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ABSTRACT
Timing prediction and optimization are challenging in design stages
prior to detailed routing (DR) due to the unavailability of routing in-
formation. Inaccurate timing prediction wastes design effort, hurts
circuit performance, and may lead to design failure. This work fo-
cuses on timing prediction after clock tree synthesis and placement
legalization, which is the earliest opportunity to time and optimize
a “complete” netlist. The paper first documents that having “oracle
knowledge” of the final post-DR parasitics enables post-global rout-
ing (GR) optimization to produce improved final timing outcomes.
Machine learning (ML)-based models are proposed to bridge the
gap between GR-based parasitic and timing estimation and post-
DR results during post-GR optimization. These models show higher
accuracy than GR-based timing estimation and, when used dur-
ing post-GR optimization, show demonstrable improvements in
post-DR circuit performance. Results on open 45nm and 130nm
enablements using OpenROAD show efficient improvements in
post-DR WNS and TNS metrics without increasing congestion.
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1 INTRODUCTION
With the reduction in wire geometries and the resulting increase in
per-unit length resistances and capacitances, wire delays contribute
significantly to circuit delay and overall IC performance outcomes.
For successful design closure, modern design flows must accurately
estimate wire parasitics and delays, and use these estimates to
perform timing optimizations such as net buffering and logic gate
resizing at multiple stages of the RTL-to-GDS implementation flow.

Fig. 1 shows a standard physical design flow that highlights multi-
ple timing optimization steps. It is essential to perform optimization
several times in the flow so that netlist changes between successive
stages are manageable within a convergent design methodology.
This is because a too-drastic netlist change between flow stages
can force looping back to earlier steps of the flow, rather than con-
tinuing forward. At the same time, the unavailability of routing
information before the final stages leads to inaccurate wire delay
estimates, challenging the efficiency of timing optimization.

To overcome this challenge, design flows use different models to
account for wire parasitics during timing optimizations based on
the information available at each stage. For example, as highlighted
in Fig. 1, wireload models are used for gate-level optimization dur-
ing logic synthesis. During global placement and even after clock
tree synthesis (CTS), generic half-perimeter wirelength (HPWL) or
FLUTE-based [11] Steiner tree estimates, scaled by layer-averaged
per-unit resistances and capacitances, are used for electrical rule
check (ERC, including max load and max transition rules) compli-
ance and some gate-level optimizations. However, these models can
be highly inaccurate (overly conservative or grossly optimistic) com-
pared to the true parasitics and timing estimates after detailed route.
Any optimization or synthesis using these models can produce solu-
tions which are either overdesigned (pessimistic) or underdesigned
(optimistic, i.e., failing electrical and/or performance constraints).

Despite being late in the physical design flow, the crucial routing
stage also suffers from estimation inaccuracy. A design is typically
routed in two stages: global routing (GR) and detailed routing (DR);
see Fig. 1. The GR tool allocates routing resources to each net, and
generates a routing plan that the DR tool takes as initial guidance
toward a final routing solution. In modern tools, the GR’s routing
plan is in the form of route guides that contain information on layer
assignments and Steiner tree topologies for each net [12][15] .

Importantly, the GR stage is typically followed by a timing opti-
mization step (sizing, fanout clustering and buffering, etc.) as well as
a final (post-optimization) placement legalization step, since better
parasitic estimates are available post-GR compared to earlier flow
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Figure 1: Timing optimizations in the physical design
flow with different parasitic estimates. In modern produc-
tion flows, the output of vendor A’s synthesis tool is “de-
buffered” when passed to vendor B’s place-and-route (P&R)
tool. Then, ERC compliance is enforced during global place-
ment with buffering and resizing. The de-buffering and
ERC-fixing steps are respectively marked with (*) and (**)
in the figure.

Figure 2: Discrepancy between post-GR and post-DRwire de-
lays in AES 130nm and JPEG 130nm. Note that the slope k in
the y = kx best fit (red traces) differs between the designs.

stages. However, GR-based parasitic estimates are still inaccurate
relative to final DR outcomes, as they do not fully comprehend
such factors as detailed design rules, pin access challenges, and
congestion, which are glossed over in GR. Together, these factors
cause wire detours and layer reassignments during DR, which in
turn cause GR-based estimates and DR-based outcomes to diverge.

Fig. 2 shows the inaccuracy in wire delay estimation when us-
ing a GR-based model that estimates wire parasitics using FLUTE-
generated [11] Steiner trees from FastRoute 4.1 [17], as compared
to the wire delay of corresponding detail-routed nets when using
RC trees from post-DR parasitic extraction. The figures show dis-
crepancies in the estimated wire delays in AES (15K nets) and JPEG
(59K nets) implemented in the SkyWater 130nm open-source tech-
nologies [5]. For the most part, the GR-based wire delay estimates
are smaller than the DR-based (ground truth) delay estimates, high-
lighting the optimism in GR-based parasitic and timing estimates.
The figure also shows the best linear (y = kx) fit to the data: the
slope k differs between two different designs that are implemented
with the same tool (OpenROAD [2]) in the same technology.
“Oracle” knowledge of post-DRparasitics improves final out-
comes. Recall from above that the use of inaccurate parasitic and
timing estimates in any timing optimization can lead to harmful

Table 1: Comparison of post-DRWNS when using GR-based
vs. DR-based parasitics for post-GR timing optimizations.

Design Tech # Nets Post-DR WNS
GR-based
parasitics

DR-based
parasitics

DYNAMIC
NODE 45nm 11598 -0.26ns -0.26ns

AES 45nm 16836 -0.21ns -0.19ns
IBEX 45nm 17566 -0.56ns -0.60ns
JPEG 45nm 68247 -0.25ns -0.17ns
RISCV32I 130nm 8150 -0.25ns -0.17ns
IBEX 130nm 15307 -0.24ns -0.11ns
AES 130nm 15369 -0.27ns -0.09ns
JPEG 130nm 59573 0.24ns 0.02ns

pessimism (overdesign that wastes resources) or optimism (under-
design that leads to design iterations). We have conducted a moti-
vating study to show the potential benefit of “oracle” knowledge of
post-DR wire parasitics, were these parasitics to somehow be avail-
able to post-GR timing optimizations. Table 1 shows results on three
open-source 45nm [1] testcases and four open-source 130nm [5]
testcases, using an open-source flow [3]. The table highlights the
cost of post-GR buffering and resizing solutions that are driven by
inaccurate parasitics. For example, if the discrepancy in Fig. 2 (AES
130nm) can be corrected in post-GR, the post-DR worst negative
slack improves by 180ps (–270ps→ –90ps). We ascribe the WNS
improvement to the early identification of true (post-DR) timing
violations, which allows post-GR optimizations to efficiently buffer
nets and resize logic gates on truly critical timing paths that might
otherwise be missed due to optimism, or unnecessarily buffered
and resized due to pessimism. This motivates the key result of our
work, which is to apply machine learning (ML) to close the post-GR
to post-DR parasitic estimation gap.
Related works. Several researchers have worked in the general
area of ML-based delay prediction during physical design. For a
specified net topology, [10] builds an XGBoost-based ML model for
the wire delay of a net of fixed topology, trained on commercial
parasitic extraction and timing analysis tools. The layout impact of
macro blocks in floorplanning on timing is predicted using boosting
and SVM in [8]. The work in [7] solves the problem of predict-
ing wire delay and slew based on placement results, prior to GR,
while [18] predicts path delays prior to routing, based on place-
ment features, using a transformer network and residual model.
The work in [14] uses a look-ahead RC network generated by a
coarse routing step (decomposition of multi-pin nets into two-pin
nets, then routed using L-shaped routes) on the placed design for
feature extraction, and uses this to perform post-placement net-
based timing prediction. In [13], a GNN model is used to estimate
pre-routing slacks at the endpoints of the design.

This paper bridges the gap between GR-based parasitic and tim-
ing estimates and the post-DR-based ground truth using ML during
post-GR optimizations. To the best of our knowledge, this is the
first work that addresses this problem and uses the predicted timing
and parasitic estimates for timing optimizations. We propose three
ML models that predict net parasitics, wire delays, and wire slews,
respectively. Based on features available from the route guides
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Figure 3: Difference in the GR guides (at left) and post-DR
routes (right) of a net from JPEG in 130nm technology.

(e.g., HPWL, source-to-sink Manhattan distances, number of sinks),
ML predicts post-DR parasitics and circuit delays during post-GR
timing optimizations without performing runtime-intensive DR.

The key contributions of this work are as follows:
(1) We show how ML enables the fast and accurate prediction of

post-DR parasitics (π model) and timing estimates (wire delays
and slews) using post-GR information.

(2) We utilize the ML model during post-GR optimization to im-
prove post-DR performance without affecting routability.

(3) TheMLmodel can predict parasitics and timing with an average
error of 6% and 8%, respectively when compared to a ground-
truth-based flow, with a small increase in runtime (to perform
ML inference) when compared to a traditional flow.

(4) We apply the ML model to the OpenROAD [6] physical design
flow and show up to 0.12ns savings (130nm node) in post-DR
worst negative slack (WNS), without degrading congestion.

2 PRELIMINARIES
2.1 Post-GR vs. Post-DR Routing Estimates
Timing-driven physical design requires an estimate of the delay of
each stage of logic. This corresponds to the sum of the gate delay
and the wire delay, each of which is dependent on wiring parasitics.
To predict circuit timing, post-GR interconnect parasitics may be
estimated based on the route guides. The estimated RCs for a net
are determined by the length of its Steiner tree used for GR and the
layer assignment. We use FastRoute [17], which performs precise
layer assignment for each route, i.e., the route guides specify the
precise layer for each segment of the Steiner tree.

The precisewire routes andwire adjacency relations are available
for all nets only after DR is complete. Therefore, post-DR parasitic
extraction provides the exact ground truth parasitics for each route.
As seen in Fig. 3, the DR solution does not always choose a path
similar to that specified by the route guides. Due to such differences
in the post-GR prediction and post-DR wiring topologies of the
nets, the timing results based on post-GR parasitics and the ground
truth can sometimes be quite different, leading to discrepancies in
GR-stage timing estimates. Depending on factors such as changes in
the Steiner tree, or the coupling capacitances to neighboring wires,
post-GR parasitic estimation may be pessimistic or optimistic.1

1Although the plot in Fig. 2 is dominated by optimistic delay predictions, a detailed
examination of the data shows a mix of optimistic and pessimistic predictions.

2.2 Timing Estimation
Aunit operation in static timing analysis is the process of estimating
the delay of a single logic stage, consisting of a gate driving its
fanouts through a net, as shown in Fig. 4. The upper part of the
figure shows the distributed RC tree for the net driven by gate C.
The delay of a logic stage consists of the gate delay and interconnect
delay. Given the estimated capacitive loadCL at the output of a gate
(the “driving point”), and the transition time τ at the gate input, the
gate delay is expressed through a lookup table (LUT) as

Dдate = f (τ ,CL ). (1)

The gate delay for an intermediate pair of (τ ,CL ) values that does
not map to a LUT entry is computed using interpolation. The tran-
sition time at the gate output is estimated in a similar way, and uses
the same axes as gate delay LUTs.

Figure 4: The RC tree model of a net in a logic stage, and its
reduction to an equivalent π -model.

Since a wire is a distributed transmission line, it is modeled by
the distributed RC model shown in Fig. 4, which segments the
wire and creates lumped approximations for each segment. A seg-
mented RC model cannot directly use the LUT of Eq. (1) as the
load is not purely capacitive. Modern timing analyzers overcome
this by (1) generating a π -model reduction for the driving point
impedance [16], with elements R , C1, and C2 (Fig. 4, bottom) cho-
sen so that the first three admittance moments of the interconnect
match those of the reduced model; (2) using the π -model to find
an effective capacitance, Ceff, that models resistive shielding; and
(3) using CL = Ceff in Eq. (1) to compute the gate delay. Finally,
model order reduction techniques are used to compute the transfer
function from the driving point to each fanout. Based on the delay
and slew at the driving point, the waveform at each fanout is com-
puted, yielding the wire delay and slew. The sum of the gate and
wire delays constitute the stage delay to the fanout, and the slew at
each fanout is used as the input slew for the next logic stage.

3 DR TIMING PREDICTION FRAMEWORK
3.1 Overview
Fig. 5(a) highlights a typical routing flow in physical design, where
GR is followed by timing optimization before the final DR. These
optimizations rely on parasitic estimates from route guides, which
use Steiner trees to construct an RC tree network. This results in
timing inaccuracy, relative to the final DR timing (see Fig. 2). In
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Figure 5: Three flows that use different parasitic esti-
mates for post-GR timing optimizations: (a) traditional flow
(Steiner tree-based RC estimates), (b) ground-truth (DR fol-
lowed by parasitic extraction to determine post-DR para-
sitics), and (c) our flow (fast ML engine for post-DR para-
sitics and timing).

an ideal flow, shown in Fig. 5(b), performing DR and extracting
parasitics would provide accurate timing estimates, but such a flow
is impractical due to the high computational expense of DR.

We propose the use of an ML-based flow to predict post-DR
timing from features extracted at the post-GR stage, as highlighted
in Fig. 5(c). Through fast ML inference, the model can rapidly pre-
dict post-DR timing estimates without performing time-intensive
DR. Our framework leverages three XGBoost-based ML models to
predict the following three post-DR metrics:
(i) Source-sink wire delay: This ML model is applied on a per-
sink basis and it predicts the delay between the driving point and
the sink pins. For example, in Fig. 4, for net C, the model predicts the
wire delay between the driving point (piny of the driver gate C) and
the sink (pin e of the gate D). Similarly, it predicts the source-sink
delay between the driver pin y and sink pin f .
(ii) Source-sink wire slew: This ML model is used to predict post-
DR wire slew at each sink in the design. We predict source-to-sink
wire slews, i.e., the difference in the transition times between the
waveforms at the driver pin and the sink pins. In Fig. 4, the source-
sink wire slew is (t1 − t2), where t1 is the transition time at the
driving point pin y, and t2 is the transition time at the sink pin e .
(iii) Wire parasitics (π model): This ML model predicts post-DR
π -model parasitics – R, C1, and C2 – as shown in Fig. 4.

The above three ML models estimate post-DR circuit delays with
the help of an STA engine for annotated delay propagation. The
first two models are directly used to annotate wire delays and wire
slews in the timer while the latter is used indirectly in the timer to
calculate Ceff, which is used as CL in (1) to compute the gate delay.

3.2 Feature Engineering
For accurate prediction, it is critical to account for important fea-
tures that impact DR timing. Since the three models are applied
after GR, we are constrained to using post-GR information.

Figure 6: A route guide for a three-pin net with a source and
two sinks. The net is routed using four wire segments with
lengths l1, on M1, l2 on M2, l3, on M1, and l4, on M2.

3.2.1 Input features: Source-sink delay and slew prediction models.
HPWL: This feature is extracted after placement, and is shown by
the bounding box in Fig. 6. It is a lower bound on the wire length:
for nets with numerous sinks, it can be a significant underestimate.
Number of sinks: This feature is extracted from the gate-level
netlist. Multi-sink nets show larger discrepancies between post-GR
and post-DR wirelengths as they tend to detour and/or have net
lengths that exceed the HPWL, as noted above.
Slew at the driving point: This indicates the signal strength at
the source pin. The slew is extracted from a timing analysis tool,
which uses GR-generated Steiner tree-based parasitics. The slew
at the source pin affects both wire delay and wire slew. A smaller
driving point slew leads to smaller source-sink delay and slew.
Congestion estimates: Congestion is critical to bridging the dis-
crepancy between GR and DR. Nets whose GR-generated route
guides go through congested regions tend to detour in DR, for
routability, pin access, and DRC-related reasons. Therefore, conges-
tion estimates are essential for predicting wire detours. As features,
we use both the mean and standard deviation of the congestion in
all GCells in the bounding box of the net as shown in Fig. 6.
Rise and fall transitions: Since the wire delays and slews are
different for the rise and fall transitions, we encode the switching
direction with a binary-encoded feature (0 for rise and 1 for fall).

The above-listed features are on a per-net basis, i.e., identical for
all sinks on the net. Since we predict wire delays and slews on a
per-sink basis, we also provide the following sink-specific features:
Source-sink length: The source-sink length is defined as the total
length of the wire segments that connect the driving point to the
target sink pin, and is extracted from the GR-generated route guides.
For the example net in Fig. 6, routed in layersM1 andM2, the source-
sink length for sink1 is defined as (l1+l2+l4). Since the source-sink
length is proportional to the source-sink delay and slews, this is a
critical feature in estimating post-DR wire and slew delays.
Source-sink R, C: These features list to the total resistance and
capacitance, respectively, between the driving point and the target
sink. The total resistance [capacitance] is the sum of the products
of the segment length and the per-unit resistance RMi [capacitance
CMi ] of its assigned layerMi , over all source→sink wire segments.
In Fig. 6, the total resistance to sink1 is (l1×RM1+l2×RM2+l4×RM2),
and the total capacitance is (l1 ×CM1 + l2 ×CM2 + l4 ×CM2).
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Figure 7: Feature sensitivity analysis showing the average
mean absolute percentage error (MAPE) (y-axis), for each re-
moved feature (x-axis), for all 45nm designs.

3.2.2 Input features for post-DR π -model parameter prediction
model. For the ML model that predicts the parameters of the π -
model at the driving point, we use the HPWL, number of sinks,
and congestion estimates as features. We use additional features
related to the values of R, C1, and C2, generated by applying the
O’Brien/Savarino model to the GR-generated Steiner tree.

3.2.3 Feature importance. To demonstrate that each selected fea-
ture is indispensable to the model, we perform a sensitivity analysis
for each feature. For example, for source-sink wire delay prediction,
we measure the test accuracy for different models, each trained by
removing one specific feature at a time. The x-axis of Fig. 7 lists
the feature that has been removed, and the y-axis highlights the
average %error of all 45nm designs. The figure is annotated with
an error bar that shows the maximum and minimum %error across
all the designs. We find that the model has the best test accuracy
when all the features are selected. Thus, each feature contributes
to improving the accuracy of the model.2

3.3 ML Models and Training
XGBoost ML engine. All three ML models are implemented us-
ing XGBoost [9], an ensemble learning algorithm based on gradi-
ent boosting. XGBoost predicts the target variable using parallel
tree boosting, combining estimates from several models including
gradient-boosted decision trees. A linear combination of multiple
trees is used to describe the complex nonlinear relationship be-
tween input and output data. New trees are generated based on
previous trees, using gradient descent to minimize a loss function.
Ground-truth data generation. Our ground-truth data is gener-
ated using the flow highlighted in Fig. 5(b). We use a branch of
OpenROAD-flow-scripts [3] which performs post-GR optimizations.
The ground-truth data is generated for four designs implemented
in two open-source technologies, a 45nm technology (IBEX, AES,
JPEG, Dynamic node), and a 130nm technology (IBEX, AES, JPEG,
and RISCV32I). To increase the diversity of our training data set
we run the ground-truth flow for each design with different floor-
plan areas and placement utilization settings. Different utilization
settings result in designs with different levels of congestion and
consequently in nets that have different lengths due to detours. In
total we use 16 designs (four designs with four different utilizations
each) for generating ground-truth data. For each net in the design,
we extract the features described in Section 3.2 and its correspond-
ing ground-truth labels. The labels for the three ML models are

2Note that not all models use all features. Therefore, there are missing bars for certain
features in the figure.

extracted after timing analysis (green box in Fig. 5(b)) and include
the source-sink wire delays, source-sink wire slews, and π -model
parameters. For the source-sink delay and slew model, each sink
in the design represents a single datapoint, and for the π -model
predictor each net in the design is a single datapoint. Our ground-
truth dataset contains 456,661 datapoints in 45nm technology and
394,162 datapoints in 130nm technology.

The pace of ground-truth data generation is slow (40 minutes
per design, on average) but is a one-time cost per technology since
the trained model can be applied to new designs to rapidly and
accurately predict post-DR parasitics and timing.
Model training. The model is trained using root mean squared
error (RMSE) as the loss function. We use XGBoost regressor, with
a learning rate 0.01. We choose the maximum treedepth = 4, the
number of estimators = 900, and the subsampling ratio = 0.8. The
hyperparameter values are chosen based on a full search of a dis-
crete grid on the domain of the hyperparameters: the assignment
with the highest score is used for parameter tuning. The models
are not sensitive to a small change in the hyperparameter.

3.4 ML Inference in the Physical Design Flow
The trained ML models are applied to the flow shown in Fig. 5(c).
At the post-GR phase, the ML model features are extracted from
the design data and route guides. Next, the features are fed into
the three ML models, which perform a fast and accurate inference
to predict source-to-sink wire delays and wire slews, as well as
π -model parameters. The predicted estimates are then annotated
via Tcl APIs in the STA engine: the π model parameters are used by
the timing engine to estimateCeff which is used in turn to calculate
gate delays, while the source-sink wire delays and slews are directly
used to compute the net delays and net transition times. The timer
performs an update to propagate these annotated wire delays and
gate delay estimates. The new ML-predicted timing estimates are
used by the timing optimizer to perform gate resizing and buffer
insertions which fix setup, hold, maximum slew, maximum fanout,
and maximum load violations.

The ML-based inference flow provides an accurate estimate of
post-DR timing without performing time-intensive DR. These esti-
mates are useful for efficient buffering and resizing, as the optimizer
now has knowledge of the truly (post-DR) critical paths.

4 EXPERIMENTAL SETUP AND RESULTS
To evaluate our ML model for accuracy and its application in a
physical design flow we set up the three flows shown in Fig. 5 using
OpenROAD-flow-scripts [3]. The first flow is the traditional flow
where Steiner tree-based parasitics are used for post-GR timing
optimizations (Fig. 5(a)). The second flow is an ideal ground-truth-
based flow where we use post-DR parasitics for post-GR timing
optimizations (Fig. 5(b)). This is the flow that we strive to match
with our ML model. The third flow is our ML-prediction-based flow
where we apply the three models to predict post-DR timing for post-
GR optimizations (Fig. 5(c)). Our experiments are performed on two
open technologies, NanGate 45nm [1] and SkyWater 130nm [5].
The ML model training and inference is implemented in Python 3.6
and performed on a machine with Intel Core i7 CPU @3.6GHz and
NVIDIA RTX 2080Ti GPU and 64GB RAM. The predicted parasitics,
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wire delays, and wire slews are annotated into the timing engine
by modifying OpenROAD [2] and OpenSTA [4] source code.

We evaluate our ML-based flow against the traditional (“Trad.”)
and ground-truth-based flows for (i) accuracy, and (ii) impact on
post-DR outcomes – worst slack (WS), total negative slack (TNS),
runtime, and congestion. All results presented are for a test design
that is unseen during training. For example, in 130nm technology,
the predicted labels of al utilization setting of IBEX design are gen-
erated from a model trained on all utilization settings of AES, JPEG
and RISCV32I, and the predicted labels of all utilization settings of
AES design are generated from a model trained on data from all
utilization settings of IBEX, JPEG and RISCV32I.

4.1 ML Model Accuracy Evaluation
We analyze the accuracy of the ML models at both the net/sink
level (the ML model performs inference on a per-sink/per-net basis)
and at the path level. It is critical to evaluate the predicted timing
at both levels as net-level errors have the potential to accumulate
or cancel during delay propagation.

4.1.1 Net/sink-level accuracy: We use mean, maximum, and stan-
dard deviations of the absolute %error as metrics for evaluation.
The absolute percentage error is the absolute difference in the
ground-truth and the predicted value with respect to a reference.
Our references are: stage delay for wire delay; ground-truth sink
slew for wire slew; and ground-truth labels for π -model parameters.

Table 2 summarizes these metrics for all the three ML models.
The table shows small values of mean %error indicating transfer-
ability of the model to an unseen test design. While the values
of maximum %error are large (except RISCV32I), we verify that
these errors are for very short nets that have negligible wire de-
lays and slews. The errors for RISCV32I are the least, as it has the
least number of nets in the design, and it is predicted by the model
trained with samples from larger designs. The standard deviation
of %errors is low, indicating that few nets have large errors. For our
application of post-GR timing optimization, these accuracy levels
are sufficient to realize the benefits of the ML model.

Fig. 8 shows the discrepancy in wire delay and wire slew between
post-GR results and post-DR results for the JPEG design in a 130nm
technology. The DR deviates significantly from the GR creating
discrepancies in wire delay and slew as highlighted by Fig. 8(a) and
(c). The ML model uses features from GR and accurately predicts
wire delays and slews as shown in Fig. 8(b) and (d). The model has
much better match with post-DR delays and slews when compared
to GR. The wire delays and slews are predicted with high accuracy
as they track the 45 degree line in the scatter plots in Figs. 8(b), (d).
The discrepancy between GR and DRwire delays or slews cannot be
corrected by simply multiplying by a scaling factor as this scaling
factor will differ for each design in the same technology (Fig. 2).

4.1.2 Path-level accuracy: The path delays are estimated by anno-
tating the predicted π -model values, wire delays, and wire slews
into a timing engine. We compare the path slacks across the tradi-
tional flow, ML-based flow, and the ground-truth flow. For example,
Fig. 9 shows the slack comparison of JPEG in a 130nm technology.
The figure on the left shows the discrepancy in path slack between
GR and DR timing estimates and the figure on the right shows the

Table 2: Evaluation of the ML models using mean, maxi-
mum, and standard deviations of the absolute %error asmet-
rics.

Designs Tech Metrics Wire delay Wire slew C1 R C2

IBEX 45nm
Mean %error 4.30 8.94 3.36 6.21 9.09
Max %error 38.38 38.32 35.09 37.86 39.08

Std. dev. %error 5.99 7.35 2.99 7.43 9.13

AES 45nm
Mean %error 5.12 8.23 2.60 4.88 7.76
Max %error 39.90 39.98 33.09 28.34 35.37

Std. dev. %error 7.46 8.17 5.75 4.50 7.56

JPEG 45nm
Mean %error 4.31 7.47 2.47 5.63 7.63
Max %error 39.68 39.97 33.53 39.91 39.86

Std. dev. %error 5.56 9.09 3.02 7.06 9.03

DYNAMIC
NODE 45nm

Mean %error 4.21 8.19 2.24 4.95 9.07
Max %error 39.82 39.96 22.03 38.38 44.95

Std. dev. %error 5.00 8.18 3.05 6.18 10.76

IBEX 130nm
Mean %error 3.35 4.15 4.51 5.08 16.76
Max %error 21.21 21.54 20.97 27.06 37.87

Std. dev. %error 6.33 5.45 4.51 4.08 5.56

AES 130nm
Mean %error 11.15 2.46 5.83 2.96 10.38
Max %error 39.05 29.18 37.43 29.30 37.08

Std. dev. %error 8.03 3.15 4.71 3.05 8.61

JPEG 130nm
Mean %error 4.17 5.84 3.92 4.05 7.72
Max %error 37.83 39.97 35.88 37.84 38.44

Std. dev. %error 6.51 6.22 4.10 4.79 7.75

RISCV32I 130nm
Mean %error 1.54 1.15 2.79 3.39 12.64
Max %error 3.44 2.58 18.21 35.07 31.16

Std. dev. %error 0.67 0.83 3.48 4.04 6.06

Figure 8: Wire delay and slew comparisons for JPEG 130nm.

ML-corrected path slacks versus the path slacks post-DR. With the
ML-based timing correction applied after GR, the path slacks post-
GR have a better match with post-DR slacks. As before, we note
that the GR-based wire delays cannot be corrected using a scaling
factor plus a constant because the scaling factor and constant value
are different for different designs in the same technology.

In Table 3 we highlight the mean path slack %error which is
defined as the mean of the absolute difference between the post-DR
paths slacks and the ML-based slacks. The table compares the mean
path slack %errors from the ML model against the %errors from the
traditional flow across multiple designs for different utilizations
or core die areas. For all the three flows, we compare the path
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Figure 9: Path slacks comparison for JPEG 130nm.

Table 3: Post-GR paths slack errors of the traditional and
ML-based flows for all designs in different utilizations.

Design Die Size
(mm2)

Mean Path Slack
Error % Design Die Size

(mm2)

Mean Path Slack
Error %

Trad. ML-based Trad. ML-based

IBEX
clk = 2ns
45nm

0.55x0.54 2.11 0.70 IBEX
clk = 16ns
130nm

0.67x0.67 1.09 0.64
0.50x0.49 2.25 0.64 0.62x0.62 1.48 0.47
0.45x0.44 1.97 0.71 0.58x0.58 0.56 0.67
0.40x0.39 2.38 0.58 0.55x0.55 1.65 0.99

AES
clk = 0.8ns

45nm

0.62x0.62 2.63 0.82 AES
clk = 5.4 ns
130nm

0.57x0.57 1.90 1.73
0.57x0.57 3.95 1.08 0.53x0.53 1.30 1.68
0.52x0.52 2.20 0.87 0.50x0.50 1.32 1.23
0.47x0.47 2.40 0.85 0.47x0.47 1.43 1.26

JPEG
clk = 1.4ns

45nm

1.20x1.19 6.07 2.82 JPEG
clk = 7.8 ns
130nm

1.15x1.15 3.20 0.82
1.10x1.09 7.05 2.64 1.08x1.08 3.48 0.87
1.00x0.99 5.78 2.50 1.02x1.02 3.40 1.02
0.90x0.89 6.09 2.24 0.97x0.97 3.72 1.62

DYNAMIC
NODE

clk = 1ns
45nm

0.45x0.45 2.35 0.57 RISCV32I
clk = 9.6ns
130nm

0.43x0.43 4.13 1.08
0.40x0.40 1.45 0.63 0.40x0.40 1.65 0.39
0.35x0.35 2.30 0.86 0.38x0.38 1.68 0.22
0.30x0.30 1.58 1.14 0.36x0.36 2.06 0.71

Table 4: Impact of ML-based prediction on post-DR metrics
for the traditional, ground-truth and ML-based flows.

Design Tech #Nets Post-DRWS (ns) Post-DR TNS (ns) Runtimes (s)

Trad. Ground
truth

ML
based Trad. Ground

truth
ML
based Trad. Ground

truth
ML
based

IBEX 45nm 17566 -0.56 -0.60 -0.58 -465.14 -501.43 -479.08 7 342 17
AES 45nm 16836 -0.21 -0.19 -0.20 -27.33 -26.27 -26.44 14 718 22
JPEG 45nm 68247 -0.25 -0.17 -0.22 -79.08 -39.72 -74.20 15 712 58

DYNAMIC
NODE 45nm 11598 -0.26 -0.26 -0.26 -23.96 -22.94 -23.72 4 232 16

IBEX 130nm 15307 -0.24 -0.11 -0.31 -0.24 -0.11 -0.32 5 1005 11
AES 130nm 15369 -0.27 -0.09 -0.15 -0.36 -0.17 -0.29 5 15206 16
JPEG 130nm 59573 0.24 0.02 -0.01 0.00 0.00 0.00 9 516 29

RISCV32I 130nm 8150 -0.25 -0.17 -0.16 -0.60 -0.52 -0.26 2 1569 5

slacks post-GR. The traditional flow has a higher %error when
compared to the ML-based flow. This indicates that on average the
ML-based post-GR slacks correlate better with post-DR slacks than
the traditional-flow-based slacks. This enables timing optimizations
to buffer nets and resize logic gates on truly critical paths.

4.2 Impact on Post-DR Outcomes
The three ML models are applied to the physical design flow. We
compare our post-DR outcomes against the other two flows in Fig. 5.
Table 4 compares post-DR WS, post-DR TNS, and runtimes for the
three flows. The ground-truth flow optimizes paths that are critical
as per the DR-based parasitics while the traditional flow optimizes
paths that may or may not be critical post-DR. For example, Fig. 10
shows a timing path from OpenSTA after DR. At left, we see the
post-DR timing path from the traditional flow, and at right we
list the same path from the ML-based flow. The post-GR timing

Figure 10: A critical path fromAES 130nm after DR from the
traditional flow (left) and the ML-based flow (right).

optimization does not realize that the path becomes critical after
DR and hence does not include any buffers, while our ML-based
flow identifies this as a critical path during post-GR optimization,
and buffers the net to ensure that the path meets timing after DR.
As a consequence of better optimization, we improve post-DR WS.

Out of eight designs, the ML model improves post-DR WS/TNS
for five designs, indicating effective timing optimization post-GR
using the ML model. Of the remaining cases, IBEX 45nm has very
small WS degradation; JPEG 130nm is an improvement over “Trad.”
(which overcorrects WS to 0.24ps; “ML” brings it close to zero,
with lower buffering/sizing cost); IBEX 130nm is worse, due to
ML error that leads to the incorrect gate sizing in post-GR timing
optimization and degrades the post-DR slack.

To determine the impact of ML-based post-GR timing optimiza-
tions on routability, we analyze congestion under the traditional
and ML-based flows. We define a GCell to be congested if its con-
gestion exceeds a specified threshold. Fig. 11 shows the number of
congested GCells in the traditional and ML-based flows, for differ-
ent thresholds. The ML-based model does not increase the number
of congested GCells, indicating that it does not impact routability.

From Table 4, we see that the ML-based flow predicts post-DR
timing in tens of seconds without time-intensive DR. The ML-based
flow achieves comparable solutions to the ground-truth-based flow,
with an average speedup of 15× over the ground-truth flow. When
compared to the traditional flow, ML-based flow is 2.85× slower.
However, the runtime increase when compared to the traditional
flow is acceptable as the model is able to reap the benefits of the
ground-truth flow.

5 CONCLUSION
We perform the first study on an ML-based method to predict post-
DR timing at the post-GR stage, which is different from [7, 18]
that perform timing prediction based on placement results, prior to
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Figure 11: Number of post-DR congested regions in the tradi-
tional and ML-based flow in (a) 45nm (b) 130nm technology.

GR. Since some features in post-GR are not available in the prior
stages of design, the prediction based on post-GR is more accurate
than the prediction based only on the placement. Specifically, Fig. 7
shows that the accuracy of the prediction depends on the inclusion
of features such as source-sink RC and Steiner-tree-based parasitics
that are only available in the post-GR phase. Our models show
better accuracy of timing and parasitic estimation in post-GR than
the traditional methods used in post-GR, and improve the circuit
performance in post-DR efficiently without increasing congestion.
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