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This paper solves the delay-power optimization problem by em-
ploying accurate optimization techniques. A new class of func-
tions, called generalized posynomials, which is a superset of the
set of posynomials, is used to model the delay and the power. The
mapping of these generalized posynomials to regular posynomi-
als, which allows the use of existing posynomial solvers, is shown.
We show how all constraints representing the circuit can be rep-
resented compactly in posynomial form. Finally, the results of
power optimization are presented.

�
Introduction

It is well known that in the past, trends in performance, density
and power have followed the scaling theory. For these trends
to continue, two important issues that need special attention are
power delivery and power dissipation [1]. Typically, each gener-
ation of chips has shown about a 30% reduction in gate delay and
about same or more reduction in energy dissipation per transition.
The total power dissipation can be scaled down by reducing either
the supply voltage, frequency or die size, each of which results in
reduced performance. Therefore, the problem of optimization for
low power to meet the stringent performance constraints contin-
ues to be a very relevant problem.

Several approaches that perform circuit level optimization for
area or power have been published. In [2], the authors published
a linear programming based method for gate sizing for power-
delay tradeoffs, using a piecewise linear gate delay model. Such
a model is simplistic and inaccurate in the present deep submi-
cron regime. In [3], the power optimization problem is solved
by transistor sizing and ordering. Power dissipation is modeled
accurately by incorporating fanout capacitances and gate transi-
tion measure. A “pin-delay” model is developed based on the
delay model used in SIS. However, in the absence of any convex-
ity properties, they use heuristic techniques to solve the problem.
The evident drawback of employing a heuristic approach is that
there is no guarantee that the solution will be optimal, even after
application of any refinement techniques. In [4], only transis-
tor reordering is used for the power-performance optimization,
but the important aspect of transistor sizing is not considered.
Recently an accurate technique for circuit optimization has been
presented in [5], using a nonlinear optimization technique. Simu-
lation followed by time domain sensitivity computation is used to
provide gradients to a nonlinear optimizer. However, drawbacks
include the destruction of convexity properties due to transient

simulation-based modeling, the need for circuit-level simulation
which tends to make the optimization computationally intensive,
and the pattern dependent nature of the timing analysis which re-
quires the user to supply the simulation vectors.

Thus, although several attempts have been made to solve the
problem, the lack of convexity based techniques tends to keep the
results away from optimality. The solution is to use the mod-
els that posses convexity properties and hence lend themselves to
accurate optimization techniques. It is observed in [6] that the
Elmore model posses convexity properties, and several transistor
sizing techniques have made use of the this model [6,7]. However,
the Elmore model is inaccurate for deep submicron technologies.
Its failure to correctly consider several factors such as transistor
nonlinearities, the effect of the position of switching transistor,
the input transition times, and the transistors opposing the transi-
tion, are a few of the reasons for its inaccuracy.

In [8], we had developed a convex model for gate delay that
overcomes these limitations. For the sake of completeness, we
have included a brief treatment of the model in section 2. The the-
oretical underpinning of this model development is a result that
defines a new class of functions that is shown to work well for
modeling circuit delays. This set of functions includes the set of
posynomials as a proper subset, and therefore, we refer to these
functions as generalized posynomials.

In this paper, we show the precise relation between a gener-
alized posynomial programming problem and a posynomial pro-
gramming problem. We illustrate this in Section 4, and show
that geometric programming solvers may be used for generalized
posynomial programs. This is a powerful result, since we now
have a large new class of functions that can accurately capture the
delay behavior of a circuit, but may use conventional fast meth-
ods, which exploit the structure of the problem, for solving them.

Before proceeding to present the convex models, a few words
on the importance of convex optimization are in order. A convex
optimization problem involves the minimization of a convex func-
tion over a convex set (for definitions of these terms, the reader is
referred to [9]). A problem of the type

minimize f � x � (1)

such that gi � x ��� 0 � 1 � i � m

x � Rn

where Rn is the n-dimensional real space and x a vector in Rn,
is a convex programming problem if f � x � and gi � x �� 1 � i � m,
are convex functions. The advantage of a convex programming
formulation is that the problem is known to have the property that



any local minimum is also a global minimum, and efficient op-
timization algorithms for solving such a problem are available.
Therefore, it is desirable to attempt to express any optimization
problem using a convex formulation, as far as possible, under the
caveat that the accuracy of the modeling functions for the objec-
tive and the constraints must be preserved.

In the context of transistor sizing, this requires the derivation
of convex closed-form expressions for the path delay; as a result,
this will satisfy the requirement of relation (1) that each timing
constraint is of the form gi � x � � 0. In [8], where we solve the
problem of area optimization, we have incorporated these mod-
els into a TILOS [6] like optimizer. However, the use of heuris-
tics has inherent drawbacks as there can be no guarantee of op-
timality. For the model to fully exploit its convexity properties,
it is necessary to couple it with accurate mathematical optimiz-
ers. In this paper, we show, for the first time, how these models
lend themselves effectively to traditional posynomial solvers. We
show the mapping from generalized posynomials to posynomials
which enables these models to be used with a geometric program-
ming optimizer.

The transistor size optimization problem is formally stated as

minimize Power

subject to Delay � Tspec � (2)

An important contribution of this paper is the accurate solution
of this power-delay tradeoff problem. The accuracy stems from
the fact that we use an accurate generalized posynomial modeling
framework coupled with formal optimization techniques. A map-
ping between generalized posynomials and traditional posynomi-
als is shown, so that a fast posynomial solver can be used as the
optimization engine. This optimizer, unlike the convex optimizer
in [7], requires all constraints to be explicitly listed. We show how
this may be done efficiently while preserving the posynomial na-
ture of all constraints. Finally, we differ from [8], which uses a
TILOS-like heuristic optimizer for area-delay optimization, and
we can guarantee a global minimum using this approach.�

Convex delay model��� �
Delay abstractions and posynomial delay modeling

The delay characteristics of the output waveform at a gate may be
represented by two numbers:

(1) the delay, i.e., the difference in the time when the output
waveform crosses 50% of its final value, and the corre-
sponding time for the input waveform.

(2) the output transition time, i.e., the time required for the
waveform to go from 10% to 90% of its final value.

In much of the previous work on transistor sizing, the cir-
cuit delay has been expressed in the form of a class of functions
known as posynomials. A posynomial is a function p of a positive
variable x � Rn that has the form

p � x ��� ∑
j

γ j

n

∏
i � 1

x
αi j

i (3)

where the exponents αi j � R and the coefficients γ j � R � . In
the positive orthant in the x space, posynomial functions have the
useful property that they can be mapped onto a convex function
through an elementary variable transformation, � xi ��� � ezi � .

The Elmore delay model used, for example, in TILOS [6] and
iCONTRAST [7], employed the following form of expressions
for the path delay.

D � x ��� n

∑
i 	 j � 1

ai j
xi

x j


 n

∑
i � 1

bi

xi



K (4)

where ai j � bi � K � R � are constants and, x ��� x1 ���� � xn � is the vec-
tor of transistor sizes. Equation (4) represents a posynomial func-
tion, and hence convex optimizers can efficiently take advantage
of the convexity properties of such a delay expression to obtain
an optimal solution. Notice that the Elmore delay expressions
are a small subset of the set of posynomials; specifically they are
posynomials whose exponents belong to the set � -1,0,1 � .��� �

Generalized posynomials

Posynomials and convex functions are a rich class of functions
better delay estimates can be obtained by fully exploiting this
richness. Here, we describe a generalized posynomial form that
is useful for delay modeling and can be proven to have convexity
properties.

A generalized posynomial function Gk � x �� x � Rn, where k �
0 is called the order of the function, is defined recursively as fol-
lows:

1. A generalized posynomial of order 0, G0, is the posynomial
form defined earlier:

G0 � x ��� ∑
j

γ j

n

∏
i � 1

x
αi j

i � (5)

where the exponents αi j � R and the coefficients γ j � R � .

2. A generalized posynomial of order k is defined as

Gk � x ��� ∑
j

γ j

n

∏
i � 1

�
Gk � 1 	 i � x ��� αi j � (6)

where the exponents αi j � R � and the coefficients γ j � R � ,
and Gk � 1 	 i � x � is a generalized posynomial of order k � 1.

Specifically, the generalized posynomial of first order, is given by

f � x ��� ∑
i

γi

m

∏
j � 1

�
pi

∑
l � 1

ωi jl

n

∏
s � 1

x
ai jls
s � βi j

(7)

where each βi j � R, each ai jls � R, each γi � R � , and each ωi jl �
R � .

The following theorem parallels the relationship between posyn-
omials and convex functions, and is proved in [8]. As a conse-
quence of this, we will loosely refer to generalized posynomials
as being convex in future discussions.
Theorem 1: If the range of interest of x is restricted to the positive
orthant where each xi � 0, then under the variable transformation



from the space x � Rn to the space z � Rn given by xi � ezi , the
generalized posynomial function f of equation (6) is mapped to a
convex function in the z domain, provided βi j � 0 for each i � j.

Stripping Equation (7) of its complicated notation, one may
observe that the term in the innermost bracket, ∑m

l � 1 ωi jl ∏p
s � 1 x

ai jls
s ,

represents a posynomial function. Therefore, a generalized posyn-
omial of first order is similar to a posynomial, except that the
place of the xi variable in Equation (3) is taken by a posynomial.
Similarly, a generalized posynomial of order k uses a generalized
posynomial of order k � 1 in place of the xi variables in Equa-
tion (3). The class of posynomials is, by definition a proper subset
of the class of generalized posynomials.��� �

Generalized posynomial delay model

The parameters that have an observable effect on gate delay are
the widths of transistors in the gate, input transition time, and
loading capacitance. We refer to these input parameters as char-
acterization variables. Our aim is to develop a generalized posyn-
omial delay model which is dependent on all these characteriza-
tion variables.

We attempted the use of several types of functions to achieve
the desired levels of accuracy. The general form of expression
that provided consistently good results for different gate types is
as follows

Delay � m

∑
j � 1

Pj  n

∏
i � 1

� x∆
i



ci j � βi j 
 C (8)

Here, the xi’s are characterization variables, and the ci j’s, βi j’s,
C, and Pj’s are real constants, referred to collectively as char-
acterization constants. The parameter ∆ is set to either -1 or 1,
depending on the variable, as will soon be explained. The prob-
lem of characterization is that of determining appropriate values
for the characterization constants.

Due to the curve-fitting nature of the characterization proce-
dure (akin to standard cell characterization), it is not possible to
ascribe direct physical meanings to each of these terms. However,
it can be seen that the gate delay increases as the loading capaci-
tance, the width of the transistor opposing transition, and the in-
put transition time are increased, and decreases as the switching
transistor width is increased, implying that an appropriate choice
for the parameter ∆ for the first three variables is 1, while for the
last one it is -1. Note that this is not as restrictive as the Elmore
form since, among other things, the βi j’s and ci j’s provide an ad-
ditional degree of freedom that was not available for the Elmore
delay form.

A two-step methodology is adopted to complete the charac-
terization. In the first step, a number of circuit simulations are
performed to generate points on a grid. In the second, a least-
squares procedure is used to fit the data to a function of the type
in Equation (8). A series of simulations is performed to collect
the experimental data using the HSPICE circuit simulator. Since
the number of points increases exponentially with an increase in

Gate Delay
Output Transition Mean Deviation

Inv Rise 0.31% 2.83 %
Fall 1.29 % 2.82 %

Nor2 Rise 1.82 % 2.56 %
Fall 11.10 % 5.06 %

Nand2 Rise 5.18 % 6.17 %
Fall -0.46 % 3.58 %

Nor3 Rise 0.24 % 1.76 %
Fall 24.2 % 7.64 %

Nand3 Rise 9.21 % 5.98 %
Fall 1.26 % 2.29 %

AOI3 Rise 5.21 % 6.38 %
Fall 0.86 % 6.27 %

Table 1: Accuracy of the delay characterization approach

number of variables, judicious pruning is applied to the charac-
terization space.

The determination of the characterization constants was per-
formed by solving the following nonlinear program that mini-
mizes the sum of the squares of the percentage errors over all
data points.

minimize
N

∑
i � 0

�
Destim � i � � Dactual � i �

Dactual � i � � 2

(9)

Here, N is the number of data points, and Destim � i � and Dactual � i � ,
respectively, represent the values given by Equation (8), and the
corresponding measured value at the ith data point. This nonlin-
ear programming problem is solved using the MINOS optimiza-
tion package [10] to determine the values of characterization con-
stants.

For a library-based design, a full characterization of all cells
can be carried out and its complexity is comparable to the com-
plexity of characterizing the library using any other means. For
general full custom designs, the number of SPICE data points
to be generated for the curve fit increases exponentially with the
number of characterization variables. It is computationally ex-
pensive to perform such a large number of simulations and hence
an alternative strategy is suggested. We precharacterize a set of
logic structures such that any gate can be mapped to one of the
elements of this set with some acceptable loss of accuracy. It is
important to emphasize that the use of these mapping strategies
only serves to reduce the complexity of the characterization pro-
cedure. If one is willing to invest the CPU time required to per-
form the characterizations for each gate type, then this procedure
is unnecessary. Gate delays are affected by the position of the
switching transistor because of the discharging of internal capac-
itances, and the development of separate primitives for different
switching scenarios is necessary to tackle this issue.

We developed a set of logic structures that can model all the
static gates, including complex gates and sequential elements,
with acceptable accuracy. Details about the characterization pro-
cedure and the set of logic structures used for the precharacteri-



zation are provided in [8]. Table 1 shows results of model valida-
tion on various gates. The model delay values are compared with
those obtained by using SPICE. The results show that all the gate
delay models have acceptable accuracy.

For the problem to be posed as a convex programming prob-
lem it is necessary to prove that the delays of individual paths
satisfy the convexity properties. The proof is omitted from the
discussion here, and interested readers are referred to [8].�

Power dissipation model

In this paper we consider dynamic power dissipation.
The switching power dissipation model we use is given below.

Pisw � 1
2
 V 2  Ci  TDi (10)

where Pisw is the average switching power dissipation, V is power
supply voltage, Ci is the output capacitance, and TDi is the transi-
tion density, all corresponding to gate ni. The transition density is
defined [11] as limT � ∞ n � T � �

T , where n � T � represents the num-
ber of transitions the gate performs in time T . The use of transi-
tion density allows a gate with lower switching probabilities to be
sized larger.

The short circuit power is known to be dependent on the in-
put transition time to a great extent, and hence can be controlled
by placing constraints on the input transition time for each gate.
With proper constraints on the input transition time, the short cir-
cuit power is no more than 10% to 20% of the total power. It
will be shown in next section that the transition time, τi, and the
loading capacitance, Ci, can be expressed in terms of generalized
posynomials and hence equation (10) is also a generalized posyn-
omial.

Although we recognize the importance of leakage power in
the deep submicron regime in the future, the rationale behind con-
sidering only the dynamic power is that this power continues to
account for the major percentage of total power.

The proof of convexity of circuit power dissipation is similar
to that of the proof of convexity of path delay and the details can
be found in [8].

�
Problem formulation in detail

Traditionally posynomial programs have been solved by using
geometric optimizers. In this work, we have used generalized
posynomials to model the gate delay and power dissipation. While
these functions are provably equivalent to convex functions, a pre-
cise relationship between generalized posynomial programming
problems and posynomial programming problems would permit
the use of geometric optimizers to solve the problem formulated
here. In this section, we describe a technique for transforming
the set of delay constraints described by generalized posynomials
into a posynomial form.

� � �
Conversion of generalized posynomials to posynomials

As will be shown shortly, the transformation is carried out by
the introduction of additional variables. Consider the constrained
generalized posynomial below:

∑
i

γi

m

∏
j � 1

�
pi

∑
l � 1

ωi jl

n

∏
s � 1

x
ai jls
s � βi j

� Dreq � (11)

where Dreq is the required delay time, and βi j � 0 � i � j. Note that
the term in the parenthesis is a regular posynomial. If we substi-
tute that posynomial by the variable y j, the result is the constraint

∑
i

γi

m

∏
j � 1

�
y j � βi j � Dreq � (12)

It is well known that any constraint where a posynomial function
is required to be less than or equal to a constant, is equivalent
to a convex set under the variable transformation; we will refer
to such a constraint as a posynomial constraint. However, the
above substitution also requires that the following equality must
be satisfied:

pi

∑
l � 1

ωi jl

n

∏
s � 1

x
ai jls
s � y j � (13)

This equality can be represented by a pair of inequalities, only
one of which is a posynomial constraint. This implies that the
constraint set is no longer transformable to a convex set in the x
and y variables.

We will now make use of a subtle observation. If we relax
the equality in (13) into a “ � ” inequality, then for any variable
assignment that satisfies the relaxed set of constraints, since γi � 0
and βi j � 0, it must be true that

∑
i

γi

m

∏
j � 1

�
pi

∑
l � 1

ωi jl

n

∏
s � 1

x
ai jls
s � βi j

� ∑
i

γi

m

∏
j � 1

�
y j � βi j � (14)

In conjunction with constraint (12), this implies that the con-
straint (11) must be satisfied.

Therefore, we may replace each such generalized posynomial
constraint of order 1 by the set of inequalities given by

∑
i

γi

m

∏
j � 1

y
βi j

j � Dreq

pi

∑
l � 1

ωi jl

n

∏
s � 1

x
ai jls
s � y j (15)

It is instructive to note that this substitution technique may be
used, in general, for generalized posynomials of order k. This is
easily seen, since the above procedure reduces an order k gener-
alized posynomial constraint to an order k � 1 generalized posyn-
omial constraint; this process may be carried out recursively until
posynomial constraints are obtained.



� � �
Introduction of intermediate variables

As mentioned in section 2, the path delay can be proved to be
a convex function. However, the number of input to output paths
increases exponentially with an increase in the number of gates in
the combinational logic. We avoid path enumeration by the intro-
duction of intermediate variables. For each gate, ni, we introduce
the following variables:
Dir : Arrival time at the output of gate ni for the rise transition at
the output.
Di f : Arrival time at the output of gate ni for the falling transition
at the output.
τir : Rise transition time at the output of gate ni.
τi f : Fall transition time at the output of gate ni.

In addition, we introduce variables model the pin to pin de-
lay. Di jr represents the delay from gate ni to gate n j for the rise
transition at the output of gate n j. Similarly, Di j f represents delay
from gate ni to gate n j for the fall transition at the output of gate
n j . To illustrate the constraint formation, consider a subcircuit
shown below.

A

B

C

Figure 1: An example circuit

Then the constraints related to gate C are,

� Da f



Dacr � �

Dcr � 1

� Dar



Dac f � �

Dc f � 1

� Db f



Dbcr

� �
Dcr � 1

� Dbr



Dbc f

� �
Dc f � 1 (16)

The above set of equations represents the constraints on the arrival
time at the output of the gate C. All the gates are assumed to
be inverting, but similar equations can be derived if noninverting
gates are used. These equations along with the equations resulting
from the conversion of generalized posynomials corresponding to
Dacr � Dac f � Dbcr

� Dbc f
, to regular posynomials, and the constraints

imposed on the output delay, form the complete set of posynomial
equations to be solved by the geometric optimizer.

�
Experimental Results

We have implemented the transistor sizing optimization tool which
integrates constraint generation program and generalized posyn-
omial solver. Our constraint generation program writes the objec-
tive function and constraints in the generalized posynomial form.
For optimization we used the new proprietary Generalized Posyn-
omial Optimizer from Intel for many of our circuits. This solver

Circuit Transistor Doutspec τoutspec Power
Count (ps) (ps) (mw)

inv10 20 720 400 0.191
648 360 0.214
576 320 0.261
500 280 0.443

c17 24 600 400 0.634
540 360 0.705
480 320 0.804
420 280 0.959

s27 42 900 400 0.648
810 360 0.739
720 320 0.891
630 280 1.314

comb1 70 900 450 0.448
800 400 0.546
720 360 0.757
640 320 1.574

comb2 200 1669 360 0.634
1502 324 0.717
1335 288 0.922
1168 251 2.062

s298 582 1027 350 3.705
926 315 4.141
823 280 5.438
720 245 5.877

Table 2: Results of sizing various circuits

is extremely efficient since it utilizes the properties of geometric
programs to arrive at a solution. We have optimized several cir-
cuits for power, placing constraints on the input-to-output delay.
We optimized the circuits for varying target delay and output tran-
sition time constraints. The results are tabulated in the Table 2.
First two columns give the test circuit name and transistor count.
Third column titled Doutspec represents the input-to-output delay
constraint, while the fourth column titled τoutspec represents the
transition time constraint placed on the output. Last column rep-
resents the power obtained on optimization. The execution times
of optimization, using geometric program solver, vary from about
a second, for very small circuits, to about 8 minutes, for moder-
ately sized circuits. As expected, the power dissipation increases
as the constraints are made tighter.

�
Conclusion and future work

We have presented a generalized posynomial delay model for
CMOS gates that is better suited for modern technologies than
the Elmore model, but maintains the convexity properties. We
have shown the use of the model in the context of optimization
for low power. We have presented a new mapping technique that
can be used to convert generalized posynomials to regular posyn-
omials enabling the use of conventional mathematical optimizers.
Results show that in addition to the useful property of convexity,



the model is also computationally efficient. In future we plan to
incorporate leakage power and present an approach that is suit-
able for future technologies where leakage current can no longer
be neglected.
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