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Abstract

A new approach for fast retiming of level-clocked circuits
is presented here. The method relies on the relation between
clock skew and retiming, and computes the optimal skew
solution to translate it to a retiming. Since clock skew
optimization operates on the latches (rather than the gates
as in conventional retiming), it is much faster because of a
smaller problem size; the translationto the retiming solution
is computationally cheap. The minimum period retiming for
each of the ISCAS89 circuits was obtained within minutes
by this algorithm.

1 Introduction

Timing optimization plays a vital role in the synthesis of
VLSI circuits. One method that is of great interest to the
design and CAD community is the procedure of retiming
[5], which takes an unoptimized circuit and relocates the
memory elements (such as latches, flip-flops or registers) to
achieve a specified or the minimum clock period.

Much work has been done in retiming circuits with edge-
triggered flip-flops (FF’s), and fast algorithm like [9, 2] are
now available. However the current methods for the much
harder problem of retiming circuits with level-triggered
latches like [4, 6, 7] do not report results on large circuits
and may be unable to handle them due to the large compu-
tational complexity. Level-clocked circuits have a potential
to run at a faster clock than edge-triggered circuits. Hence
there is a need for fast automation tools to handle retiming
of level-clocked circuits. This work is motivated by such a
need.

This approach is based on the relation between clock
skew optimization [3] and retiming. This relation was uti-
lized in [2] for fast retiming of circuits with edge-triggered
FF’s. We show here that a similar relation is valid for level-
clocked circuits, and that moving a latch across a gate is
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equivalent to applying a skew at that latch. We use this re-
lation to develop an algorithm that translates the calculated
optimum skew values into a retiming solution for level-
clocked circuits. As will be shown in our experimental
results, the computational expense of this algorithm is very
low.

The objective here is to retime a level-clocked circuit to
achieve a specified period or the minimum possible period.
The solution is divided into two phases:

Phase A : The clock skew optimization problem for a level-
clocked circuit is solved with the objective of mini-
mizing the clock period.

Phase B : The target clock period is known, and the skew
solution is translated to a retimed circuit by relocating
latches across gates in an attempt to set the values of
all latch skews to be as close to zero as possible.

To find a retiming solution for a specified (not necessarily
minimum) clock period, we simply execute Phase B.

After Phase B has been performed, the designer may
choose to achieve the optimal clock period by using a com-
bination of clock skew and retiming. Alternatively, any
skews that could not be set exactly to zero could now be
forced to zero. This may cause the clock period to increase.
An upper bound on this increase will be derived in Theorem
4; and it will be seen that this increase is generally small.

The paper is organized as follows: Section 2 presents the
clock model, while Section 3 presents the timing constraints
for level-clocked circuits. Section 4 presents the equiva-
lence between retiming and clock skew. Phases A and B of
the minimum period retiming algorithm follow in Sections 5
and 6, followed by theoretical results on the optimality in
Section 7. Finally, we present experimental results in Sec-
tion 8 and conclude the paper in Section 9.While we have
attempted to present a complete description of the algorithm,
some details have been omitted due to lack of space.



2 Clock model

In this work, we have adopted the clock model of
Sakallah, Mudge and Olukotun [8], and we describe it here
for completeness. A k-phase clock is a set of k periodic
signals, � = f�1 : : :�kg where �i is referred to as phase i
of the clock �. All of the �i’s have the same clock period
T�, and each phase i has an active interval of duration T�i
and a passive interval of duration (T� � T�i ). The latches
controlled by a clock phase are enabled during the active
interval and disabled during the passive interval. When the
clock period, T�, is changed, the relative ratios of the active
intervals of each phase are scaled proportionately. Associ-
ated with each phase is a local time zone, shown in Figure 1,
such that the passive interval starts at time t = 0, the en-
abling edge occurs at time (T��T�i ) and the latching edge
occurs at time T�. There is also a global time reference and
values ei denote the time, relative to this global time refer-
ence, when the phase �i ends. Phases are ordered so that
e1 � e2 : : : � ek�1 � ek = T�. The phases are numbered
modulo-k, i.e., �k+1 = �1 and �1�1 = �k.
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Figure 1. Phase i of a k-phase clock (all times
in local time zone).

A phase shift operatorEi;j, shown in Figure 2, is defined
as follows:

Ei;j =

�
(ej � ei) for i < j

(T� + ej � ei) for i � j
(1)

Note that Ei;j takes on positive values. When subtracted
from a time point in the current time zone of �i, it changes
the frame of reference to the next local time zone of �j .
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Figure 2. The phase shift operator.

We now augment the Sakallah-Mudge-Olukotun model
with our own notation. Let the circuit have l latches num-
bered 1; � � � ; l, and let us associate a skew Si with latch i.
Si represents the time by which the clock is delayed in ar-
riving at the latch i, relative to a fixed reference (typically

the primary inputs and outputs of the circuit) which is set
to zero. Note that the skew values here are not physical
skews that will be applied to the final circuit, but concep-
tual ideas that will eventually help us to achieve a retiming
solution. No restrictions are placed on the value of Si, i.e.
�1 � Si � 1. Each latch i is clocked by exactly one
phase of the clock �, which is denoted by p(i).
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Figure 3. The latch shift operator.

We define a latch shift operator Li;j , shown in Figure 3,
much like the phase shift operator. This operator converts
time from the local time zone of latch i to the local time
zone of latch j and is defined as

Li;j =

�
(Sj + ep(j)) � (Si + ep(i)) for i < j

(T� + (Sj + ep(j)) � (Si + ep(i)) for i � j

(2)
which can be rewritten in terms of the phase shift operator
as

Li;j = (Sj � Si) + Ep(i);p(j) (3)

Each latch i also has an associated latest arrival time, Ai,
and a latest departure time, Di, in its local time zone.

In this paper, we consider k-phase level-clocked circuits
with no overlaps or underlaps. We expect that it would not
be difficult to generalize this algorithm to handle overlaps
or underlaps exist [4]. The circuits are assumed to be well-
formed [6]. We neglect to consider latch setup and hold
times, since handled by including the setup times in the path
delays and the hold time in the clock periods.

3 Level-clocked timing constraints

We now enumerate the set of timing constraints, that
dictate the correct operation of a level-clocked circuit in the
presence of skews,. The long path constraint2 for any path
from latch i to latch j with a delay of dij is then given by

Di + dij � Li;j � Aj

T� � Tp(i) � Di � T� (4)

Ai � Di

which can be rewritten as

(Si +Di) + dij �Ep(i);p(j) � (Sj +Dj) (5)

T� � Tp(i) � Di � T�

2We do not consider short path constraints here, and rely on Theorem
1 in [6], which assures us that in our final retimed circuit with zero skew,
there will be no short path violations.



To make the discussion simpler we subtract T� from both
sides of the equation, leaving it unchanged, and substitute

Xi = (Si +Di � T�) (6)

to get

Xi + dij � Ep(i);P (j) � Xj (7)

�1 � Xi � 1 (8)

We refer to Xi as the Global Departure Time (GDT). Equa-
tion (7) can be written as the following set of difference
constraints and solved efficiently.

Xi �Xj � Ep(i);p(j) � dij (9)

For a given circuit dij is constant and for a given clocking
scheme � (with a given clock period) Ep(i);p(j) is also con-
stant. Even though the expressions for Xi contain T�, the
difference Xi �Xj is independent of T�.

At this time, we also note the relation between the GDT,
Xi at a latch i, and the corresponding minimum magnitude
skew, Si:

Si =

8<
:

Xi if Xi � 0
0 if �T�i � Xi � 0
Xi + T�i if �T�i > Xi

(10)

4 Equivalence between skew and retiming

A formal presentation of the equivalence between clock
skew and retiming for edge triggered FF’s is presented in
[2]. We suggest a similar relation between retiming and
skew for level-clocked circuits.

An FF can be conceptualized as a level sensitive latch
with a very small active interval. If we were allowed to
apply arbitrary skews at each latch, we could adjust the
skew, Si, of a latch so as to forceDi = T�, which is same as
a negative edge triggered FF. Since Xi = Si+Di�T�, this
gives us Si = Xi. Hence, for Phase A we can think of Xi

for latches as skews for FF’s and thus get the optimal clock
period in a manner similar to [2], with the difference that
instead of the clock period, we use the phase shift operator,
Ei;j.

Note that in reality, we are not restricted to setting Di =
T�, and that we can reduce Di by as much as T�i and
increase Si by the same amount, keeping Xi constant, as
described in Equation (10). Therefore, we can absorb a
skew of up to T�i in the Di without violating the long path
constraint. Thus, in our model, level sensitive latches can be
conceptualized as FF’s that have a capacity to absorb some
skew. Using this rationalization, we state the following
theorem.

Theorem 1 For a circuit that operates at a clock scheme �
satisfying the long path delay constraints,

(a) retiming a latch by moving it from the output of
a single-input gate of delay d1 to its input(s) is
equivalent to decreasing its GDT by d1.

(b) retiming a latch by moving it from the input(s)
of a single-input gate of delay d2 to its output is
equivalent to increasing its GDT by d2.

This result will be generalized to multi input gates later in
Theorem 2.

Therefore, if one were to calculate the optimal clock
GDT’s, one could retime the circuit by moving latches with
positive (negative) GDT’s from the output to the input (input
to the output) until the GDT’s at the latches are nearly equal
to zero. It must be noted that since gate delays take on
discrete values, it can not be guaranteed that the GDT at
a latch can always be reduced to zero through retiming
operations. However, unlike FF’s, latches have the ability
to absorb some skew, and it is therefore possible to reduce
the real skew Si to a magnitude smaller than that of Xi,
without changing the GDT; simply by changing Di. Since
Di’s can vary from T� � T�i to T� we have a “freedom”
of T�i in setting the skew. As will be shown in Section 7,
if the maximum gate delay is less than the least T�i , we can
always achieve zero skews because of this freedom, thus
achieving the optimal period.

5 Phase A: Optimizing clock skews

Consider a combinational circuit segment that lies be-
tween two latches i and j, with phases p(i) and p(j), re-
spectively. As stated earlier, if Xi and Xj are the GDT’s
at the two latches, then the following inequality must be
satisfied:

Xi �Xj � Ep(i);p(j) � dij (11)

where dij is the maximum delay of any combinational path
between latches i and j.

The GDT problem for minimizing the clock period, T�,
for a given clocking scheme can be solved by solving the
following linear program:

minimize T�

subject to Xi �Xj � Ep(i);p(j) � dij (12)

for every pair, (i; j) of latches such that there is at least one
purely combinational path from latch i to latch j.

For a given circuit and clocking scheme, Ep(i);p(j) de-
pends only on the periodT�. Therefore, for a constant value
ofT�, the constraint matrix reduces to a system of difference
constraints. The above linear program is similar to that in
[1], and can similarly be solved with a binary search on T�,
applying efficient graph-theoretic methods at each value of
T� to check for feasibility.



6 Phase B: Clock skew minimization

6.1 Introduction

In Phase B, the magnitudes of the clock skew compo-
nent of GDT’s obtained from Phase A are brought as close
to zero as possible , by applying retiming transformations.
This employs relocation of the latches with nonzero skews
across logic gates while maintaining the optimal clock pe-
riod previously found. Because of the “freedom” provided
to Di by the active interval of clock phase �i (which allows
Di to be set to any value between T��T�i and T�), Si = 0
can be achieved if

�T�i � Xi � 0:

Thus, if Si cannot be set to zero, we try to bringXi as close
to 0 or �T�i as possible so as to minimize the magnitude of
the final skew Si (refer to Equation (10)). After the skew
magnitudes have been reduced by as much as possible, the
retimed circuit may be implemented either by applying the
requisite skews at a latch (to get the minimum achievable
clock period), or by setting all skews to zero to get a clock
period that is, as will be shown in Section 7, no more than
a fixed bound above the optimum. Note that the word “op-
timum” here refers to the optimum period achievable using
skews, and may not be achievable by retiming, which is a
discrete optimization.

We will describe the procedure for relocating latches with
positive GDT values; the procedure for negative GDT is
analogous. Before we proceed, we will state the following
result, which is a generalization of Theorem 1.
Theorem 2:
(a) Retiming transformations may be used to move latches
from all of the inputs of any combinational segment to all of
its outputs, provided all such latches are of the same phase.
The equivalent GDT of the relocated latch at output j is
given by

Xj = max
1�i�n

(Xi + dij) (13)

where the Xi; 1 � i � n are the GDT’s at the input latches,
Xj is the equivalent GDT’s at output j, and dij is the worst-
case delay of any path from i to j.
(b) Similarly, if latches are moved from outputs to all inputs,
the equivalent GDT at input k is given by

Xk = min
1�j�m

(Xj � dkj) (14)

where theXj ; 1 � j � m are the GDT’s at the input latches,
Xk is the equivalent GDT at input k, and dkj is the worst-
case delay of any path from k to j.

6.2 Positive GDT reduction

6.2.1 Moving a latch across a single gate

In the case of a latch j that has a positive GDT at the end
of Phase A, as shown in Figure 4(a). Note that all these
latches must be of the same phase because the circuit was
well-formed to begin with. Through retiming operations, it
is possible to transform the circuit in Figure 4(a) to the one in
Figure 4(b); the equivalent GDT at each latch in Figure 4(b)
are calculated using Theorem 2(b); the precise procedure
will be described later. Therefore, at the output of the gate
p, there now exists a set of n “virtual” latches3 as shown
in Figure 4(b), with effective GDT’s X1; X2 : : :Xn. The
GDT’s at these latches need to satisfy the constraints:

Xi + d(i; p) � Xk + Ep(i);p(k) 8 1 � k � n (15)

whereXi is the GDT at an input latch i of the combinational
block to which latch 1 � � �n are output latches, and d(i; p) is
the largest combinational delay from latch i to the output of
gate p. The above constraints reduce to

Xi + d(i; p) � min
1�k�n

(Xk) +Ep(i);p(k) (16)

We may have one of two scenarios:

(1) If all of then latches in the array have positive GDT’s,
the minimum of all the positive GDT latches is posi-
tive and hence the set of latches may be moved across
the gate p, as illustrated in Figure 4(c). If the sign
of the GDT were to change after the relocation, the
relocation would not be carried out unless it reduced
the magnitude of the skew Si (calculated using Equa-
tion 10). One may also take advantage of slacks in the
combinational paths to reduce the GDT’s at latches.
If input r to gate p has a slack, slack(r) (i.e., the
worst-case delay at input r could have been increased
by slack(r) without changing the worst-case delay to
the output of gate p), then the GDT may be further
reduced by slack(r).

(2) If one or more of the “virtual” latches has a nega-
tive GDT value, then the GDT at the latch j under
consideration is set to zero. This violates no timing
constraints, since it leaves the minimum skew at an
output of gate p unchanged.

6.2.2 Outline of the minimization procedure

The steps involved in minimizing the GDT’s at latches with
positive GDT’s are outlined below:

3We refer to these latches as “virtual” latches because we do not physi-
cally move them to the input of gate p at this point.
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Figure 4. Retiming for a positive skew latch.

Step 1 All latches in the circuit with positive GDT’s are
placed on a queue, Q.

Step 2 Let j be the latch that is currently at the head of the
queue, and p the gate that fans into it. The procedure
for finding the equivalent GDT’s is as follows. The
gate p is added to the tail of a queueR.4 A PERT/CPM
evaluation is employed to trace the transitive fanouts
of gate p, up to the point where latches are encoun-
tered. When a gate is encountered, it is added to
the queue. During the process, we keep track of the
worst-case delay, d, from gate p. As a consequence
of Theorem 2, if the optimal GDT at a latch is t units,
then its equivalent GDT at the output of gate p is t�d

units.

Step 3 If any equivalent GDT at a “virtual” latch is neg-
ative, then the GDT at j is set to zero and it is not
relocated; if not, the GDT after relocation is found as
in Step 2. If the magnitude of the skew for this GDT
is smaller than that for the current GDT at j, then j

and all of the “virtual” latches at the input to p are

4Note that R is distinct from the queueQ.

retimed across p and the new GDT’s are found.

Step 4 If the relocated latch has a positive GDT, it is placed
at the tail of Q.

Step 5 If Q is not empty, go to Step 2.

7 Properties of the retiming procedure

In this section we give the bound on the optimal clock
period achievable by retiming. Proofs are omitted due to
lack of space.

Lemma 3 At the end of the retiming procedure in Phase B,
the magnitude of skew at each latch is no more than

� = max
1�i�k

�
0;

����G� T�p(i)

2

����
�

(17)

where G is the maximum gate delay.

Theorem 4 If, at the end of the retiming procedure, all
skews are set to zero, then the optimal clock period
for this circuit is no more than

Pskew +max
�
0; k �

��G� T�p(i)
��� 8i = 1; � � � ; k;

where Pskew is the optimal clock period found in
Phase A, and G is the maximum delay of any gate in
the circuit.

8 Experimental Results

The algorithm was implemented as a C program, and
could easily handle the entire ISCAS89 benchmark suite.
However due to limited space only a representative set of
the results is presented.

We present results for a one-phase and a symmetric two-
phase clocking scheme [6] (with a 50% duty cycle). The
one-phase circuits were obtained from the ISCAS89 circuits
(which contain edge-triggered FF’s only) by replacing each
FF by a level sensitive latch. As in [7] the two-phase circuits
were obtained by replacing each FF by a pair of latches. For
simplicity the delays, setup time and hold times of latches
where taken to be zero, although nonzero values can easily
be handled.

The results for unit gate delays were as expected, and the
optimal skew period could be achieved after retiming for
each circuit (unlike in the edge-triggered case [1]). We will
not specifically show those results here; instead, in Tables
1 and 2, we show results for the case where the gate delays
were chosen randomly. In this case, it will be seen that the
optimal skew period is not always achievable. For each cir-
cuit, the tables provide the number of latches jLj, the initial



Table 1. Results for One-Phase Circuits

Circuit jLj Pinit Pret Change Texec G

s526n 21 26.0 16.0 38.46% 0.06s 13
s967 29 30.0 28.0 6.67% 0.06s 11
s635 32 189.0 97.0 48.68% 0.07s 2
s938 32 43.0 25.5 40.70% 0.09s 5
s1269 37 74.0 38.7 47.70% 0.15s 24
s4863 104 114.0 59.0 48.25% 0.48s 16
s3271 116 44.7 28.3 36.69% 0.23s 28
s3330 132 46.7 44.0 5.78% 0.32s 32
prolog 136 67.0 47.5 29.10% 0.33s 48
s3384 183 84.0 39.0 53.57% 0.53s 26
s9234.1 211 81.0 81.0 0.00% 0.00s 32
s6669 239 118.7 48.5 59.14% 1.41s 34
s13207 669 95.3 81.5 14.48% 4.42s 37
s38584.1 1426 191.0 183.0 4.19% 2.83s 88
s35932 1728 137.0 110.0 19.70% 25.53s 128

Table 2. Results for Two-Phase Circuits

Circuit jLj Pinit Pret Change Texec G

s526n 42 26.0 16.0 38.46% 0.08s 13
s967 58 34.0 28.0 17.65% 0.15s 11
s635 64 189.0 97.0 48.68% 0.09s 2
s938 64 47.0 25.5 45.74% 0.14s 5
s1269 74 81.0 38.7 52.22% 0.24s 24
s4863 208 117.0 59.0 49.57% 0.61s 16
s3271 232 67.0 30.5 54.48% 0.85s 28
s3330 264 70.0 44.0 37.14% 0.89s 32
prolog 272 80.0 51.0 36.25% 0.96s 48
s3384 366 126.0 39.0 69.05% 1.92s 26
s9234.1 422 89.0 81.0 8.99% 1.24s 32
s6669 478 178.0 48.5 72.75% 3.12s 34
s13207 1338 143.0 81.5 43.01% 51.25s 37
s38584.1 2852 191.0 183.0 4.19% 43.47s 88
s35932 3456 137.0 128.0 6.57% 250.85s 128

clock period Pinit, the final retimed periodPret, percentage
improvement in clock period Change, the execution time
Texec and the maximum gate delay G. For purposes of ref-
erence, the minimum gate delay in each circuit was 1 unit.
The CPU times are on an HP 735 workstation, and do not
include the time spent in reading in the circuit.

For all cases the final clock period is always within 2�k ��
of the optimal (skew) period, as predicted by the bound in
Theorem 4; in fact, in most cases, the optimal Phase A
period is achieved. The execution time for most circuits is
less than a few seconds, and even the largest circuits run in
only a few minutes. In most cases, the optimal skew period
was achieved through retiming; the only case where there
were significant differences between the skew and retiming
periods was s35932, where the granularity of gate sizes is
large, as can be seen from the value of G.

9 Conclusion

An approach that takes advantage of the equivalence be-
tween retiming and clock skew is presented, and is used for
gate-level retiming. The method is shown to be practical
and capable of handling large circuits. All of the circuits in
the ISCAS89 benchmark suite where easily handled. The
use of skew optimization enables handling level sensitive
latches like edge triggered FFs, thus avoiding a complicated
formulation that is forced to handle critical path propagation
over several latches.

The chief reason for the efficiency of this algorithmis that
it first takes a global view of retiming by solving the clock
skew problem; the number of variables for this problem is
the number of latches, rather than the number of gates, as in
a Leiserson-Saxe based approach. In the second phase, local
transformations are used to perform the retiming. The logic
behind this approach is that in realistic circuits, latches do
not have to be moved across large numbers of gates during
retiming. Therefore, in practical cases, the latter phase takes
only a small amount of computation; this is borne out by
our experimental results.
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