration. It was found experimentally

that a bumpsize between 1.2 and 1.75 provides a good tradeo�
between accuracy and execution time.) It can be seen that in

the case where clock skew optimization has been applied, the
clock periods achieved are smaller than those achieved by not
introducing clock skews. As expected, in the cases of the single-

stage pipelines, clock skew optimization cannot be applied and
the results for each case are the same. For the remaining cir-

cuits, it can be seen that wherever the speci�cation, Pspec, is

achieved by both the methods, �nsk
A

> �sk
A
. In other words,

the increase in area is greater when clock skew optimization is

not applied. It may also be observed that the period Pspec is
sometimes unachievable using sizing alone, but is achieved by

the use of skew optimization in addition to sizing.
For example, for r 20, a 20-stage pipeline with 4043 gates,

the clock period of the unsized circuit is 40.38 ns. The speci�ed

clock period is 14 ns. The increase in area due to sizing without
skew is 38%, as against about 26.5% for sizing+skew. The CPU

times are seen to be similar in all cases. For some speci�cations
for the circuits (as is shown later), the clock period speci�edhere

was not achievable by transistor sizing alone, demonstrating the
utility of unifying transistor sizing and clock skew optimization.

Figure 4 indicates the improvement achieved when clock

skew optimization is applied along with transistor sizing for
circuit r6. Not only is the increase in area less, but the clock

periods are also reduced further. For example, in Figure 4,
even the best achievable clock period with sizing alone can be

achieved by sizing+skew optimization at about half the cost,
and that signi�cantly lower clock periods are also achievable at

a reasonable cost. The curves for other circuits are similar.
The curves show us that for a given timing speci�cation, the

area utilized by the sizing-only solution is always larger than

that for the sizing+skew solution. We caution the reader not to
be misled by the fact that the two curves in each �gure seem to

be very close to each other; the area di�erences are acute when
the circuit is designed for very tight timing constraints, where

we try to push the limits of the achievable circuit speed.
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