BDD Decomposition for the Synthesis of High Performance PTL
Circuits

Rupesh S. Shelar, Sachin S. Sapatnekar
Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455.
Email: {rupesh, sachin}@ece.umn.edu

Abstract

In this paper, we address the problem of performance
oriented synthesis of pass transistor logic (PTL) cir-
cuits using a binary decision diagram (BDD) decom-
position technique. We transform the BDD decompo-
sition problem into a recursive bipartitioning problem
and solve the latter using a maz-flow min-cut tech-
nique. We use area, delay cost of the PTL implemen-
tation of the logic function to guide the bipartitioning
scheme. Using recursive bipartitioning and a one-hot
multiplezer circuit, we show that our PTL implemen-
tation has O(log N) depth in terms of the mazimum
number of series transistors for any logic circuit, where
N is the number of inputs. We present the results ob-
tained by running our algorithm on a set of MCNC
benchmarks and compare these results with those re-
ported by other library-less synthesis techniques.

1 Introduction

Static CMOS has long been a favorite logic style of
designers for area-efficient and high-speed implemen-
tations with good noise immunity properties. How-
ever, with the advent of the system-on-chip era and
therefore, with the motivation of packing more logic
functionality on the chip, other logic styles such as
domino and pass transistor logic (PTL) are being ex-
plored as alternatives to static CMOS, mainly because
of their lower transistor count and their potential for
high-speed operation. The primary benefits of PTL in-
clude the potential for a lower transistor count, lower
capacitance, smaller delays and reduced power con-
sumption [1,2]. Synthesis techniques for PTL circuits
have been closely related to the binary decision dia-
gram (BDD) representation of the logic functions im-
plemented by the circuit, for several reasons. Firstly,
it is well known that a simple mapping can be used to
translate a BDD to a PTL circuit and this mapping
also avoids sneak paths from power to ground. Sec-
ondly, minimization techniques for BDD’s have been

extensively studied, and numerous efficient algorithms
are available. The approach of [3] proposes a greedy
heuristic to decompose the BDD’s into smaller BDD’s
whose sizes are kept under a specified threshold. Based
on this greedy framework, strategies for heuristic op-
timization under various objective functions, such as
area, delay and power, have been proposed. In [2],
a pass transistor based cell library is proposed and
the results of synthesis are favorably compared with
static CMOS. For area-driven PTL synthesis, Chaud-
hary et al. propose an approach [4] similar to tradi-
tional multi-level logic optimization that comprises it-
erative application of node elimination and don’t care
minimization to reduce the size of BDD’s and BDD
representation is, then, mapped on to a PTL cell li-
brary. A similar philosophy has been used for perfor-
mance driven synthesis, where sweep, elimination and
reorder procedures have been proposed [5], taking into
account the performance gain while using these pro-
cedures iteratively. Both [3] and [5] imply that multi-
level BDD’s are to be used, but the limitation of these
approaches is that they are unable to predict the per-
formance gain beforehand. Other relevant work on
BDD optimization includes [6], in which transforma-
tions such as AND/OR decomposition based on 0/1
dominators, and XOR and functional MUX-based de-
compositions are proposed. Becker et al. reported
the use of multiplexer circuits for area and delay opti-
mizations of PTL circuits [7]. Unlike [3], they allowed
varied threshold size of BDD and their cost function
allows area and depth to be traded off.

In this paper, we present a novel approach to
performing PTL synthesis through a decomposition of
alarge monolithic BDD representing a circuit. We em-
ploy a bipartitioning scheme that uses max-flow min-
cut technique to halve the depth of a PTL implemen-
tation of a BDD with the least area overhead. We
first illustrate how the BDD can be bipartitioned into
smaller pieces and implemented as a PTL circuit using
multiplexers. We apply bipartitioning recursively and

with the use of one-hot multiplexer circuit, we show
that it results in the implementation with logarithmic
depth in number of inputs. Another feature of our
work is that unlike many previous techniques for PTL
circuit synthesis, we predict the delays in the circuit
beforehand through a theoretical analysis of the circuit
delay that motivates our partitioning algorithm.

The organization of rest of the paper is as fol-
lows. In Section 2, we explain a general technique of
BDD decomposition and its PTL implementation us-
ing one-hot multiplexers and regular multiplexers. In
Section 3, we describe a one-hot multiplexer and its
advantages over regular multiplexer. In Section 4, we
transform the decomposition of BDD to bipartition-
ing problem and solve the latter using the max-flow
min-cut technique. In Section 5, we present the exper-
imental results. In Section 6, we conclude the paper.

2 PTL Implementation using

Decomposed BDD’s

2.1 The BDD-PTL Relationship

A BDD can be mapped to a PTL implementation.
Each node of the BDD implements a Shannon expan-
sion about the variable z associated with the node,
and can be expressed as, F = z - F, + 2’ - F,», where
F, and F,. are, respectively, the Shannon cofactors of
the function F. This may be translated to a multi-
plexer that passes F, when z is high, and F}, when z
is low; the procedure can then be applied recursively
to the functions F, and Fs. Therefore, for any logic
function, the BDD representation can be used to di-
rectly arrive at its PTL implementation, as shown in
Figure 1. For the purposes of this paper, all BDD’s

(a) (b)

Figure 1: A translation from a BDD to a PTL circuit
for the function F = AB 4+ CD

are reduced ordered BDD’s (ROBDD’s), which implies
that the order of variables on any path from an output
node to a leaf node is identical.

Consider a PTL implementation of a function
obtained by direct mapping of a BDD on NN inputs. We
estimate the delay along the critical path, Delayas, as
the delay along a path containing N — 1 pass transis-

+ +
Q

Q

€

_,121
UO
«Q

2

b

R C +C
G G

1 1
(a) (b)

Figure 2: (a) Three pass transistors in series (b) The
equivalent RC model

tors in series. Let us assume that buffers are also added
when k pass transistors are in series to regenerate the
signal; we will assume k& = 3 here, but a similar anal-
ysis can be carried out for any other value of k. To
estimate Delayps, we build an equivalent RC model
for the pass transistor circuit. In Figure 2, we show
the Elmore delay for one segment of a PTL circuit
that consists of the maximum of 3 series transistors
between buffers. Note that since each node is a multi-
plexer, only one of of the two transistors connected to
any node will be on, implying that the equivalent RC
network will be an RC line rather than a general RC
tree. Assuming that the resistance of a pass transistor
is Rp, and the resistance of the driver node (buffer) is
R4, we can calculate the Elmore delay of this structure
as Rd-(3CD+3Cs+CBuff)+Rp-(GCD+3CS+3C'Buff),
where Cp(g) is the drain (source) capacitance and
CBuyy is the input capacitance of buffer. In case of a
chain of N — 1 pass transistors with one buffer placed
at every third pass transistor, there are |(N — 1)/3]
three-transistor sections of the type shown in Figure 2.
Therefore, the worst-case delay, corresponding to a
path with IV — 1 transistors in series, is given by,

Delayny = |[(N —1)/3|(Rp(6Cp + 3Cs + 3CBuss)
+R4(3Cp + 3Cs + Cuyy))

Dpo - (N —1) (1)

R

where, Drc = (Rp(2Cp + Cs + Cpuyf) + Ro(Cp +
Cs+CBuff/3)).

2.2 Decomposition of BDD

We see that mapping directly from a BDD to PTL
results in delays that are linear in number of input
variables, and decomposition can be used to reduce
these delays. We outline a general BDD decomposi-
tion technique with the help of the following exam-
ple. Consider a carry function for a 3-bit adder whose
optimized BDD is shown in Figure 3(a). The BDD
shown in Figure 3(a) is on 6 variables a0, b0, al, b1,
a2 and b2; while c¢3 is the output. We take a cut
across the BDD as shown by the horizontal line in

Figure 3: (a) Carry function for 3-bit adder, (b) Intro-
ducing dummy nodes V0, V1, V2

Figure 3(a). Because of this, dangling edges are
created, for instance, edges from nodes labeled al to

nodes labeled a2. We introduce dummy nodes V0, V1,
V2 which replace nodes labeled a2 and bl, as shown
in Figure 3(b). Dummy nodes V0, V1, V2 can be
assigned unique codes using one-hot or minimum-bit
encoding as shown in Table 1. After encoding, the
next step in decomposition is to construct the BDD’s
corresponding to the select and data inputs of a multi-
plexer. Each such select input corresponds to a BDD
representation that sets the leaf nodes according to the
chosen encoding. As an example, the select bit Og

One-hot Encoding Minimum-bit Encoding
terminal node | OgO102 | terminal node SoS1
Vo 100 Vo 00
V1 010 V1 01
V2 001 V2 11

Table 1: One-hot and minimum-bit encoding for
dummy terminal nodes

corresponds to the combination VO =1, V1 =V2 = (.
By substituting these values into the dummy terminals
in Figure 3(b), we can obtain the BDD for the select
input Oy as shown in Figure 4(a). The BDD’s for other
select inputs such as O; and O» can be obtained sim-
ilarly. Figure 4(b) shows the BDD’s for select inputs
So and S1, respectively. We observe that depth of the
BDD’s for the select inputs is the same for one-hot
encoding as well as minimum-bit encoding. Note that
in case of select functions obtained by one-hot encod-
ing, for any assignment of a0, b0, al, only one of the
select functions is true and we can use a one-hot mul-
tiplexer circuit to implement ¢3. The implementation
of ¢3 using a one-hot multiplexer and a regular mul-
tiplexer is shown in Figure 5. The select inputs are
simply the PTL implementations of the BDD’s shown
in Figure 4. Clearly, the implementation using regular
multiplexer has more delay than the implementation
obtained using one-hot multiplexer. We also observe

that in the decomposed implementation using the one-
hot multiplexer, the depth of the circuit is halved as
compared to the implementation obtained by a direct
mapping of the BDD. In the following section, we will
compare the one-hot multiplexer circuit with regular
multiplexer circuit.

(a) (b)

Figure 4: Select functions for (a) One-hot encoding,
(b) Minimum-bit encoding C3

Figure 5: Implementation of c3 (a) Using one-hot mul-
tiplexer (b) Using regular multiplexer

3 One-hot Multiplexer and Reg-

ular Multiplexer
Figures 6(a),(b) shows transistor level implementa-
tions for 4:1 one-hot and regular multiplexers, respec-
tively. In case of a one-hot multiplexer, four select
inputs are required and only one of them can be high
at a time and hence the name. In contrast, the reg-
ular multiplexer has two select inputs which are used
to select among four data inputs. We observe that the
depth of a one-hot multiplexer circuit, as measured
by the maximum number of series transistors, is al-
ways one (constant), irrespective of number of data
inputs. On the other hand, the depth of regular

(o}

) S0 Fos;
TR TR G e P
I, Iy I3 I lo

% I I3

Figure 6: (a) One-hot 4:1 multiplexer, (b) Regular 4:1
multiplexer

multiplexer varies logarithmically with number of data

inputs. Apart from the performance advantage, the
number of transistors required for implementation of
one-hot multiplexer is linear in the number of data in-
puts while that required for implementation of regular
multiplexer is super-linear in the number of data in-
puts. Thus, a one-hot multiplexer offers advantages in
terms of area as well as performance over the regular
multiplexer. However, the number of select inputs re-
quired for one-hot multiplexer is the same as the num-
ber of data inputs, and therefore, we need to generate
a large number of select functions (which are one-hot)
than for regular multiplexers. HSPICE simulations of
transistor level implementations of one-hot and regu-
lar multiplexer also showed that one-hot multiplexer
clearly outperforms regular multiplexer, as expected.
However, we observed that delay of a one-hot multi-
plexer is not constant but increases with the number of
data inputs. This is because, as the number of parallel
transistors increase, the load driven by one-hot multi-
plexer increases, typically by the drain capacitance of
a transistor for each additional data input.

4 Bipartitioning

In section 2, we presented techniques for decompos-
ing a BDD and its PTL implementation using one-hot
multiplexer and regular multiplexer. This decomposi-
tion can be thought of as a bipartitioning that halves
the circuit depth and therefore, shortens the critical
path and its delay. As seen in section 2, in case of
mapping a monolithic BDD to PTL circuits, the delay
is linear in IV, the number of input variables. In the
worst case, such a BDD has N nodes in series, translat-
ing to N series-connected PTL transistors (separated
by buffers). If we take a single cut such that the critical
path is halved, then using equation (1), we find that
the delay using a one-hot multiplexer, which adds one
extra series transistor, is given by,

Drc - (N/2) (2)

Therefore, we see that the delay is approximately
halved. We can apply this bipartitioning procedure
recursively, such that on each application of the pro-
cedure, the critical path is halved. The price being
paid for delay reduction is in terms of area, since the
number of transistors increases as we recursively bipar-
tition the BDD. We can perform this bipartitioning in
such a way that the area penalty is minimum. In the
following subsection, we describe an algorithm that we
have developed which uses the max-flow min-cut tech-
nique to find an optimum cut.

4.1 The Algorithm for Bipartitioning
Our aim is to find the optimum cut that halves the
critical path, measured in terms of the number of
BDD nodes along the path, and also has the least area

Delaype =

penalty. We represent a BDD as a directed acyclic
graph (DAG) where the nodes are identical to the
nodes of the BDD, and the edges are identical to the
BDD edges, and are assigned a direction correspond-
ing to variable ordering, from a lower indexed variable
to a higher indexed variable. To find a critical path,
we assign the two distances to each node.
Distance from Top(D;,,) : This is the maximum of
the distances from all the primary output nodes
to the given node.

Distance from Bottom(Dyott0r,) : This is the
maximum of the distances of all the nodes which
are reachable form a given node.

Note that the distances are measured in terms of num-

ber of nodes in the path and we have used the directed

acyclic nature of the graph to define the distances.

These distances can be found out using a PERT-like

traversal on the digraph. Clearly, the critical path is a

path on which the node with maximum distance from

bottom lies. We define two types of nodes for delay
balanced bipartitioning:

Essential Nodes : These are the nodes for which
Dyottom equals half of the critical path length.

Candidate Nodes : These are the nodes for which
Dyop and Dyottom are both less than half of the
critical path length.

The optimum cut will halve the critical path and also

ensure that no other path in the decomposed imple-

mentation is longer than half the length of critical
path. It is obvious that all essential nodes must be in
the cut while we have a freedom to choose among the
candidate nodes. We assign an area cost to each candi-
date node assuming PTL implementation obtained by
direct mapping of BDD’s and then use the max-flow
min-cut technique [8] to find the optimum cut that
halves the circuit depth at the minimum area cost.

Figure 7 shows the creation of the flow network

(a)
Figure 7: (a) Directed acyclic graph, (b) Correspond-
ing flow network

(b)

from a digraph corresponding to the given BDD. Fig-
ure 7(a) shows the digraph corresponding to a BDD,

Input: G(V,E) = Digraph corresponding to given BDD,
V = Nodes, E = Edges.

Output: Scyt = Optimum cut-set.

Steps:

PERT_Traversal(G); /* Assign Diop, Dpottom VVEV */
Lerit = max{DypottomVveV'};/* Length of critical path */
Nodesgssential = {v:veV and Diottom = Lerit/2 }3
Nodescandidate = {’U:’l}éV and Dtop, Dyottom < Lcrit/2 };
AreaCostEstimate(Nodescgndidate); /* Assume PTL
implementation by direct mapping of BDD’s & estimate */

GFrilow = CreateFlowNetwork(Nodesggssential s N0deScandidate sG)

Ford-Fulkerson(GFriow, G, Scut) ; /* Find optimum cut */

Figure 8:
optimum cut

Pseudocode for algorithm to find

in which there are three nodes labeled f;, fo, and f3
corresponding to the three primary outputs. There are
three candidate nodes labeled ¢;, ¢ and ¢3 and two es-
sential nodes labeled e; and e;. Dashed edges in Fig-
ure 7(a) (for instance, an edge from f; to ¢;) indicate
that there are directed paths between the correspond-
ing nodes. Figure 7(b) shows the corresponding flow
network. There is one source node labeled s and one
destination node labeled t. Each essential node in the
digraph is split into two nodes, for instance, node e;
in the digraph is represented by two nodes e; and e}
with an edge from e; to e} of a small capacity e. Sim-
ilarly, candidate nodes in the digraph are represented
by splitting them into two nodes, for instance, node
c1 in the digraph is represented by two nodes ¢; and
¢}, respectively, with an edge of capacity f.; from ¢
to ¢j. Note that since we want essential nodes to be
included in the optimum cut, we assign a small capac-
ity to the edge between the split essential nodes, and
since we want to choose the candidate nodes with the
least area penalty, we assign a capacity proportional to
the area cost of candidate nodes to the edges between
split candidate nodes. The remaining edges in the flow
network are assigned a capacity of oo, and therefore,
will not appear in the cut. Thus, there are two possi-
ble cuts, Cut A and Cut B, corresponding to cut-sets
Acutset = {€1,€2,¢3} and Beygser = {€1,€2,¢1,¢2} in
the digraph corresponding to the given BDD. Appli-
cation of the Ford-Fulkerson technique to find the min-
imum cut will result in one of these cuts, depending
on values of f.,, f., and f.,. The pseudocode for the
overall algorithm is as shown in Figure 8. Once the cut
is determined, the vertices in the cut are replaced by
dummy terminal nodes, which can be assigned unique
codes, and implemented using either a one-hot multi-
plexer or a regular multiplexer, respectively, as illus-
trated in subsection 2.2. The bipartitioning procedure
can be applied recursively till no further depth reduc-

tion can be achieved and the resulting implementation
has a depth which is logarithmic in terms of number
of inputs, as stated by the following theorem.
Theorem 4.1 The recursive application of an algo-
rithm in Figure 8 to any BDD on N input variables
with the use of one-hot multiplexers results in an im-
plementation which has a depth of O(log N), in terms
of number of series transistors.

Proof 4.1 We observe that the BDD on N variables
has at most N nodes in series and application of bi-
bartitioning shown in Figure 8 results in halving the
critical path length. It means that BDD’s correspond-
ing to select inputs to the multiplexer as well as data
inputs has the path with at most N/2 nodes in series.
Use of one-hot multiplexer adds depth of one transis-
tor. Application of bipartitioning to select and data
inputs will reduce their depth to N/4 with an addi-
tion of one transistor depth for one-hot multiplexer.
Thus, bipartitioning can be recursively applied and
every time it halves the depth. There can be log N
such recursions and the resulting implementation has
depth O(log N).

We point out that multiplexer based implemen-
tation for PTL circuits proposed by Becker et al. 7]
obtains a logarithmic depth for zor functions. This is
because in case of the zor function the cutset always
contains two nodes (zor function on intermediate vari-
ables and its complement) and [7] used regular two-
input multiplexers, which have a depth of one. On
the other hand, the use of one-hot multiplexers and
recursive bipartitioning results in a logarithmic depth
implementation for any circuit, irrespective of the size
of the cut-set.

5 Experimental Results

We have implemented the recursive bipartitioning al-
gorithm and the decomposition procedure as a c++
program called PTLS (Pass Transistor Logic Synthe-
sizer). PTLS uses the BDD package CUDD [9] for
generating BDD’s. We used NMOS transistors as
pass transistors and the size of each transistor was
0.51/0.25u. We used inverters after every three tran-
sistors in series, and in case of implementations us-
ing PTLS, to drive the gates of one-hot multiplexer
as well as to boost the output of the one-hot multi-
plexer. For the inverter, we chose wp/l, = 1p/0.25u
and wy/l, = 0.54/0.25u. The delays were measured
using static timing analysis of the resulting transistor
netlist. In general, the delay in the transistor depends
on the transition time of the input waveform, the load
it drives and the transistor size. Since we keep the
transistor sizes fixed (0.54/0.254) and input transi-
tion time same (1ns) throughout the experiment, we
characterized pass transistors and inverters only for

variable loads and used the same model to evaluate
delays using static timing analysis. We used PTLS to
synthesize MCNC benchmark circuits and compared
its results with other libraryless synthesis techniques
such as TABA [10] and OTR [11]. Table 2 shows the
number of transistors required for implementations us-
ing TABA, OTR and PTLS for several MCNC bench-
marks; delay figures for TABA and OTR are unavail-
able. We observe that the implementations obtained
by using PTLS has significantly less area than TABA
and OTR in all cases except sao2. This is because
BDD representations for all those examples are com-
pact and more importantly, recursive bipartitioning
using one-hot encoding results in simplified expres-
sions. Table 3 shows a comparison of the number of
transistors and the delay for the implementations ob-
tained by mapping monolithic BDD’s directly to PTL,
with the number of transistors and delays in the im-
plementations obtained using PTLS. We observe sig-
nificant delay reductions in all cases with marginal in-
crease in area.

Example | TABA [10] | OTR [11] PTLS
of Trans. |# of Trans. |# of Trans|

5xpl 302 378 282
9sym 404 272 109

misex1 148 158 130
rd53 82 82 56
rd73 174 152 120
rd84 290 252 175
sa02 362 320 487
Total 1762 1614 1359

Table 2: Comparison with TABA, OTR

6 Conclusion

In this paper, we have presented a recursive biparti-
tioning approach to BDD decomposition. We observe
that the use of recursive bipartitioning and one-hot
multiplexers results in a logarithmic depth implemen-
tation of any circuit. A comparison of implementations
obtained by our technique with those reported by other
libraryless synthesis techniques show that our proce-
dure clearly outperforms TABA [10] and OTR [11]
in terms of area. The comparison with monolithic
BDD implementation shows significant performance
improvement with small area overhead.

References

[1] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shi-
mohigsahi, and A. Shimizu. A 3.8ns CMOS 16 x 16
multiplier using complementary pass transistor logic.
IEEE Journal of Solid State Circuits, 25(2):388-395,
1990.

[2] K. Yano, Y. Sasaki, and K. Rikino. Top-down pass-
transistor logic design. IEEE Journal of Solid-State
Circuits, 31(6):792-803, 1996.

[3] P. Buch, A. Narayan, A. Richard Newton, and
A. Sangiovanni-Vincentelli. Logic synthesis for large

Example Monolithic PTLS
of Trans.Delay(ps)[# of Trans/Delay(ps)
5xpl 284 1074.87 282 289.5
9sym 110 1723.89 109 638.66
cl7 32 692.537 29 420.52
alu2 1002 2136.53 1188 568.90
cm138 70 758.909 98 590.26
cm163 126 845.847 159 312.86
cmb 158 1523.57 132 819.76
comp 1070 5295.79 1779 653.77
parity 112 3381.1 108 820.61
rd53 82 753.327 56 491.89
rd73 146 1364.68 120 590.26
rd84 202 1425.47 175 876.12
t481 160 2828.1 299 328.90
z4ml 130 840.131 94 593.53
5202 326 1747.46 487 471.63
misex1 142 738.797 130 570.35
f51m 252 1391.0 573 439.624
my_adder 1204 5417.5 1313 1259.73

Table 3: Comparison of monolithic BDD implementa-
tion with PTLS

pass transistor circuits. In International Conference
on Computer Aided Design, pages 663—670, Novem-
ber 1997.

[4] R. Chaudhary, T. Liu, A. Aziz, and J. Burns. Area-
oriented synthesis for pass-transistor logic. In Inter-
national Conference on Computer Design, pages 160—
167, October 1998.

[6] T. Liu, M. Ganai, A. Aziz, and J. Burns. Performance
driven synthesis for pass-transistor logic. In VLSI De-
sign Conference, pages 372-377, January 1999.

[6] C. Yang and M. Ciesielski. BDD decomposition for
efficient logic synthesis. In International Conference
on Computer Design, pages 626—631, October 1999.

[7] C. Scholl and B. Becker. On the generation of mult-
plexer circuits for pass transistor logic. In Design Au-
tomation and Test in Europe, pages 372-378, March
2000.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. Prentice-Hall India, New
Delhi, 1998.

[9] F. Somenzi. CUDD: CU Decision Diagram package,
release 2.3.0. http://vlsi.colorado.edu/ fabio/CUDD/.

[10] A. Reis, R. Reis, D. Auvergne, and M. Robert.
The library free technology mapping problem. In
IEEE/ACM International Workshop on Logic Synthe-
sis, May 1997.

[11] Y. Jiang, S. S. Sapatnekar, and C. Bamji. A fast
global gate collapsing technique for high performance
designs using static cmos and pass transistor logic. In
International Conference on Computer Design, pages
276—281, October 1998.

