
Efficient Layout Synthesis Algorithm for Pass Transistor Logic Circuits
�

Rupesh S. Shelar and Sachin S. Sapatnekar
Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455.

Email:
�
rupesh, sachin � @ece.umn.edu

Abstract

In this paper, we address the problem of layout genera-
tion of pass transistor logic (PTL) circuits from binary deci-
sion diagrams (BDD’s) by laying out groups of transistors
in rows. We use a max-flow min-cut based recursive bipar-
titioning procedure followed by a greedy heuristic to assign
the BDD nodes to rows, such that the number of wires to be
routed across the rows is minimized. Next, we use an Eu-
lerian trail approach to form clusters of transistors among
which diffusion-sharing is possible. These clusters are then
placed using a linear tree placement algorithm that ensures
optimality in the wiring overhead for connecting clusters
in the same row. The experimental results over benchmark
circuits are promising.

1 Introduction
Pass transistor logic circuits have a great potential to

serve as an alternative to static CMOS because of smaller
area due to the use of NMOS-only pass transistors and the
consequent reduction in capacitances, and for their poten-
tial for high speed, low power implementations [1, 2]. Al-
though they are often employed in arithmetic logic units,
their wider use is limited due to unavailability of good lay-
out tools. In this paper, we address this problem and pro-
pose an automated layout generator for PTL circuits.

The layout generation problem for PTL circuits has re-
ceived relatively less attention as compared to logic synthe-
sis for PTL [3–5] for various optimizations. In [6], Macii
et al. propose a layout generator for PTL circuits that is
suitable for standard cell layouts. The limitation of their ap-
proach is that they do not fully exploit diffusion-sharing be-
tween the PTL multiplexers, which could potentially save
a large amount of area. The PTL layout work by Yano et
al. does utilize diffusion-sharing using the idea of Eulerian
trails in PTL multiplexers, but its applicability is limited to
small cells, typically up to 4-5 inputs [7]. The limitation
to small cells is justified by the fact that buffers must be
inserted after every few pass transistors, and that blocks of
pure pass transistor logic that lies between buffers, which�

This work was supported in part by SRC under award 99-TJ-692.

correspond to cells in their work, tend to have a small num-
ber of inputs. This approach corresponds to traditional cell-
based approach that generates layouts for individual PTL
cells and assembles these by placing blocks of cells in rows
in accordance with a standard cell layout methodology.

Our algorithm has advantages over both of the above ap-
proaches. Unlike [7], our approach takes a more flexible
view of the boundaries between cells. While the layouts
generated by our algorithm fit into the outline of a stan-
dard cell layout methodology, we do not limit individual
cells to have rectangular boundaries, and permit a more fluid
boundary between individual cells of pass transistor logic.
Related work that also uses a flexibile boundaries between
the cells was proposed recently by Gopalakrishnan et al.
but in the context of static CMOS cells [8]; our algorithm
differs from the latter in the use of linear tree placement,
biparitioning and row assignment as well as in the cluster
formations. We assign groups of transistors to rows and
minimize the layout area by maximizing diffusion-sharing,
minimizing the wiring area required to route the intra-row
signals and minimizing the number of inter-row signals.

The organization of the rest of the paper is as follows.
In Section 2, we illustrate a layout model for PTL circuits,
followed by a description in Section 3 of diffusion-sharing
in PTL circuits based on the adjacency relation between the
BDD nodes. Section 4 provides a detailed description of
various steps in the algorithm, and Section 5 presents the
experimental results followed by conclusion.

2 Layout Model
Due to the well known relationship between PTL and

binary decision diagrams (BDD’s), we use the BDD rep-
resentation of a logic function as the input to our ap-
proach. Figure 1(a) shows a PTL multiplexer represented
by a BDD1 node; a Boolean function � is represented by
�����	��
� �	�
 , where ��
 and �
 are the Shannon co-
factors of the function � with respect to the variable � .
This BDD node is well known to map on to a multiplexer,
and Figure 1(b) shows a layout for this multiplexer that is

1For the purposes of this paper, all BDD’s are reduced ordered BDD’s
(ROBDD’s).

1

Af Af
A

AfAf

A

f

(a)

A

f

(b)

Figure 1. Layout of a multiplexer: (a) A BDD
node (b) Its corresponding layout

made compact by allowing the drains of two multiplexer
transistors share the diffusion. Empirically, it has been ob-
served in [7] that exploiting diffusion-sharing at the output
of a multiplexer produces a good quality layouts for small
cells, and also reduces the search space of a layout genera-
tor. Therefore, our work also employs the approach of max-
imizing diffusion-sharing. We allow transistors to be laid
out either horizontally or vertically to maximize diffusion-
sharing among transistors unlike [6].

INVERTERINVERTER

REGION FOR ROUTING

InverterMultiplexer

VDD

GND

VDD

A

BA
B

GND

C

MULTIPLEXERS

PMOS

NMOS

Figure 2. A row-based layout scheme for PTL

A typical pass transistor logic circuit contains a set
of multiplexers, normally implemented using NMOS pass
transistors, and inverters after every three pass transistors in
series to boost the signals and also ensure correct parity of
signals in the PTL network. Our layout model places the
inverters and PTL multiplexers in rows of fixed height, as
shown in Figure 2. The figure shows two rows of logic with
an intervening channel for routing, with each row contain-
ing PTL multiplexers and inverters. The lower row shows
a detailed view of the inside of some typical blocks, illus-
trating the layout of a 3-input NAND gate using PTL mul-
tiplexers and an inverter. Each row has the same height and
rows are separated by a space for routing both intra-row and
inter-row signals. We minimize this area by performing op-
timal linear tree placement

The proposed layout model can be extended easily to

accommodate static CMOS cells due to the placement of
power supply and ground lines for each row; however, the
mixed synthesis of PTL and static CMOS is not addressed
here and is a topic for future work.
3 Diffusion Sharing in PTL circuits

The manner in which diffusion can be shared is depen-
dent on the shapes of layouts and the sizes of the transistors.
Shape level optimizations include making a choice between
laying out the transistors in a multiplexers either horizon-
tally as shown in Figure 1(b), or vertically, as shown in
Figure 3(a), or using a hybrid of the two, as shown in Fig-
ure 3(b). In terms of sizing, we consider only uniformly
sized transistors in this paper. However, the layout of arbi-
trarily sized transistors can be handled using our framework
by considering transistor folding in case of large sized tran-
sistors and weighting the BDD nodes corresponding to such
transistors with an appropriately large area cost during bi-
partitioning and row assignment. Subsequently, shape level
optimizations and diffusion-sharing may be used to handle
arbitrary transistor sizes. We do not, however, consider this
issue in our work and expect to address it in future work.

(a) (b)

Figure 3. Different multiplexers layout
schemes: (a) with vertical transistors (b) with
horizontal as well as vertical transistors

A AA A

A A

B Output of

(a) (b)

Node B
Shared by two nodes

Figure 4. An example of input diffusion-
sharing: (a) A BDD (b) Its corresponding PTL
implementation

In case of PTL circuits synthesized from BDD’s, we ob-
serve that diffusion sharing between any two nodes may be
possible in only the following two cases:

Input diffusion-sharing Two nodes share the same co-
factor, as shown in Figure 4(a).

Output diffusion-sharing One node is a co-factor of the
other node, as shown in Figure 5(a).

The layouts for each case are shown in Figures 4(b) and
5(b), respectively. Note that in Figure 5(b), the transistor

2

associated with input � is laid out vertically and so that it
shares the diffusion at the output of the multiplexer with the
transistor associated with input � , and also with the transis-
tor associated with input � of the adjacent multiplexer. If
two nodes share both cofactors, as shown in Figure 6(a),
then diffusion-sharing can be obtained as shown in Fig-
ure 6(b).

B
AB A

A

B

(a) (b)

as Input of A
Output of B shared

Figure 5. An example of output diffusion-
sharing: (a) A BDD (b) Its corresponding PTL
implementation

A A

A A

B B

(b)(a)

Diffusion sharing
metal strap over diffusion

using

Outputs of both B nodes shared

A A

Figure 6. A diffusion-sharing scheme for the
case when two cofactors are shared: (a) A
BDD (b) Its PTL implementation

4 Algorithm

BDD Network
Multi−level Recursive

Bipartitioning

Uses Max−flow
Min−cut technique

Row Assignment
of BDD Nodes

Uses Greedy
Algorithm

Cluster Formation
 nodesfor same row

Uses Eulerian
Trail approach

Linear Placement
of Clusters

Uses Linear Tree
Placement

Routing

Figure 7. An overview of the algorithm

Figure 7 outlines the overall algorithm for layout of
PTL circuits. The algorithm begins with a multilevel BDD
network2 of the circuit and uses a recursive bipartitioning
scheme to assign the BDD’s corresponding to various re-
gions to different parts of the layout. This is followed by
greedy assignment of the rows to the BDD nodes such that
the number of signals across different rows is minimized
and each row has approximately same number of nodes and
inverters. This bipartitioning approach can be interpreted
as performing a coarse layout region assignment, similar
to the use of partitioning in placement problems, and can

2A multilevel BDD network [9] is similar to a multilevel Boolean net-
work, and uses a BDD to describe the functionality at each level of the
network.

VDD

MULTIPLEXERS

INVERTERS

GND

}

Row Width − Minimize by Diffusion Sharing

Intra−row Signals

Inter−row Signals

Row Height
 (fixed)

ROUTING

Minimize by Min−cut

Minimize by Linear
Tree Placement

Partitioning & Greedy
Row Assignment

 REGION Region for

 Region for

Figure 8. A pictorial view of area minimization
strategies for the layout

be formulated as a max-flow min-cut problem. The greedy
procedure assigns nodes in each BDD in the multilevel rep-
resentation to rows, and takes into account possibilities of
diffusion sharing. The assignment is performed in such a
way that the number of wires from any row to another row
is minimized. After the row assignment is completed, the
multiplexers have been assigned to rows, but their positions
within a row have not been finalized. To do so, we first
cluster nodes in each row using an Eulerian trail approach
to maximize diffusion-sharing. Once the clusters have been
formed, they are assigned specific positions in each row;
this is performed using a linear tree placement algorithm
proposed by Yannakakis [10]. Figure 8 summarizes the fea-
tures of our approach for minimizing the area of the layout.
4.1 Recursive Bipartitioning

c4

c4

c1 c2

1c’ 2c’

t

(b)

s

c3

3c’’

2 2

33
Cut B

Cut A

c3

c1

c4

(a)

c2

2 2

33

Figure 9. Recursive bipartitioning: (a) A multi-
level BDD network, (b) Its corresponding flow
network
The multilevel BDD network can be treated as a directed

graph, where each vertex corresponds to a BDD and a di-
rected edge means that output of a vertex represented by a
BDD is an input to the BDD of another vertex; the edges are
assigned directions leaving from primary inputs and point-
ing towards primary outputs. Our aim is to find a cut that
partitions a given multilevel BDD network into approxi-
mately equal parts in terms of the area occupied by the tran-
sistors and has minimum connectivity among the partitions.

3

To obtain such an area-balanced partition, we associate two
costs with each node in the multilevel BDD network that
are defined as follows.
Lower Cost (���������	�) : This is the cost of a PTL imple-

mentation of the multilevel BDD network rooted at a
given node.

Upper Cost (��
��� �	�) : This is the cost of a PTL imple-
mentation of of the multilevel BDD network rooted at a
given node, assuming the directions of edges reversed.

Since we are interested in area balanced partition, we define
candidate nodes for the cut as follows.
Candidate Nodes are the nodes for which

� � �����������
��
��� �	� �����

, where
�

indicates flexibility while
choosing candidate nodes.

To ensure the minimum connectivity, we transform bi-
partitioning problem to the max-flow min-cut problem in
which each candidate node is assigned a flow capacity equal
to its number of fan-outs. Figure 9 shows a part of multi-
level BDD network containing candidate nodes ��� , ��� , �� ,
��� and its corresponding flow network with a source node and a destination node ! . Figure 9(b) shows two possible
cuts: Cut A with a capacity of 4, and Cut B with a capacity
of 6. The application of the Ford-Fulkerson algorithm [11]
finds the min-cut, which in this case is Cut A and the cor-
responding nodes in the cut are � � and � � . In the resulting
partition, nodes � � , � � and their predecessors will be in one
subset, while nodes � � , � � and their descendents will be in
another subset. Although similar to [5], our recursive bipar-
titioning differs from the latter in the objective as well as
the application.
4.2 Greedy Algorithm for Row Assignment

After recursive bipartitioning of the multilevel BDD’s,
the BDD’s are assigned an ordering for layout. To generate
a compact layout for each BDD, we must assign the nodes
in each BDD to rows such that the diffusion-sharing among
the nodes in the same row is maximized. We use a greedy
algorithm for this purpose, as described in Figure 10. The
set of multiplexer nodes assigned to each row is first ini-
tialized to the empty set. Subsequently, the algorithm suc-
cessively adds nodes to the set as long as a user-defined
area capacity of the row is not exceeded; this user-defined
area capacity can be used to control the width of the layout.
In each step, the node (found by the MostAdjacentNode()
routine) that is greedily added to the set is the one that is
adjacent to the maximum number of nodes that are already
in the set; any ties are broken in favor of a node with a
lower variable index in the variable ordering for the BDD.
This strategy serves two purposes: maximizing the possi-
bility of diffusion sharing and minimizing the number of
edges going across different rows. This greedy algorithm
implicitly minimizes the row area since it considers the ef-
fects of diffusion-sharing. The following proposition states
the complexity of the algorithm without proof due to space
limitation.

Input: "$#&%('�)�* , graph underlying a given BDD
Output: Mapping +-,�%/.10�23'�45'76�686 , 9:;=<?>�@BA
Steps:%DCFE	G�HJI1% ; 9:5;KIL2 ;
while(%DCFE	G�HNMOQP)0R 95S�TUIV2 ; WYX	Z�[\I P ;

while(
R 95S�T <]^T3_a`&bdcDb R 9eS�T)0f I MostAdjacentNode(WhgDZ�[, " , % CFE	G�H);WYgiZ�[jIVWYgiZ�[lk f ;%DCFE	G�HJI1%DCFE	G�H - f ;R 95S�TmI AreaEstimation(W gDZ�[);A

AssignRow(W gDZ�[, 9:;);
++ 95:; ;
A

Figure 10. Pseudo-code for the greedy algo-
rithm that assigns multiplexer nodes to rows

Proposition 4.1 The algorithm in Figure 10 terminates inn-o&prqYstvu ��� s�q�waxzy�{}| time, where
p

is the total number
of nodes,

s5tvu ��� s is the cardinality of the row and
wDx~y�{

is
the maximum degree among all nodes.
4.3 Clustering

The concept of Eulerian trails has often been used for
diffusion-sharing optimizations in static CMOS standard
cells. In our problem, we use this notion of Eulerian trails,
tailored specially for PTL layout.

A

D D

A

EEB B B

AA

C

E

A A A2 3 A C

1 2 3

(a)

1 4 5

(b)

S

Possible diffusion sharing

Eulerian trail

Super Node

4

5

Figure 11. Cluster formation: (a) A group of
BDD nodes to be placed (b) The correspond-
ing Eulerian graph

The width of each row can be minimized by diffusion-
sharing among various multiplexers placed in the same row.
To form cluster of multiplexers that can share diffusion, we
use the Eulerian trail algorithm [12] after Eulerizing a given
graph by adding a super node and connecting nodes with an
odd3 degree to it. The Eulerian trail algorithm [12] was used
in [13] for two dimensional micro-cell placement in the con-
text of CMOS cells. The nodes in our Eulerized graph for

3The nodes with 0 degree are also connected to the super node and this
does not affect the number of diffusion breaks.

4

A A

A

A

1 2 3

A A

A

5

CCA

4

Figure 12. Diffusion sharing clusters corre-
sponding to Figure 11

a row correspond to BDD nodes assigned to the row, and
the edge set consists of two types of edges: ones that denote
possible diffusion-sharing and the others that denote diffu-
sion breaks. As explained in the Section 3, in case of PTL,
diffusion-sharing can occur in case of input sharing, illus-
trated in Figure 4, or output sharing, as shown in Figure 5.
To capture this relationship, we introduce edges between
the corresponding nodes in the Eulerized graph. Dummy
edges indicating diffusion breaks connect the odd degree
nodes to a super node. Figure 11(a) shows an example with
five BDD nodes, corresponding to variables A and C, to be
placed in a row assuming that nodes with labels B, D and E
are already placed in previous rows. The corresponding Eu-
lerized graph is shown in Figure 11(b) and Figure 12 shows
the cluster formations corresponding to the Eulerian trails
in Figure 11(b). Three clusters are identified: one with one
multiplexer and two with two multiplexers each.

4.4 Linear Placement

V1 V2 V3

(a)

V1 V2

V3

(b)

(c)
V1 V3 V2

Cutwidth = 2

Cutwidth = 1

Figure 13. Linear placement for laying out the
clusters: (a) A cluster tree, (b) A sub-optimal
placement (c) An optimal placement
Although every Eulerian trail yields a solution with the

same minimum width, the routing cost varies for differ-
ent trails, corresponding to different arrangements of the
diffusion-sharing clusters. To optimize this cost, we per-
form linear tree placement of the clusters while preserving
the order of the multiplexers in each cluster. Since the mul-
tiplexer order in each cluster is preserved, altering the order
of the clusters will not affect the row width. The objective
here is to minimize the cost involved in routing the signals
that connect different clusters in the same row.

We define a graph, called a cluster graph, � o������ | on
clusters in which every vertex �	� � corresponds to a clus-
ter and there is an edge between the vertices if there are
signals connecting the corresponding clusters. If � o
����� |
is a tree, then use of Yannakakis’ algorithm [10] results in
an optimal placement that minimizes the cut-width; here

the cut-width corresponds to the number of rows required
to route the signals between different clusters. Yannakakis’
algorithm uses dynamic programming to build the solution
in a bottom up manner and runs in

n-o&p�������=p |
time,

where
p

is the number of vertices. If the cluster graph is
not a tree, then we arbitrarily remove some of the edges to
make it a tree; in this case, however, the optimality of so-
lution is not ensured. It is seen that for BDD’s, the cluster
graph is typically close to a tree. We observe that a cycle
can appear in a cluster graph if there are forward edges in
the BDD that connect a node to its ancestor, and the node
at either end of the the forward edge and the parent of the
node are placed in the different clusters of the same row.
However, such a structure is likely to result in a great deal
of diffusion-sharing, and this increases the probability that
all such structures would be placed within the same clus-
ter. Therefore, cycles between clusters, while not impos-
sible, are improbable; it is also verfied from experiments
on the benchmark examples. Figure 13(a) shows a cluster
tree containing three clusters V1, V2 and V3, with connec-
tions between V1 and V3 and between V2 and V3. Fig-
ure 13(b) shows a suboptimal placement of these clusters
that results in a cut-width of two, implying that number of
rows required to route the signals will be two if we use two
metal layers. Figure 13(c) shows an optimal placement with
cut-width of 1 that will be found by Yannakakis’ algorithm,
implying that one row suffices to route the signals between
the clusters. This example shows the impact of linear tree
placement and its contribution to minimizing the area.

5 Experimental Results and Conclusion
We have implemented the algorithms discussed in this

paper in a C++ program that generates layouts for PTL cir-
cuits from BDD’s; the CUDD package [14] is used to con-
struct multilevel BDD’s. Inverters are inserted after every
three pass transistors in series; we use a heuristic for inverter
insertion. The technology that we use is scalable CMOS
technology with one poly and three metal layers. Poly is
used for routing inputs while metal1 and metal2 are used
for routing intra-row signals while metal3 is used for rout-
ing inter-row signals. Metal1 is allowed to route in vertical
as well as horizontal direction while Metal2 is allowed to
route in only horizontal direction and Metal3 is allowed to
route in mostly vertical direction. We use the left-edge algo-
rithm for routing intra-row and inter-row signals. More so-
phisticated routing algorihtms such as those using dog-legs,
or the use of a commercial router will, of course, result in
smaller routing channels and therefore, greater area reduc-
tion. Our results with the left-edge algorithm for routing
are, therefore, upper bounds on the area.

Table 1 shows the experimental results on several bench-
marks. Column 2 and Column 3 shows the width and height
of the layout in terms of � for the example in Column 1
while Column 4 shows the number of rows. Column 5

5

Example Our Area Area [6]Std. Cells [6]
(�
�
) (�

�
) (�

�
)

rd53 564 - -
rd73 1134 - -
rd84 2016 - -

9symml 1310 - -
cmb 1250 - -

parity 1224 - -
C17 165 - -
z4ml 914 - -
sao2 3220 - -
f51m 3300 - -

misex1 1404 - -
C1355 8584 (45%) 15725 19331
C1908 18573 (28%) 23845 29442
C499 10115 (35%) 15725 19331

C6288 147712 (1%) 149235 276288

Table 1. Layout area for benchmark circuits

shows the area of the layout for a ��� ���	� m technology, while
Column 6 shows the area required for layout generation al-
gorithm reported in [6]; the comparison is fair since their
work also works with a ��� ���	� m technology. Column 7
shows the area required for a static CMOS based standard
cell implementation as reported in [6]. We observe that our
algorithm produces more compact layout than those pro-
duced by [6] although there is further scope for improve-
ment in our results if we use more sophisticated routing al-
gorithms. The area reduction can be attributed to diffusion
sharing, linear tree placement, greedy row assignment as
well as min-cut bipartitioning.

Figure 14 shows the placement of multiplexer clusters
and inverters in three rows for an MCNC benchmark rd73;
for clarity, the routing connections are not shown explicitly.
The benchmark rd73 has 7 inputs, 3 outputs with a BDD
representation that has a size of 42 nodes while its tran-
sistor level implmentation include 80 transistors apart from
8 inverters. Figure 14 clearly shows the effect of greedy
row assignment that results in area-balanced rows with high
amount of diffusion sharing among each row. Moreover, it
is quite clear that the flexibility of placing transistors either
horizontally or vertically serves to reduce the area and cre-
ate compact layout. All rows show the effect of diffusion
sharing and its contribution to width minimization.

In this paper, we have described an algorithm for layout
of PTL circuits. Our algorithm has advantages over pre-
viously published approaches and this is also justified by
experimental results on MCNC benchmarks.

References

[1] K. Yano et al. A 3.8ns CMOS 16 x 16 multiplier using com-
plementary pass transistor logic. IEEE Journal of Solid State

Figure 14. Effect of row assignment, cluster-
ing, Linear tree Placement on rd73

Circuits, 25(2):388–395, Apr. 1990.

[2] K. Yano, Y. Sasaki, and K. Rikino. Top-down pass-
transistor logic design. IEEE Journal of Solid-State Circuits,
31(6):792–803, Jun. 1996.

[3] P. Buch et al. Logic synthesis for large pass transistor cir-
cuits. In Proc. ICCAD, pages 663–670, Nov. 1997.

[4] F. Ferrandi et al. Symbolic algorithms for layout oriented
synthesis of pass transistor logic circuits. In Proc. ICCAD,
pages 235–241, Nov. 1998.

[5] R. S. Shelar and S. S. Sapatnekar. Recursive Bipartition-
ing of BDD’s for Performance Driven Pass Transistor Logic
Synthesis. In Proc. ICCAD, pages 449–452, Nov. 2001.

[6] L. Macchiarulo, L. Benini, and E. Macii. On-the-fly layout
generation for PTL macrocells. In Proc. DATE, pages 546–
551, Mar. 2001.

[7] Y. Sasaki, K. Rikino, and K. Yano. ALPS: An automatic lay-
outer for pass-transistor cell synthesis. In Proc. ASP-DAC,
pages 227–232, Feb 1998.

[8] P. Gopalakrishnan and R. Rutenbar. Direct transistor-level
layout for digital blocks. In Proc. ICCAD, pages 577–584,
Nov. 2001.

[9] C. Yang and M. Ciesielski. BDD decomposition for efficient
logic synthesis. In Proc. ICCD, pages 626–631, Oct. 1999.

[10] M. Yannakakis. A polynomial algorithm for the min-cut lin-
ear arrangement of trees. Journal of the Association for Com-
puting Machinery, 32(4):950–988, Oct. 1985.

[11] T. H. Cormen et al. Introduction to Algorithms. Prentice-
Hall India, New Delhi, India, 1998.

[12] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. Dover Publications,
New York, 1998.

[13] M. A. Riepe and K. A. Sakallah. Transistor level micro-
placement and routing for two-dimensional digital vlsi cell
synthesis. In Proc. ISPD, pages 74–81, Apr. 1999.

[14] F. Somenzi. CUDD: CU Decision Diagram package, release
2.3.0. http://vlsi.colorado.edu/ fabio/CUDD/.

6

