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Power Grid Analysis using Random Walks
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Abstract— This paper presents a class of power gr[d analy;ers 0000 0900 290909 29998
based on a random-walk technique. A generic algorithm is first M
demonstrated for DC analysis, with linear runtime and the T
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desirable property of localizing computation. Next, by combining g
this generic analyzer with a divide-and-conquer strategy, a single-

level hierarchical method is built and extended to multi-level ﬁi%
and “virtual-layer” hierarchy. Experimental results show that £
these algorithms not only achieve speedups over the generic 0000, 000005
random-walk method, but also are more robust in solving various

types of industrial circuits. Finally, capacitors and inductors are YT YT
incorporated into the framework, and it is shown that RKC

transient analysis can be carried out efficiently. For example, 2090,
DC analysis of a 71K-node power grid with C4 pads takes 4.16

seconds; a 348K-node wire-bond DC power grid is solved in s b T ¢ s T P 2
93.64 seconds; RKC analysis of a 642K-node power grid takes :
2.1 seconds per timestep.
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Fig. 1. Part of a typical power grid model.
Index Terms—Power grid, random walk, supply network,
simulation, physical design, capacitance, inductance.
prohibitive for a modern-day power grid with hundreds of
I. INTRODUCTION millions of nodes, and this will only become worse as the

circuit size is ever growing from one technology generation to

POWER grid analysis is an indispensable step in highpe heyt Furthermore, in recent technologies, inductive effects
performance VLS design. In successive technology 9€Y the top few metal layers can no longer be ignored. The

ergtlons, the WD voltage decreases, resulting N NATOW&, 5 nsient analysis problem involves the solution of an equation

) ids pl . | q - N ix, which contains the contribution of capacitors
Since power grids play an important role in determining CircUify, inqyctors, is significantly denser than that for DC analysis,

performance, it is critical to analyze them accurately armaking it even more expensive even at a single time point.

efficiently to check for signal integrity. Different circuit models and simulation techniques have

.A typical power grid may b? representgd _by the model iHeen developed for power grid analysis, to handle large prob-
Flgurg 1, consisting of wire resstgnces, wire inductances, WiE size, and to incorporate capacitances and inductances ef-
capacnanrc]:es, decoupllr;g car;])acnorS)DVpgds, a?)d Icur_rent ficiently [2][4][5][8][L6][19][23][29][30][33][34][39]. Among
sm;rces_t atl (iz;lnrrekspo_lrjh to the currentsb ravl\;r|1 y logic gafﬁgm, several methods are proposed to achieve a lower time
or functional blocks. There are two sub-problems to powgy, space computational complexity by sacrificing a cer-

grid analysis:DC an_alys.isto. find steady—stgte .”°‘?'e VOItagestain degree of accuracy. For example, [19] proposes a grid-
andtransient analysisvhich is concerned with finding voltage oy, tion scheme to coarsen the circuit recursively, solves a

v_vaveforms considering effects of capacitors, inductors a%arsened circuit, and then maps back to find the solution
time-varying currgnt waveform patterns. to the original circuit. The approach in [39] utilizes the
The DC analysis problem is formulated as: hierarchical structure of a power grid, divides it into a global
GV = E (1) grid and multiple local grids, and solves them separately.

In this paper, we apply a statistical approach based on
where G is the conductance matrix for the interconnecteghndom walks to solve the problem of power grid analysis.
resistorsV is the vector of node voltages, akds a vector of Random walks correspond to a classical problem in statistics,
independent sources. Traditional approaches exploit the spajif€ their use in solving linear equations dates back to as early
and positive definite nature ¢f to solve this system of linear as [10] and [37]. Subsequently, several other solvers have been
equations forvV. However, the cost of doing so can becomgeveloped [12][32][35]. The work in this paper is inspired by

. . s£9]. A brief overview of these works is in Section II-A.
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this generic random-walk method, and present a hierarchi§a0], although it was presented as a solitaire game of drawing
random-walk method. These algorithms are extended to hand#ls from urns. It was proven in [10] that, for any matrix
RKC transient analysis (wherE is the inverse inductance,G such thatmax, |\.(I —G)| < 1, where A, denotes the
or susceptance, matrix) with capacitors and inductors i eigenvalue of a matrix, a game can be constructed and
Section 1V. We use test results to show that the proposadrandom variabfe X. can be defined such thaf[X] =
algorithms provide good accuracy-runtime tradeoffs, and af@—1);;, where(G~');; is an entry of the inverse matrix 6.
faster than traditional methods with acceptable error levdls[10], the variableX is a “payment” when exiting the game.
in Section V. We demonstrate that the proposed algorithrilnder certain settings, the algorithm of [10] is equivalent to
have the feature of localizing computation, which makes thetime “home” and “award” concepts in our theory, which is
especially useful when only part of the grid is to be analyzefdresented in the next section.
Finally, we present concluding remarks in Section VI. This Two years later, the work in [37] continued this discussion
paper is an extended description of the work in [25] and [26h the formulation of random walks, and proposed the use of
another random variabl@” to replaceX . A “mass” value was
Il. THE GENERIC RANDOM-WALK METHOD defined for every step in a walk, arid was defined as the
] ) ) ] . total amount of “mass” carried through a walk. It was proven
This section fo_cuses on DC_anaIyS|s only, and is orga_n|z§g[37] that E[Y] = E[X], and it was argued that, in certain
as follows. Section II-A provides a _summary c_)f preV|ou§peCia| casesy has a lower variance thai, and hence is
works that use random walks to solve linear equations, Sectign.|; 1o converge faster. Under certain settings, the algorithm
IIl-B presents the theoretical basis of the generic algorithng 137 js equivalent to the “motel” concept in our method.
f_oII_ow_ed by a simple |II_ustrat|ve examp_le in Sec_t|on II-C_Z. The Both [10] and [37] have the advantage of being able to
limitations of the generic method are discussed in Section ”'Eompute part of an inverse matrix without solving the whole

system, in other words, localizing computation. Over the years,
A. A Brief History various descendant stochastic solvers have been developed

A random walk, also viewed as a discrete abstraction of t|[|]e2][32][35]. Some of them, e.g., [32][35], do not have the

physical phenomenon of Brownian motion, is one category gfoperty of localizing computation.

. . From a different perspective, the work in [9] aimed at in-
the general Monte Carlo methods of numerical computation. .~ . . .
- . . _-vestigating random walks by using electrics. It drew a parallel
In this paper, we employ this method to solve systems of linear e .
. . . o between resistive networks and random walks, and interpreted
equations that are diagonally dominant. Historically, the theo

{I){e relationship between conductances and probabilities. With

that underlies this work was developed on two Seemmgl}/nderlying rules similar to [10], [9] proved many insightful

independent tracks, related to the analysis of potential the%rgnclusions linking statistics and electrics,

[6][12][13][17][18][22] and to the solution of systems of linear In summary, the theory of our proposed generic random-
equations [10][12][32][35][37]. However, the two applications alk algorithm is directly inspired by [9], but is mathemat-

are closely related and research on t_hese tracks has re_sulte}l(éa{”y a combination of [10] and [37], and it inherits the
the development of analogous algorithms, some of which are

equivalent. These mathematical works have found meaning JPperty of Iocahzmg computation. Not surp'nsmgly, n po-
L . . ) . ential theory, there is a method that can be viewed as roughly
applications in electrical engineering [1][3][20][28].

' arallel to our basic framework: the counterpart is [17].
Along the first track, the goal has been to solve Laplac . . ) . -
L2 : : . - Besides these legacies, our algorithm also includes efficiency-
equation in a closed region with given boundary values (i.€.

under Dirichlet conditions), and it was proven that the value g?pro"'.”g techn|ques,.wh|ch are not. SEen In previous works,
. . . and which play a crucial role in obtaining a performance that
a location can be estimated by observing a number of Browig'practically useful
ian particles that start from this location and travel until they '
hit the boundary, and taking the average of the boundary values _ . .
at the end points [6][13][18]. An important improvement Wa§' Principles
proposed in [22], which proved that, instead of simulating tiny We will focus our discussion on the analysis of an/grid,
movements of a Brownian particle, the particle can leap froRpinting out the difference for a ground grid where applicable.
a location to a random point on a sphere that is centeredF&@ the DC analysis of a power grid, let us look at a single
this location, and that shapes other than a sphere can be usege = in the circuit, as illustrated in Figure 2. Applying
given the corresponding Green functiornother important Kirchoff's Current Law, Kirchoff's Voltage Law and the device

development [17] extended the theory to solving Poissorfguations for the conductances, we have:

equation under Dirichlet conditions, and more general elliptic degree(z)

differential equations (under certain restrictions). Z (Vi = V) =1, ()
The second parallel track, which considered the solution im1

of systems of linear equations, will be discussed in greaigf o e the nodes adjacentdcare labeled, 2, - - -, degree(x),

detail here, since it is directly related to our algorithm. The s the voltage at node, V; is the voltage at nodé g; is the
first work that proposed a random-walk based linear solver is . i

2The notation that is used in [10] faK is G, but we have changed the
IMany years later, this evolved to [20], a successful Monte Carlo algorithRptation since we usé' to signify another quantity in our discussion.
in VLSI design automation. 3Again, the notation is changed for clarity: [37] referred to thishds
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It is obvious that
f(one of the homas= my (6)

For a non-home node, assuming that the nodes adjacent to
x are labeledl, 2, - - - degree(z), the f variables satisfy

degree(z)
f@)y= > peif(i) —ma 7
i=1
For a random-walk problem wittv non-home nodes, there
Fig. 2. A representative node in the power grid. are N linear equations similar to the one above, and solving
this set of equations gives the exact values @it all nodes.
It is easy to draw a parallel between this problem and
power grid analysis. Equation (7) becomes identical to (3), and
Y"m equation (6) reduces to the condition of perfectbvhodes if

7 mxﬁ — gL

Home

1 =1,2,--- degree(x)
j=1 j
I,

degree(x
> g ()g.

=1 j

Home

mo = Vpp flx)=V, (8)

— my =

The formulation for ground net analysis is analogous; the
Home major differences are that (i) thig’s have negative values, (ii)
T VDD is replaced by zero. As a result, the walker earns money
in each step, but gets no award at home.

In other words, for any power grid problem, we can
construct a random walk problem that is mathematically

conductance between nodand noder, andI, is the current equivalent, i.e., characterized by the_ same set of equations.
load connected to node. Equation (2) can be rewritten as: It can be proven that such an equation set has and only has
one unique solution [9]. It is both the solution to the random

gi I, walk problem, and the solution to the power grid problem.
Vo = Z degree(x) Vi— degree() ®3) Therefore, if we find an approximated solution for the random
=1 2-7:1 9i Zj:l 9i walk, it is also an approximated solution for the power grid.
We can see that this implies that the voltage at any node is & natural way to approach the random walk problem is to
linear function of the voltages at its neighbors. We also obserperform a certain number of experiments and use the average
that the sum of the linear coefficients associated withiffi® money left in those experiments as the approximated solution.
is 1. For a power grid problem wittv non-Vbb nodes, we If this amount is averaged over a sufficiently large number
have N linear equations similar to the one above, one for eadif walks by playing the “game” a sufficient number of times,
node. Solving this set of equations gives the exact solutionthen by the law of large numbers [38], an acceptably accurate
Now let us look at a random walk “game,” given a finitesolution can be obtained. This is the idea behind the proposed
undirected connected graph (for example, Figure 3) represeggneric algorithmthat forms the most basic implementation.
ing a street map. A walker starts from one of the nodes, andAccording to the Central Limit Theorem [38], the error is a
goes to an adjacent nodeevery day with probabilityp, ; 0-mean Gaussian variable with variance inversely proportional
for i = 1,2, --,degree(x), wherexr is the current node, andto M, whereM is the number of experiments. Thus we have
degree(z) is the number of edges connected to ned@hese an accuracy-runtime tradeoff. Instead of fixing, we use a

Fig. 3. An instance of a random walk “game.”

degree(z)

probabilities satisfy the following relationship: stopping criterion driven by a user-specified error margin,
degree(z) P[—A <Ve—-V<« A] > 99% (9)
. Pai =1 “) whereV, is the estimated voltage frod/ experiments. If the
=t variance of these results 18ar, the above criterion becomes
The walker pays an amount, to a motel for lodging
everyday, until he/she reaches one of the homes, which are Q() < 0.005
a subset of the nodes. If the walker reaches home, he/she will VVar/M
stay there and be awarded a certain amount of mongyWe Var A 2 10
will consider the problem of calculating the expected amount M < Q~1(0.005) (10)

of money that t_he walker has_ accumulated at_ the end of tQIF\'/ﬂereQ is the standard normal complementary cumulative
walk, as a function of the starting node, assuming he/she StiSibution function. defined as

with nothing. This gain function is therefore defined as

1 RS
f(z) = E[total money earnedvalk starts at node;] (5) Q) = \/ﬂ/l e *du
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According to condition (10))M is decided on the run, and has
different values for different nodes. It is worth noting that for
each node, for a fixed confidence levaf, « ﬁ.

In equations (9)(10), and in our implementation, the 99%
confidence level is used for illustrative purpose. In practice,
the stopping criterion (9) can be adaptive to different node

voltages: for a node with high estimated voltage drop, i.e., vot—p e
a dangerous node, we can switch the criterion to higher o.m@ 0.05A
confidence level, lowerA, or both; for a node with low

estimated voltage drop, i.e., a safe node, the computation stops
after satisfying a relaxed criterion with lower confidence levél?
or largerA. In other words, the computation for a node voltage —
starts with a low-accuracy criterion; when this accuracy level
is met, a decision is made based on the estimated voltage
drop at this time: if this value is below a certain threshold,
the computation stops, otherwise the algorithm switches to
a higher-accuracy criterion and continues; when the new (st 55005 «

accuracy level is met, another decision is made based on the B C D

new estimated voltage drop, and even higher accuracy can be

used if necessary, and so on. Using this adaptive strategy, migeed- The random-walk game corresponding to the circuit in Figure 4.
runtime would be spent on potential failure nodes, to get more

accurate voltages, while safe nodes only get coarse estimatioarllr.ne where home nodes correspond to voltage sources onl
A desirable feature of the proposed algorithm is that P 9 Y-

| . . . . . S more and more nodes are calculated, they all become
ocalizes the computation, i.e., it can calculate a single nodée )
voltage without having to solve the whole circuit. This i ew ho”.‘es n th_e game, and_random walks from later nodes
especially meaningful when the designer knows which pa"ﬁeh carried EUt 'P a g?me W'th a I?rger and Ialrger ”“”.‘blfr
of the power grid is problematic, or when the designer mak8§f omes. Therefore, the ordermg of nodes cou d potentially
a minor change in the design and wishes to see the impact.F—‘ pet the performance. In the implementation, we use the

0
example, if the objective of the analysis is to find the voltage

read-in ordering without any processing, which is close to
at a single node, then this approach can perform a numlg%rrandom ordering; a truly random ordering can be easily

of random walks starting from that node. In a typical power tained by permuting the read-in ordering if necessary. We

grid that has a sufficient number of pads that are reasonal r\ngrer?sirtanci‘orzg rﬁ;dﬁggg’s ti)se(i:r?ciJrZZsaezsd Ce?/rgrﬁ)lm?ggb p;gﬁ??ﬁj
close to any node, such a walk is likely to terminate soon a y y 9

a home. As compared to a conventional approach that m\ﬁ‘s ole circuit, and the _performance of th_e algpnthm |s_stable.

. : ) inally, we want to point out that, stopping criterion with the
solve the full set of matrix equations to find the voltage at ansy e error mardid is applied to all nodes. reaardiess of their
one node, the computational advantage of this method cogd" 9 PP '€y

be tremendous. and we validate this in Section V positions in the ordering, and that we only need to compute

When solving for multiple node voltages, an efficiencyUOdefs that are of interest, which, in the context of the generic
k&g)nthm, refer to the bottom-metal-layer nodes only.

enhancing technique can be used. Since the voltage at 4
already calculated node is known, it becomes a new home .
in the game with an award amount equal to its calculatéd A Simple Example
voltage. In other words, any later random walk that reachesin order to show how the proposed algorithm works, let
such a node terminates, and is rewarded a money amoustlook at a simple circuit, as shown in Figure 4. The true
equal to the calculated voltage. This operation speeds up tludtages at node A, B, C and D are 0.6, 0.8, 0.7 and 0.9,
algorithm dramatically, as there are more terminals to emdspectively. Applying equation (8) to this circuit, we construct
a walk, and therefore the average number of steps in eawh equivalent random-walk game, as shown in Figure 5,
walk is reduced. At the same time, this operation improveghere numbers inside circles represent motel prices and home
accuracy without increasingy/, because each experiment thaawards, and numbers beside the arrows represent the transition
ends at such a node is equivalent to multiple experimengsobabilities from each node to a neighboring node.
A cost of this speedup is that the error at a calculated nodeTo find out the voltage of node A, we start the walker at
also affects later computation, in other words, this speedaopde A with zero balance. He/she pays the motel price of
technique is not 100% positive, but another accuracy-runtirse.2, then either goes up with probability 0.33 to the terminal
tradeoff. Practically, it is such a good deal that we can almastd end this walk, or goes down with probability 0.67 to node
ignore the cost: errors tend to cancel each other, and the imp@cthen pays $0.022, and continues from there. Such a walk
on accuracy is minor, while the speedup is dramatic. could be very short: for example, the walker may directly go
Due to this speedup technique, the nodes computed earlym and end up with $0.8. Alternatively, the walk could be
the algorithm and those computed late are treated differenthery long, if it keeps going back and forth between A, B, C
For the first node, random walks are carried out in the originahd D, and the walker could end up with very little money;




IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , 5

TABLE | TABLE Il
CONVERGENCE OF THE SIMPLE EXAMPLEA IS THE ERROR MARGIN IN THE TIME COMPLEXITY OF THE GENERIC ALGORITHM FOR ARTIFICIAL
EQUATION (9), V4 IS THE ESTIMATED VOLTAGE AT NODEA, M IS THE FLIP-CHIP DESIGNS

ACTUAL NUMBER OF WALKS USED.

Circuit | Node number| Pad number| Total step number|

A | Exp#l Exp #2 Exp #3 Exp #4 Exp #5 #1 2.5K 1 2.4e7
Va | M| Va | M| Va | M| Vg | M| Vg | M #2 10K 4 7.5e7
0.05/0.6097 174|0.6067 156 |0.5803 184 |0.6419 103 |0.6241] 117 #3 250K 100 1.7e9
#4 M 400 6.4€9

0.02/0.60871150,0.6075 946|0.5979 1140 0.5837 1254 0.6084 1232
0.01/0.6034 4562 0.6013 4664/ 0.6043 4315/ 0.5982 4441/ 0.6016 4619

5% N7 nodes are solved in the first circuit abiéh N, nodes are
solved in the second circuit, because the densities of “homes”
however, the probability of such a walk is low. We perfornyre the same (roughly 5%) in both circuits, the average lengths
M such experiments and take the average ofitheesults as of walks are the same in both circuits, and the typitalr
the expected gain during one walk, and change the units frei\ues are also the same in both circuits, which means that the
dollars to volts to obtain the estimated voltage of node A. typical M values are the same in both circuits at this time.
Table | shows how the estimated voltage converges to tifierefore, the CPU time for thé6%N; + 1)*" node in the
true value of 0.6V. The five columns in the table represefjst circuit, is the same as the CPU time for {56 Ny +1)th
five different runs of the proposed algorithm, correspondingpde in the second circuit, in the average sense, and this is
to different seeds for the random number generator. true for other percentage values as well. Therefore, the overall
Finally, as discussed in Section II-B, when we move on tgerage runtime per node, which is equal to the average over
other nodes after computing node A, node A can be used agligercentages, should be the same value for both circuits, and
new home node, with an award equal to its estimated voltaggdependent of circuit sizes. Therefore, for flip-chip designs
with similar structures, the overall runtime is linear in circuit
size. This point is validated by the following simulations.

i ) Four artificial circuits are constructed to verify the linearity
Due to the speedup technique at the end of Section II-Bs the average runtime, in the case of flip-chip designs, and

the number of walks for a nod@/, decreases as computationpe resylits are listed in Table Il. They are made with the same
proceeds. However, for flip-chip power grids (designs with,qe_count to pad-count ratio. They all have a regular two-

C4 packaging) with similar structures, it is practically Uppeigimensional grid structure, with the nodes forming a two-
bounded by certain constant/’, which corresponds to the gimensional array of siz&é0 x 50, 100 x 100, 500 x 500
number of walks needed to compute the node with thg 1000 x 1000 respectively, each edge of the grid being a
maximumVar, according to (10). Such a “difficult” node is ; ) resistor, and each node having a current load of 0.05mA.
likely to be the one that is the most faraway from C4 pads, fgfe perfect voltage sources are at the intersections of the
example, at the center of a square outlined by four adjacent% + 504)™" horizontal wires and thé25 + 505)t vertical
pads. If we consider two imaginary flip-chip circuits with theyires, where and; are nonnegative integers. (This structure is
same structure around each C4 pad, one having a certain §ig& realistic, but serves the purpose of time-complexity study.)
Fhe other b_emg infinitely large (infinitely many C4. pads), angt,e range of voltage drop is roughly the same 0-0.1V, for
if we consider the center node of a square outlined by foyjj tor circuits, and they are solved with the same accuracy
adjacent C4 pads in each of the two circuits, the M@ P[-5mV < error < 5mV] > 99%, and with random ordering
values would be roughly the same. Therefore, the maximyl nodes. The metric of complexity is the total step number
Var is independent of the circuit size, and consequefly ¢ o) the walks, where each step corresponds to one random-
is independent of the circuit size. _ number generation, a few logic operations and one addition.

In the implementation, we will impose a constant limit, Tapje || shows a sublinear complexity for small sizes, and
on the number of steps in a walk; details are provided {Bore strictly linear complexity for larger sizes. These results
Section V. Thus, for a power grid witlV non-VDD nodes, We  4qree with the earlier discussion of linear runtime.
can estimate worst-case time complexity&d.M'N), where  "£qr \ire-bond power grids, however, the time complexity
each unit corresponds to one random-number generation, a f{§Wne generic algorithm is superlinear.
logic operations and one addition. Therefore, the worst-case
runtimes are linear in the circuit sizg, for flip-chip designs. o ]

Because of the fact thal/ decreases as computatiorF- Limitations of the Generic Method
proceeds, the above worst-case discussion is an overestimat) Section V, we will use simulation results to show that
and we will now look at the actual runtime, which can bghe generic method has good performance for some industrial
viewed as the average-case runtime or the typical runtime.dmcuits. However, it also has been found that the generic
order to argue that the average runtime per node is independeethod requires large runtimes for certain types of circuits.
of the circuit size, let us consider two circuits with siz¥s One issue is shown in Figure 6. If a single low resistance is
and N5, which are each solved with random ordering of nodesolated by other high resistances, because the random walker
At the same stage of the computation, for example, whénmore likely to choose the direction with lower resistance,

D. Runtime Trends
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Fig. 6. An isolated low resistance forms a “trap.” ports | Hports | e —{ ports
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Fig. 9. Hierarchical strategy in [39].

are still likely to stay in the lower layers. In reallife
circuits, this is the situation where the pitch of power
wires in one metal layer is much larger than the pitch
in the next layer beneath it.

It is worth noting the fundamental reason for the first prob-
! ) ) ) ) i lem. The way that random walks estimate a node voltage drop,
Fig. 7. A schematic of a wire-bond power grid structure with peripheral V . N
pins. is to capture the significant paths of current supply. Therefore,
the detailed structure and current demand distribution of a

power grid affect the runtime of random walks. For most flip-
he/she could spend many steps oscillating between nedeship designs, the current load at a node is mainly supplied
andb. Our algorithm employs a pre-processing step to dete® several nearby voltage pads, therefore random walks only
such isolated low resistances, and uses th transformation account for these relatively short paths, and random walks
[27] to remove them without losing accuracy. In general, &€ relatively short. For chips where there exists long-distance
subgraph formed by several low resistances can be isolatedchyrent delivery, which is true for wire-bond power grids,
other high resistances and form a “trap”, and the correspondii@dom walks try to capture all devices that significantly affect
discussion is provided in Appendix Ill. the target node, and hence can be very long.
Although the above problem can be taken care of inside theln the next section, we will introduce the hierarchical

generic random-walk framework, there are two other majéandom-walk method that overcomes these problems naturally,
problems that cannot: and speeds up solutions to industrial circuits.

| —
L —1
[ °
L—1
S

1) In wire-bond power grids, a small number of perfect
voltage sources are located on four sides of the top metal  !Il. HIERARCHICAL RANDOM-WALK METHODS
layer, and a walk from a central node takes a very large This section begins with a mathematical derivation of the
number of steps to terminate. Figure 7 illustrates thisingle-level hierarchical method in Section IlI-A; the advan-
power grid structure. In general, for a large graph wittages of this method are discussed in Section 1lI-B. Section
very few homes, the runtime is high. I1I-C applies this concept to develop two variations, the multi-
2) In certain power grids, wire resistances in a metal lay@svel method and the virtual-layer method, which are proven
are significantly larger than the resistances of the vias be effective on industrial circuits. The discussion will be
connecting the layer to the next metal layer beneath fbcused on DC analysis only.
Because the random walk is more likely to choose a
dire(_:tion with Iowe_r re_zs_istance, this structure forms a Principles
barrier that makes it difficult for the walker to go up to ) i . o o
the top layer and reach a perfect voltage source. Figure glhe hierarchical str_ate_gy in _[39] Is illustrated in Flgure 9.
illustrates this effect. Note that this is different from thd "€ whole power grid is divided into a global grid and
isolated-resistor problem in Figure 6. These vias are ngwltiple local grids, and mt_erfacmg nodes_ are defined as por_ts.
isolated by high resistances, but are located betweEFPM the global perspective, the behavior of a local grid is
relatively well-connected lower layers and relatively?®mpletely described by the following equation.

bad-connected upper layers. Even if the vias are shorted, Iports = AVports + S (11)

or removed by the YA transformation, random walks
wherel,orts IS the vector of currents flowing from the global

grid into this local grid,Vports is the vector of port voltages,

_ ToUpperLayers A is a square matrix$ is a constant vector. In DC analysis,
matrix A represents the effective conductances between the
ports, and vectoB represents local current sources.

The algorithmic flow of [39] is shown in Figure 10. First,

macromodels, i.e., thd matrices and vectors, are extracted
from local grids. Next, the set of linear equations for the global
Fig. 8. The barrier effect. Grey rectangles represent high wire resistancggl,d is solved and port VOItageS obtained. Fma"y’ local grlds

white rectangles represent low via resistances, and curves show the rout@i@® Solved individually. For realistic power grids, compared
the random walker when he/she attempts to approach the top metal layenwith a direct solver that solves equation (1), this algorithm

To Lower Layers
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LocalGrid2 | LocalGridk | )
Macromodeling Macromodeling |[ >"*P Global Grid

Local 6rid 1
Macr deli

T~ N\ — Local Grid
Ay 8y A2 82\ Sk
™~ el g Step 2
o
Solution

vVi_—V,
— Step 3

~_ V%
~ \ .
Local Grid 1 |[Local6rid2| _ [LocalGridk ( F|g 11. The branches df..
Solution Solution Solution J

Fig. 10. Algorithm flow in [39].

On the other hand, if node is an internal node, we may
run M random walks from node, with the ports being the

solves a smaller equation set in each step. When the numiggminals at which walks end, and estimatesymbolically.

of ports is reasonably small, and tHematrices are reasonably>INC€ there is usually no internalbw/GND pads in a local

sparse, a speedup is achieved. grid, the set of all possible terminals {1, ho,- -, ht} =
1) Constructingd andS: An exact method for calculating {Port 1, port 2, -, port k}. By Lemma 1, the following

A and$ is provided in [39], and O-1 integer linear program&duation can be constructed.

ming (ILP) is .used to maked sparse, at the expense of a Vi = c1Voore1 + caVoorta + -+ + ek Voortk — € (17)

bounded loss in accuracy. We will now demonstrate a random

walk approach to buildd and S, and to achieve sparsity Returning to the scenario in Figure 11, we see that for any

naturally as a part of this procedure. node i, one of thek ports in equation (17) ig itself. The
The proposed macromodeling approach is based on th&rent,/;, from portz to an internal nodeé is

following lemma, which allows us to symbolically estimate

one node voltage as an linear function of voltages at an /i = 9iVportz = iV

arbitrary set of nodes. Its proof is provided in Appendix . = 9i(1 = cporta) Voort e — i Z ¢iVoortj + i€
Lemma 1:If we define k nodeshq, ho,---, h; to be the port j#z

home nodes, i.e., terminals where random walks end, then for Vi=1,2,--- N (18)

any nodei, the estimated’; using M random walks is in the
following form:

Vi=aVh, + Vi, +- -+ Vi, — & (12)

where¢ is a constant};,; is the voltage at terminal node;,
and coefficients have the following format

Equation (16) can be viewed as a special case of (18).
Substituting equations (16) and (18) into (15), we obtain

IfE = alvport 1+ OéQVportQ +- akvportk + v

N
number of walks ending di; where o; = — Zgicj(nodei) for j#x
Cj = M (13) i—1
. . . . N
satisfying the relationship a, = Zgi(l — cpont o (node )
Cdest o =1 (14) =1
This lemma states that, given any set of nodes N
hi,ha, -, hg, and for any node, we can find the values v = Zgiﬁ(nodei) (19)
c1,¢2, - +,c, and € by running random walks, such that i=1
the symbolical equation (12) is approximately true for anyhis is what we needw, s, - - -, o IS @ row in matrix A,

possible voltages at those nodes. The meaning; @ given and they term is an element in vectds. So far we have
by (13), while¢ is the average motel expense in one walk. found the entries ind and S that correspond to pott. For
To constructA and S, we look at the ports one by one.every port node of a local grid, we do the same thing, i.e., we
Figure 11 illustrates an example of a parthat has several construct equations (17) and (18) by running random walks
connections to the global grid and to a local grid. The currefitom every internal neighbor of the port node, and then obtain
flowing from the global grid throughr into the local grid is  equation (19) by adding (18)’s up. This way, we can construct
. matrix A row by row and vectoS entry by entry.
L=htlt-+ly 19 " he sparsity of thed matrix is controlled by the number
where the neighbors of inside the local grid are labeledof random-walk experiments). When equation (17) is

1,2,---,N, and I, I5,---,Ix are the currents flowing from constructed, it is an approximation to the real relation between
port x to each of them. V; and port voltages, which would be a full equation, in
Now consider nodé, one of the neighbors af: this could other words,cy,---,c; would be all nonzero values in the

be either an internal node or a port node. If néde a port, exact equation. However, due to the relationship shown in
I = g:Viorts — giVi (16) equation (13), any coefficient belo@; canno_t appear in _t_he

constructed equation (17). Therefore, effectively, insignificant

where Vo, and V; are voltages at node and node: terms are automatically dropped in the process of Lemma 1.
respectively, andg; is the conductance between and i. This eventually leads to the sparsity df M can be viewed
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as the resolution of the estimation. The largéris, the more _, GlobalGrid
entries in equation (17) are nonzero, and the dersr.
Although the numberM provides a control over the
sparsity-accuracy tradeoff, and can be dynamically deter- )
mined by a stopping criterion similar to (9) defined on Macromodel
there is not an analytical formulation of the relation betwee'gg 1
M and the accuracy of matriXd. In our implementation of =
the hierarchical method reported in Section M is pre- v, pads V,p pads
determined and fixed in each run, and different tradeoff points . * . . . .
are found by changing/. It is worth noting that our approach %
is compatible with [39], i.e., our three steps and the three steps Ports
of [39] are interchangeable and can form a hybrid scheme; the B
ILP method in [39] can also be used as a post-processing to
make our constructed matri® sparser. There is, however, a

The imaginary circuit interpretation of a macromodel in DC analysis.

— e — —— o — —— —

difference between the two that gives our method an advantage v b . é .

over [39] for not-easily-partitionable designs, and this will be Bottom layer nodes Bottom layer nodes

discussed in SeCtion |||_B [ The hierarchical method ] [ The generic method ]
Lemma 2: The sum of each row of the estimatddmatrix

. Fig. 13. Random walks in the hierarchical algorithm are shorter than those
IS Zero. in the generic algorithm.

From equation (19), all weights of the port voltages are
negative except fora,. For any row in matrix A, from

equations (14) and (19), we get Based on this imaginary circuit interpretation, the global
i grid can be solved by running random walks from each port
nodes, and the port voltages may be obtained.
Z aj = Qut Z & 3) Solving the local grids:Next, we move on to step 3 in
port =1 port j#z Figure 10, solving the bottom-metal-layer nodes in each local
_ al (1_ dei grid, based on the port voltages computed in step 2. The ports
Zgz( Cportz(node ) correspond to “homes” in this random-walk game, and each
=t N walk from the bottom layer typically ends within a reasonably
_ Z Zgicj(node i) small number of steps.
port j#x i=1
N k B. Benefits of Hierarchy
- Zgi(l - Z ¢j(node)) The approach in [39] requires the demarcation of partitions
i=1 port j=1 _ corresponding to small cuts between partitions, since this
=0 (@pplying equation (14)) (20) oyl lead to small port matrices. In our approach, such

partitioning is not necessary, and the algorithm only needs
to distinguish local nodes, global nodes, and ports. Therefore
multiple local grids are not needed, and only the boundary
. . : o Yetween the global grid and the local grid needs to be decided.
accuracy. As we will show in the next section, this is not Rnis can be done in various ways, and we recommend the
barrier to ;olvmg the globa! 9r|d. following natural approach: given a power grid, we choose a
~2) Solving the global grid:Now we move on 0 Step 2 |aver of vias as the border between the global grid and the
in Figure 10, solving the global grid based on the extractg al grid, define the upper ends of these vias as ports, and

macromodels. In order to do so using random walks, Wge |qwer ends as the internal neighbors of the ports.
interpret each macromodel as an imaginary circuit. Due tOChoosing this layer of vias is a new degree of tradeoff:

Lemma 2, equation (19) can be converted to the following.i¢ 5 |ower layer is chosen, the global grid size is larger, the

_ number of ports is larger, and consequently solving the global

I = Z (=) (Vport = Vport ) + 7 (21) " 4rid takes more runtime: on the other hand, the local grid
port j#x : . .

is smaller, there are more terminals, i.e., solved ports, and

Equation (21) can be viewed as a circuit, in whicha) therefore solving the local grid takes less time. In practice,
conductance connects nodeand nodej, and an independentWe choose a layer of vias such that the global grid is roughly
current sourcey flows out of nodez. This is an imaginary 10% of the entire circuit size.
circuit, because each resistor only exists for one direction (cor-Compared to the generic random-walk algorithm, the hier-
responding to the asymmetry of the computéanatrix), i.e., archical algorithm has two major advantages:
the conductance from nodeto nodej could be different from 1) The hierarchical method is faster. The reason is illus-
the conductance from nodeto nodez. Figure 12 illustrates trated in Figure 13. When solving the global grid, each
this imaginary circuit composed of directed resistors. random walk starts from a port and ends at a perfect

Thus we have proven Lemma 2. In genetdlwill not be
symmetric even though the exadtmatrix has this property;
however, it is preferable to leave it this way in order to preser
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voltage source; when solving the local grid, each random s '; //;f{é/
walk starts from a bottom layer node and ends at a port. 3 — ‘*%:5\7/\/\ \\\
In either case, a walk has fewer steps than a walk in ) o \\\B///////::%‘
the generic method that starts from a bottom layer node T T

and has to reach a perfect voltage source at the top o _ _
metal |ayer_ Also, when random walks are shorter, ﬂfégérm. The original graph with ports marked, and the extracted virtual
variance of the results of walks tends to be lower, and®"

consequently, a higher accuracy can be achieved with

the same number of walks, or fewer walks are needgd e even faster and more robust. Test results in Section

to achieve the same accuracy level. Although we pay e show that the multi-level method has a similar accuracy-
overhead of building macromodels, the overall savinggntime tradeoff as the single-level method.

typically dominate this cost. We will validate this by our

experimental results in Section V. _ when we choose ports such that the global grid physically
2) The hierarchical method is more robust. As illustrate§yes not exist. In other words, there are no direct connec-
in Figure 8, in certain power grids, a highly resistivgjong petween these ports in the original circuit: this can
metal layer forms a barrier that makes it difficult forpe considered to be similar in flavor to grid coarsening in
the walker to go up to the top layer, and the runtime qfg; \when we abstract all connections of these ports into a
generic method is therefore very long. The hierarchicgl,cromodel, this macromodel provides imaginary connections
method solves these circuits simply by defining port§eyeen ports, and the global grid is totally composed of such
right on this barrier. In other wo_rds, mstead of rely'“glirtual connections, as shown in Figure 14.
on the random walker to pass this barrier, we cut @ walk 4 example, in a large graph where the number of homes is
into two segments, and preserve the barrier nature |y jimited and all homes are located at periphery, a random
the macromodel. This can also be viewed as an extreqgy, from a center node typically needs a very large number of
case of the speedup shown in Figure 13. Correspondigllhs e may traverse the graph (for example, a breadth-first
results can be found in Section V. If there exist mOrggarch in our implementation), and mark one port in eyery
than one such barrier structures in a power grid, the¥,qes Forp — 10, the sampling rate is 1/10; this number
can all be handled by multi-level hierarchy, which igannot be too low, because we have to guarantee that the
presented in the next section. virtual layer will be a connected graph. Special arrangements
As mentioned in Section II-E, a more general problem of th@ust be made such that each home is surrounded by ports,
generic random-walk method is that in a large graph with vepecause edges leading to a home should not be abstracted
few homes, the runtime is high. One example is wire-bongdto the macromodel. Then all connections of these ports are
power grids with pads at the periphery, shown in Figure 7. lbstracted into a macromodel, except for those leading to a
the next section, we will show how such graphs can be handlggine. Thus the virtual layer is constructed and the size is
when the idea of hierarchy evolves to the virtual-layer concegioos of the original graph. After solving it, we go back to
Finally, we want to point out a defect of hierarchy. In thehe local grid, i.e., the original graph, and because there are
hierarchical algorithm, we can no longer solve a single nodelved ports all over the graph, it can be solved efficiently.
only: the overhead of building and solving the hierarchy has This virtual-layer method will be shown useful when solv-
to be paid first. In other words, the algorithm does not haygg a wire-bond power grid in Section V.
the completelocality anymore. One way to maintainpartial
locality is to use multiple local grids: when a change is made
in the design, only the macromodel of the local grid containing
the change needs to be rebuilt and re-solved. Note that this 8" this section, we extend the random-walk algorithms to
not included in our implementation, which uses a single locHRnSient analysis, where voltage waveforms are to be found
grid, as discussed at the beginning of this section. while considering the effects of capacitances, inductances and
time-varying current waveforms. Throughout this section, and
in the implementation, the backward Euler approximation with
a constant timestep is used to convert differential equations
A natural extension of the algorithm in Section IlI-A is toto linear equations. We assume that the timestep/sizekept
use multi-level hierarchy. Making use of all available viag;onstant in a transient analysis.
we can build macromodel on top of macromodel. After this
bottom-up traversal, the circuit is reduced to a global grid, th% Capacitors
port voltages are solved in a top-down order, and the bottom o ] .
layer voltages are obtained in the end. Compared with thel et us first mcprporate capacitors into the proposed frame-
single-level method, the extra cost of the multi-level methd§fork. The equations to be solved are as follows [14]:
is building multiple macromodels, while the benefit is shorter GV (1) + CV'(1) = E(1) (22)
walks in each level. Hence there is a tradeoff in choosing the
number of levels. Since the single-level hierarchical methodwhereG is a conductance matrix; is the matrix introduced
better than generic method, we expect the multi-level methbgt capacitors,V (¢) is the vector of node voltages, af€(t)

Another extension leads to the concept of a “virtual-layer,”

IV. RKC TRANSIENT ANALYSIS

C. Variations of Hierarchy
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Home

The complete locality of the DC generic algorithm is still
valid in the RC generic algorithm: we can compute a single
TZ’H node voltage at a single time point, without solving any other
7 m@ — nodes or any other timesteps. If we want to compute the
p/ l " voltage at noder at time¢, the walks start at node in the
S pes random walk game for tim& some walks may reacti(t—h)
Home| terminals, and then they continue in the random walk game for
time (¢t—h); some of these may readh(t—2h) terminals, and
then they continue in the random walk game for titne 2h),
Home and so on. The real terminals where walks end are those from
e physical voltage sources, which are present at all times. The
farthest a walk can go in time is the time point zero, which
is a DC analysis game. In short, “travelling back time” makes
the complete locality feasible, and this is inspired by [1].
The hierarchical method is affected by the additioviét —
terminals in various ways, and we will now take a close
look. When we build macromodels as described by Lemma 1,
G+ Q)V(t) —E(t) + gv(t — ) (23) the set of possiblg termjngls not only contgins ports, but also
h the V(¢ — h) terminals inside the local grid. Consequently,
This transformation translates the problem to solving a line#stead of equation (17), we get the following equation.
equation set. As before, we consider one single ngds one

Vi (t-h)

Fig. 15. Rules for the transient analysis “game.”

is the vector of independent sources. Applying the backwa;g
Euler formula with a timestep of, the equations become

time step at time, and we have: Vi = aVpore1 + 2Vporea -+ ckVporvk + et Vi
+o At ew Vi, — € (26)
degree(x) C
Z g (Vi(t) = Va(t)) = f(Vz(t) —Vo(t—h))+ I.(t) wherehy,1,---,hy are theV(t — h) terminals inside the
i=1 (24) local grid. Since thél/(t — h)’s are known values, they can
whereV,, V;, I, andg; are as defined in equation (2), an(Pe lumped into a constant
C, is the capacitance between nad@&nd ground. ¢ =€~ (chy1Vip, + o+ Vi) (27)

For a RC network with capacitors between two non-ground
nodes, those capacitors can be replaced by resistors and cuifgfitwe get
sources, while a current source between two nodes can be .
, - . . ok — 2
replaced by two current sources between the two nodes and Vi=e1tVoort1 + Vporiz - F e Vporik =& (28)

ground. Then the following algorithm is applicable. Here wgvith equation (28), we can continue the macromodeling

only discuss the case described in equation (24). and construct equations (18) and (19). However the sum of
Equation (24) can be converted to the following form ¢, ... ¢, is no longer one, and that relation is replaced by
degree(z)
gi cite+o o <1 (29)
Vm(t) = Z degree(z) C, Vvl t)
i=1 ijl 9+ % As a consequence of (29), Lemma 2 is replaced by the
L Ca Vit —h) I.(t) 25) following lemma in transient analysis.
degree(x REASA B degree(x 3 : i iX i i isi
Zj:gl ( )gj + % Zj:gl ( )gj + % Lemma 3:The estimatedd matrix in transient analysis is

diagonally dominant.

The rules of the random-walk game are changed to ac-To prove Lemma 3, we rewrite equation (29) as
commodate the changes in the above equation. As shown in

Figure 15, each node has an additional connection, and 1 —cporta = Z Cj (30)
the walker could end the walk and be awarded the amount port j#x
V(= h) with probability Applying this inequality and equation (19), we get
Ea N
Z(?egiree(w) gj + % ap > Zgi Z cj(nodei)
=
i=1 port j#x

Intuitively, this rule is equivalent to replacing each capacitor N
by a resistor and a voltage source. _ . = Y > gicj(nodei)

Under this new rule, the random-walk game is mathemati- port g im1
cally equivalent to the equation set (23), and both the generic B B 31
method and the hierarchical method can perform transient - Z (—ay) = Z | (31)
analysis of a RC network, timestep by timestep. In each port j7 port j#a

timestep, thd/ (¢t—h) values are updated with the node voltag&his inequality holds for any row of matrid, and thus we
values solved from the previous timestep. have proven Lemma 3.
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Global Grid

.. Lo ()
777777 + +

K12
o Kne K2 CK,, 1)

Macromodel
Fig. 16. The imaginary circuit interpretation of a macromodel in transient ﬁ
analysis. e (1)
+ +
Iy(t-h) K21hVy(1t)
. . 1,
Also because of inequality (29), as well as Lemma 3 e ¢ QKlth(t) ¢ Q? (t-h) e
. . . . . . 2 i
replacing Lemma 2, the formulation of the imaginary circuit, Kuh ’ Knh
equation (21), becomes the following in transient analysis.
I _ Z (—a )(V ~Voort ) Fig. 17. Companion model of a pair of inductors, adapted from [15].
T J T port j
port j#x L 7 )
+(ay + Z a;)\Ve+7 % 4 2
port jFx " e — —
= > (—a)(Va = Voortj) OO % 2
port j#x % 173
(Ve — 32 %
+(am + ;;é O‘J)( x ’Yl) + 72 (32) @ ® (© @
port j#x

There are many ways to spli into v; and .. One of Fig. 18. A wire segment model.
them is very meaningfuly; is a weighted average of some
V(t—h)’s inside this local grid;y is a weighted sum of some

current-loads inside this local grid, as shown below. Therefore, we use the inverse inductance, or susceptance,
o N o ok matrix K [7][15] to model inductors. It has also been shown
TVt —h) + 320 K7 2 k1 Ny i Vi, (33) that the/X’ matrix has better locality than the partial inductance
n= Ca S s S Nh matrix L, and hence reduces the problem size of circuit
i=1 M Zuj=k+1 jrt

simulation [7][15]. The K matrix is defined as the inverse

N M ) . .
B gi Iyir of the L matrix, and the device equations under the backward
72 = Z M Z Z Sq.i (34) Euler approximation are
i=1 qg=1 r T
where the neighbors of inside the local grid are labeled KV(t) = It) It —h) (35)
1,2,---,N; C, is capacitance between partand ground,; h

g; is conductance between andi; (K’ — k) is the number whereV(t) is the vector of voltage drops over the inductors,
of V(t — h) terminals inside the local grid, and they ard(¢— h) is the vector of known currents through the inductors
hiy1,- -+, hir; Np, i is the number of walks fromthat end at from the previous timested(t) is the vector of unknown
terminalh;; I, is the current load flowing out of the nodecurrents through the inductors in the present timestep,and
at thert! step of theg'® walk from nodei; s, is the sum is the timestep size. Equation (35) can be written as
of the conductances connected to the node at-thestep of
the ¢ walk from nodei. The proof of equations (33) and I(t) = hKV(t) + I(t — h) (36)
(34) is provided in Appendix Il

Due to Lemma 3, the ternia, + >° . jz, @) is non-
negative, and equation (32) can still be interpreted as
circuit. Figure 16 illustrates this new imaginary circuit:a;)
conductance connects nodend nodej; (cw+3 o 2 @)
conductance connecisto a voltage source with voltage equa
to v1; an independent current sourge flows out of noder.

and the corresponding companion model is illustrated in
Fjdgure 17, where only a pair of coupled inductors are shown.

In our circuit model, each wire segment is7amodel,
which is composed of a resistor and an inductor in series,
F\nd capacitors at two ends. Figure 18(a) shows this model,
where capacitors are not drawn. By substituting the companion
model of the inductor, we obtain the circuit in Figure 18(b),
where the inductor is replaced by a resistor and two current
B. Inductors sources in parallel. One of the two current sources is equal to

Inductances include self inductances and mutual indutie current from the last timestep, which is a known constant;
tances. Under the backward Euler approximation, a self indube other source is a voltage-controlled current source which
tance becomes a resistor and a current source in parallel, andesponds to the current induced by other inductors, i.e.,
can be easily handled by the random-walk algorithms. How- function of Vz's and V’s from a number of other wire
ever, mutual inductances are difficult to incorporate into treegments. The model in (b) can be further converted to (c)
proposed framework, because of their induced extra unknoand then to (d), which is a circuit form that can be handled
variables: the currents through the inductors. by our random-walk algorithms.
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One complication caused by mutual inductances is that tbiecuit, and the resistances that arise from the companion
current sources in Figure 18(d) is a function of not ohly's models for the capacitors and inductors. Under a constant
andVp’s, but alsoV's, while Vo's are not among the systemtimestep size, these are all unchanged from one timestep to the
variables when we solve the circuit in form (d). In other wordsiext, and therefore, using the same routes is justifiable. The
the voltage-controlled current sources can not be expressedaak of bookkeeping maintains the set of nodes visited in these
a linear function of node voltages. walks, and the frequency with which they are visited. From

To resolve the above problem, we propose an iteratieme timestep to the next, however, the current source values in
approach to compute node voltages in each timestep, dhd circuit will change, and the voltage/current sources from
in each iteration, we assume the voltage-controlled currezampanion models will change, siné&t — h) at a capacitor
sources to have constant values. First we Yg&s and V's  will be different from V(¢ — 2h), and I(¢t — h) through a
of all wire segments from the previous timestep as the initialductor will be different fromI(t — 2h), etc. This implies
guess, and compute the values of the current sourcesthat the motel prices and reward values will change. With the
Figure 18(b)(c)(d). Next, by assuming these current sourdeslp of the bookkeeping information, the voltage at each node
to be constant, we use random walks to solve the circuit @an simply be found as a weighted sum of values at nodes
form (d), and obtain neWw, and Vg values. Then, we updatevisited, which are maintained in the bookkeeping record.

V's and hence current sources in (b)(c)(d), and solve in formIn the hierarchical methods, we also keep a record for
(d) again. This process iterates until voltages converge. solving the global grid, as well as building the vect8r

In the hierarchical algorithm, if we only consider mutuabecauseS needs to be updated whenever the current sources
inductances inside the global grid, i.e., the top few metal V(¢ — h) sources in the local grid change.
layers, then the above iteration is only done in the stageThe space complexity demanded by this bookkeeping is
of solving the global grid. However, if we consider theapproximately linear in the number of nodes, and is not worse
general case, where mutual inductances exist in the local gifidin the space complexity of a traditional direct solver. This
and between the local and global grids as well, then omell be shown in Section V. Another concern is whether using
iteration in the above iterative process includes all three stagd® same record repeatedly could cause error accumulation.
macromodeling, solving the global grid, and solving the loc&ur simulation results show that the error level is acceptable
grid. Note that with the bookkeeping technique presented éwen after 1000 timesteps.
the next section, these computations can be done efficientlyFinally, the values that need to be repeatedly updated in
without running random walks. transient analysis are listed as follows:

The above iterative approach is guaranteed to converge, ang) V(t — h) values in Figure 15, for every timestep.
the proof is provided in Appendix IV. In our simulations, the 2) Current source values in Figure 18(b)(c)(d), for every
iterative process converges within three iterations, when the jteration in every timestep.
convergence criterion is maximum voltage difference being 3) Hierarchical methods update vec®rwhich is a func-
less thanl0~°V. The results are reported in Section V. tion of current sources arid(t — h) sources in the local
grid, for every timestep.
4) In the case of the hierarchical method where there are
) _ . ) ) ) mutual inductances in the local grid and between the
For transient analysis, traditional direct linear equation local and global grids, vectoB needs to be updated,

solvers are efficient in computing solutions for succeeding o every iteration in every timestep, as described in the
timesteps after initial matrix factorization since only a for- previous section.

ward/backward substitution step is required for each additional
time step. Analogously, our random-walk algorithm employs
a speed-up mechanism.

In the generic method, we first perform a DC analysis In this section, we use three industrial benchmarks to
that is used as the initial condition; next, when computingvaluate the proposed algorithms for DC analysis. Then, RC
the first transient timestep, we keep a record for each no@®d RKC circuits generated based on structures of real-life
This record keeps a count of, in the3é walks, how many Circuits are used to test the performance of transient analysis.
times the walker ends atbp, how many times the walker Computations are carried out on a Linux workstation with
ends at somé&/ (¢t — k), how many times the walker pays2-8GHz CPU frequency.
for a motel at some node, and so on. Then, in the follow- The three industrial power grids are:
up timesteps, we do not perform random walks any more,1) Industryl is a 70,729-node circuit, and we solve for
and simply use these records recursively and assume that the the 15,876 bottom-metal-layertb® nodes and 15,625
walker gets awards at same locations, pays for same motels, bottom-metal-layer ground nodes. The voltage range of
and only the award amounts and motel prices have changed. VDD bottom layer is 1.1324-1.1917V.

Thus, with bookkeeping, new voltages can be computed by2) Industry2 has 218,947 nodes, in which 25,137 bottom-
some multiplications and additions efficiently. metal-layer \bb nodes and 18,803 bottom-metal-layer

This bookkeeping technique is based on the observation ground nodes are to be solved. The voltage range of
that, the routes taken by the walks are decided solely by the VDD bottom layer is 1.61248-1.79822V, that of ground
resistor values corresponding to the resistances in the original bottom layer being 0.000334—-0.066505V.

C. Bookkeeping

V. RESULTS
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Fig. 19. Estimated voltages at a single node for various value¥ of Fig. 20. RuntimeA tradeoff for the computation of all bottom-metal-layer
nodes in Industryl.

3) Industry3 is a wire-bond ground net with 347,566 nodes, 30+ ~~~ Generic random-walk method
and the bottom layer has a voltage range of 0.024347— o T ohgle-level hierarchical method
0.110860. 2

One implementation issue is the choice of random number g

generator. A random number uniformly distributed between Q

0 and 1 is needed for making a decision at each step in a g

random walk. The higher the required quality is for random <

numbers, the longer the runtime is. In all our implementations,

we use the generator on page 279 of [24]. The simulation o

results show that it provides sufficient quality for power grid o e » ) © )
analysis application. Runtime (second)

Figure 19 shows the results of computing th lution f
gure 19 shows the results of computing the solutio (I):l;g. 21. Accuracy-runtime tradeoff curves for solving Industryl using the

only one node ir_‘ Industryl, using the generi_c algorithm. Thgneric random-walk method, the single-level hierarchical method, and a two-
markers are estimated voltage values for differgéfis, and level hierarchical method.

the dashed line is the true voltage. The ultra-accurate right-
most point, for whichd/ is 4000, only takes 0.42 second
runtime, and thus shows the efficiency of using our algorithaximum error is 5.97mV. (For reference, the overall average
to solve individual nodes without solving the whole circuiterror is 1.64mV, and the overall maximum error is 8.86mV.
This is ideal in the scenario of incremental design, wheréus, the impact of the step limit is minor.) For hierarchical
the designer makes a change and wants to see the effectmgihods, there are typically no or only a few violations.
a node voltage. Note that in the hierarchical algorithms, we The above tradeoff only affects runtime indirectly, while the
can no longer solve a single bottom-metal-layer node onlgtror marginA in Equation (9) decided/, which is directly
the overhead of building and solving the hierarchy has to Ipgoportional to runtime and needs careful investigation. Fig-
paid first. For example, if we use the single-level hierarchicale 20 plots the relation betweeh and runtime for solving
method to solve one bottom-metal-layer node in Industry2, thise complete Industryl, i.e., finding all bottom-metal-layer
overhead is 15 seconds. In the scenario of incremental desigpifages, using the generic random-walk method. The runtime
this is still better than solving the whole linear equation setis always larger than 8 seconds because the minimum value
As indicated in Section II-B, one implementation issue igf M is set to be 40. The lower part of this curve shows the
that, in order to avoid any possible deadlock, we need to se@iéadratic relation betweeh/ andA: M o« 5. For example,
limit, L, on the number of steps in a walk. Any walk that fail§he runtime is around 15 seconds wheris 4mV, and roughly
to end within L steps will be forced to end, and be awarde@0 seconds wher is 2mV.
VDD if inside the \bD net, be awarded O if inside the ground Figure 21 plots the tradeoff between average error and
net. This operation is optimistic and will results in a bias in theuntime solving Industryl, where the three curves are for
estimated voltage; however, if the limit is chosen appropriateiie generic random-walk method, the single-level hierarchical
the error will be very small as the probability of a walk ofmethod, and a two-level hierarchical method, respectively. All
this length is minute. Thus a new degree of accuracy-runtirheerarchies are divided at vias. All three methods use pre-
tradeoff is introduced, and we empirically set this limit to beletermined and fixed/ in each run, and points on the curves
10,000 steps as a good tradeoff point, where the bias erroc@&respond to differend/ values. Both hierarchical methods
acceptable and not much runtime is wasted. For example, wiaahieve roughly 3—-4 times speedup over the generic method,
the generic method solves Industryl withbeing 4mV, there with the same average error.
are 2.5K walks that violate this step limit and are forced to end, In practice, the user decides the tradeoff point by choosing
and the starting nodes of these 2.5K walks are 1.6K nodéd; values according to the needs of the analysis. Here for
for these 1.6K nodes, the average error is 1.86mV and thentime comparison purpose, we choose a reasonable tradeoff
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— Single-level hierarchical method them overcome. The numbers for chip2 in [39] are listed as
- - - - Multi-level hierarchical method 3 . A ..

a baseline. In viewing the numbers, it is important to note
that our computer is approximately 3 times faster than those
used by [39], according to SPEC benchmarks [31]. Runtimes
reported by [39] show superlinear time complexity; chip2 is
their smallest circuit, and therefore has the smallest normalized
runtime. Since the time complexity of random-walk algorithms
is linear in circuit size (for circuits with similar structure), as
power grid size increases, they will outperform [39] more.
Note that due to factors such as benchmark structure, coding,
compiling, and platform difference, this is only an approximate
comparison, even after considering the 3X factor.

Fig. 22. Accuracy-runtime tradeoff curves for solving Industry2, using the For IndUStryl- both hierarchical methods show a 4X
single-level hierarchical method and a three-level hierarchical method.  speedup over the generic method. For Industry2, the speedup
is dramatic, and shows the robustness introduced by hierarchy.
The multi-level hierarchical method does not show a run-
time advantage over the single-level method for Industry?2.
The reason is that, the benefit of the multi-level hierarchy,
which is easier access to home nodes, is not worth the cost of
building multiple macromodels, for the Industry2 case with C4
packaging. However, it is worthwhile for Industry3, a similar-
sized circuit with wire-bond packaging.
Industry3 is a wire-bond power grid, a difficult circuit type
to solve. Even after it is reduced to its top metal layer only,

Average Error (mV)

Runtime (second)

TABLE Ill
DC ANALYSIS COMPARISON. N IS CIRCUIT SIZE, E1IS AVERAGE ERROR
E21S MAX ERROR, T IS RUNTIME, NT IS NORMALIZED RUNTIME,
DEFINED AS RUNTIME PER THOUSAND NODESP IS PEAK MEMORY, AND
NP IS NORMALIZED PEAK MEMORY, DEFINED AS PEAK MEMORY PER
THOUSAND NODES G DENOTES THE GENERIC RANDOMWALK METHOD,
S DENOTES THE SINGLELEVEL HIERARCHICAL METHOD, AND M
DENOTES THE MULTILEVEL HIERARCHICAL METHOD.

Benchmark | N [E1(mV)E2(mV) T NT(sec)P(MB)NP(MB)

s 11 | o8 1720 0245 107 | 015 there are still 80K nodes, yet there are only 20 perfect voltage
i : 40 Se¢ 0. i . sources distributed on four sides of the top metal layer. Thus

Industry} S |71K| 1.1 | 6.6 | 4.34 sec) 0.061) 114| 0.16 | jt requires high runtimes if using the generic method or the

M 11 | 94 | 4.16sec| 0.059| 168 | 0.24 single-level method, as listed in Table Ill. We employ a two-

G 10.9 | 142.2|329.57 seg 1.50 | 27.3| 0.12 level hierarchical method, the top level being a virtual layer, as
Industry? S |219K| 1.4 | 30.7 |20.82 se¢ 0.095| 37.0| 0.17 discussed in Section 1lI-C. This scheme solves this benchmark
M 14 | 353 |30.12 sed 0.138 | 41.4| 0.19 in a reasonable amount of time, with acceptable error. The

G 23 | 76 | 7imin | 122 |577] 017 results are Il_sted in Table II_I, and the 'nor.mahzed runtime is

seen to be higher than solving other circuit types.
Industryd S |348K| 4.4 | 18.8 |498.02 set 1.43 | 72.4| 0.21 : ey

In order to evaluate the transient analysis, since we were

M 36 | 170 |9364seq 0.27 | 846 024 | ypaple to obtain real-life RC/RLC power grid circuits, we

Chip2 by the |2.7M| N/A | N/A | 25min | 0.56 | 300 | 0.11 generated four circuits with realistic parameters. RC1 and RC2
method of [39 listed in Table IV are RC networks based on the structure
of Industryl. RKC1 and RKC2 listed in Table V are RKC
networks based on the structure of Industry2. Inductances are
point on each of the three curves, and list them in Table lllassumed to be only in the top two metal layers, and are
Figure 22 plots the tradeoff between average error aedtimated using formulas provided by [11]. Th&hmatrices
runtime solving Industry2, using the single-level hierarchicare constructed by the method proposed by [7], using 7-by-7
method and a three-level hierarchical method. All hierarchiesd 7-by-5 window sizes for the two metal layers. Current-load
are divided at vias. Both methods use pre-determined awdveforms are designed such that inductive effect is visible:
fixed M in each run, and points on the curves corresporsimulation using a direct solver shows that if inductors in
to different M values. The curve for the generic random-walkircuit RKC1 are ignored, the induced error is up to 21mV.
method is omitted because its runtime is unacceptably highThe results of RC analysis using both the generic method
for this circuit. The reason has been discussed in Sectiondhd the hierarchical method are shown in Table IV. CPU
a highly resistive metal layer on top of low-resistance viagmes are measured for the timesteps that follow the initial
forms a barrier structure. This circuit shows an example 8fC analysis and the first transient step. The solution for circuit
the robustness introduced by hierarchy. Again, the trade®fC1 is compared with HSPICE, while circuit RC2 is too large
point should be decided by the designer. Here we choosédode simulated in HSPICE. Note that E1 is the average over all
reasonable tradeoff point on each of the curves for Table IHodes at all timesteps, and E2 is the maximum over all nodes at
One tradeoff point of the generic method is also listed. all timesteps. The peak memory numbers are small for RC1,
The runtime comparison is shown in Table lll. The threand are omitted. The runtimes are several times faster than
rows Industry2-G, Industry3-G and Industry3-S, are resultsaditional direct solver runtimes reported in [39], even after
with robustness problems, as discussed in Section II-E, whilermalization by the speed factor of 3. The space complexity
the boldface rows are results without the problems, or with higher for the hierarchical method, because bookkeeping is
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TABLE IV
RC TRANSIENT ANALYSIS RESULTS N IS THE CIRCUIT SIZE TSIS THE
NUMBER OF TIMESTEPS T IS CPUTIME PER TIMESTEP FOR SUBSEQUENT
TIMESTEPS E11S THE AVERAGE ERROR E21S THE MAX ERROR, AND P IS

and inductors are incorporated, and a RKC transient analysis
algorithm is proposed. Experimental results show that these
algorithms reach good runtime-accuracy tradeoffs.

THE PEAK MEMORY. G DENOTES THE GENERIC RANDOMWALK METHOD,

A. Potential Applications
AND S DENOTES THE SINGLELEVEL HIERARCHICAL METHOD.

Possible scenarios that the proposed algorithms offer advan-

Ckt N TS | T(sec) | EI(mV) | E2(mV) | P(MB) tages over traditional methods are summarized as follows:
RC1| G | 3.7K | 500 | 0.0026| 1.6 11.9 - 1) DC analysis of a whole circuit. Random-walk algorithms

s | 0.0014| 20 13.7 - provide a solution with runtime linear in circuit size.
RC2 | G | 2.3M | 1000 | 0.65 N/A N/A 680 Although existing iterative solvers also have linear run-
S 0.64 N/A N/A 854 time, the random-walk solvers provide an alternative

that allow users to tradeoff between speed and accuracy,

and this tradeoff can be naturally tuned by changing

the number of walks, or the error margin. This is
useful when ultra-accurate solution is not necessary, for
example, early-stage performance analysis.

Transient analysis of a whole circuit. Iterative solvers are

inefficient for transient analysis. Compared with direct-

solver based techniques, simulation results show that,
with acceptable errors, random-walk algorithms have
the following advantages: linear runtime for the initial
timestep, as opposed to superlinear runtime of a direct
solver, and hence better suited for large designs; lower
memory consumption; lower runtime for the follow-
up timesteps. Again, the tradeoff between accuracy and
runtime/memory consumption can be easily tuned.

3) Solving a small number of nodes. The generic algorithm
can compute any single node voltage without solving
the whole circuit, and can be very useful in incremental
design. This advantage holds for all chips with C4
packaging. For wire-bond packaging, it is partially com-

TABLE V
RKC TRANSIENT ANALYSIS RESULTS N IS THE CIRCUIT SIZE, TSIS THE
NUMBER OF TIMESTEPS T IS CPUTIME PER TIMESTEP FOR SUBSEQUENT
TIMESTEPS E11S THE AVERAGE ERROR E21S THE MAX ERROR, AND P IS
THE PEAK MEMORY. 2)

Ckt N TS | T(sec) | EL(mV) | E2(mV) | P(MB)
RKC1 | 6.4K | 1000 | 0.0165| 0.8 13.9 -
RKC2 | 642K | 1000 | 2.1 N/A N/A 837

needed not only for the bottom-metal-layer nodes, but also
for building and solving the global grid. However, the peak
memory of the hierarchical method is still lower than that
of traditional methods reported in [39], in terms of memory
consumption per million nodes.

The results of RKC analysis are shown in Table V. The
single-layer hierarchical method is used, and the algorithm
discussed in Section IV-B is used when solving the global
grid with inductors. Note that inductances are assumed to L OS . .
be only in the top two metal layers, and hence only in the promised: a hierarchical method needs to be used, and

global grid. CPU times are measured for the timesteps that there is an overlhead of building and solving hl_erarchy.
follow the initial DC analysis and the first transient step. The 4 .Parallel computlng'. Rand'om-walk based algquthms are
solution for circuit RKC1 is compared with a traditional direct mherently compatlb_le with parallel computing. The
solver, while circuit RKC2 is too large to be simulated by a computations for different nodes, ant_j even _random
direct solver. Note that E1 is the average over all nodes at walks for the same node, can be carried out |n.dep.en—
all timesteps, and E2 is the maximum over all nodes at all dently on different processors. The only communication
timesteps. The peak memory is small for RKC1, and is omit- needed between parallel processors is to share the volt-
ted. Comparing with Table IV, we can see that RKC analysis ages of already cqmputed nodes, to takg advantage of
has higher time and space complexity than RC analysis. This the speedup technique at the end of Section II-B.
Iesxt?;?t(:?attit;isegf‘rio?;?)ruatgﬁofr mutual inductances, and t‘ge Potential Extension to AWE/PRIMA

When viewing Tables IV and V, one common concern is '€ Proposed algorithm can also be used to perform mo-
error accumulation: although the error of one timestep is low,Ti€Nt generation for power grid transient analysis in the fre-
could add up to large error over many timesteps. This concéfe€ncy domain using asymptotic waveform evaluation (AWE)
drives us to measure E1 and E2. Note that E1 is the aver&jePassive reduced-order interconnect macromodeling algo-
over all timesteps, and E2 is the maximum over all timesteg&™M (PRIMA). An existing stochastic moment generation
They suggest that the errors are acceptable after 500/1@@proach is [21], which, in each step, randomly samples one
timesteps. Practically, they suggest that errors tend to can@kfwo capacitors and removes all others, in order to facilitate

each other, and that the accumulation has a very slow rategSomputation for large RC networks. Our method is different.
For transient analysis formulated by equation (22) (note that

in RLC analysis,y(¢) includes entries of inductor currents,

VI. CONCLUSION AND EXTENSION : ) . L
. ~and( includes inductance entries), the moment generation is
This paper presents a random-walk based power grid a@GTving the following equation sets one by one [30],
lyzer. A generic algorithm is first developed, and then several

; . . . _ T
hierarchical methods are built to make the algorithm faster and Gmo = [1,0,0,---,0]
more robust in solving various types of circuits. Capacitors Gm; = —Cmy_; fori=1,2,---k 37)
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wheremg, my, - - -, my are the moment vectors to be solvedwhere INV; is the number of walks that end at terminal.

In each iteration, the moment generation is equivalent Because every random walk stops at a termifél's must

replacing each capacitor with a constant current source, satisfy the following condition.

placing each inductor with a constant voltage source, and &

performing DC analysis. ZN‘ =M (42)
The above computation can be carried out using our !

random-walk algorithms, with one extension to handle t'F

voltage sources induced by inductors. In DC analysis of A‘erefore

circuit with a voltage sourc&y between two non-ground non- k N, M
VDD nodesz andy, such thatV,, — V, = V;, we combinex c1tco+ - Z M ik (43)
andy into one single supernodey in the random-walk game, J=1
and usel/, as its nominal voltage. By Kirchoff’s Current Law
APPENDIX I
Z 9oi(Vi = Vo = V) + Z 9yi(Vi= V) =L, +1, PROOF OF EQUATIONS(33) AND (34)
teNe €Ny In RC transient analysis, considering the general case where
. there exists capacitane&, between portz and ground, then
vV, = il (Vi = Vo) equation (15) becomes
! LGZNI ZJENJ— gz,] + ZjeNy gy,] C
+ZE giZ v, L=+t +In+ = (Ve = Valt =) (44)
ieN, “iEN, 9o jeN, Ju.g where the neighbors of inside the local grid are labeled
B I, + 1, (38) 1,2,---,N, and Iy, I»,---, Iy are the currents flowing from
> e, 925 T 2jen, Yy port z to each of them. By equations (19) and (27), and

considering the extra term introduced BY, the v term in

where N, is the set of nodes adjacent toexcludingy, N, (32) can be expanded as follows.

is the set of nodes adjacent tp excluding =, g;; is the

conductance between nodeand nodej, I, and I, are the C,

current loads connected to nodeand y. The new rule is 7= _TV +Zgl

that if the random walker goes from nodg to a neighbor

of x, he/she has to pay extra mongy; correspondingly, if - —%Vgc(t —h)

he/she walks from a neighbor ofto nodexy, he/she gain¥j. fli[

Note that ifz andy has a common neighbor, it is considered

as two different directions from nodey’s point of view. +Zg’ (Ch+1iVhig + oo+ kriVi,, ) X45)

Under this new rule, we can perform moment computation )
in AWE/PRIMA using random walks. The bookkeeping tech¥here ¢; is the conductance between and i, and
nique in Section IV-C is applicable, and after solving, and &> Si» Ch+1.6:*+ i @re the corresponding coefficients de-

m;, the followup computations can be done efficiently. ~ fined in equations (26) and (27) constructed for c
-, N}. From (26), we know thatk’ — k) is the number

of V(¢ — h) terminals inside the local grid, and that they are

APPENDIX I
PROOE OFLEMMA 1 hk+1,- -+, hg . From (41), we have

Consider the random—_wa_lk_ game thqt has terminals i = Ni, i Cojedk+1,- kD (46)
hi,ha,---, h,. For each individual walk in the game, the %
money earned at the end of the walk is composed of an B qu Ug.i 47
award, which is a terminal voltage, minus a sequence of motel & = M (47)
expenses. The result of the" walk from nodei is: whereN,, ; is the number of walks fromthat end at terminal

W, = Vindo — (39) hj, andug ; is the sum of expenses paid at motels during the
! ¢*" walk from nodei. Substituting (46)(47) into (45), we get

whereg € {1,2,---, M} is the index of the walkVenaq € C
{Viys Vis, -+, Vi, } is the voltage at the terminal where the v o= —fvx(t — h)
random walk endsy, is the sum of all motel expenses. "

When we take the average of the results fromMieandom n Z 1 Uq, B Z Ny, i Vi)
walks, we obtain an estimatdd in the following form: gl il hy

i=
Zki1 Wq C M

‘/Z’:quclvhl+62Vh2+.‘.+ckvhk7§ (40) = _Tlxvx(t_h)—'_z%zuq,l

where
; %3
N; . > q=1Uq - : Ny, iV, (48)
Cj:ﬁ’ je{l,---,k} and fqu (41) ZMJ el
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Define A C
. Subgraph formed ;
C.. N ; k' high high
TLVw (t - h) + Zi:l % j=k+1 Nhj’q;th resistances by low resistances resistances
o= — (49) T WW—] W
Coy N g 5ok Ny
h i=1 M Z2uj=k+1*Vh;,i
M
g; Fig. 23. An isolated subgraph formed by low resistances, and isolated by
Y2 = M § Uq,i (50) high resistances.
i=1 q=1

Then
APPENDIXIII

(51) REMEDIES FOR ISOLATED LOWRESISTANCE SUBGRAPHS

o
Z N, i)

C N Gi
7272—71(7"”—# E 7]\2
i=1 =k

As the general case of Figure 6, a subgraph formed by sev-
eral low resistances can be isolated by other high resistances
and form a “trap”, and random walks may spend many steps
inside this subgraph. Figure 23 shows an example.

It is worth pointing out that a pre-processing step to remove
such a subgraph is only necessary when the ratio between the
wherel, ;. is the current load flowing out of the node at thgyrrounding high resistances and the inside low resistances is

™ step of theg"™™ walk from nodei, ands, ;. is the sum of extremely high. For example, if at every node in the subgraph,
the conductances connected to the node atthetep of the >

insidcg
¢** walk from node;. D out

So far we have derived equations (49) and (52), whicHep.
are (33) and (34) respectively. These two equations haf Zgirideg .= 0.95. However,0.95%° < (.36, in other
their physical meaningsy, is a weighted average of somegigd théiShAbility that a random walk stays in the subgraph
V(t—h)'s inside this local gridy. is a weighted sum of SOme ¢ 56 than 20 steps in less than 0.36. Therefore, in this
current-loads inside this local grid. Now we need to show th@&ample, removing this subgraph may not be necessary.

By equation (8)u,,; can be further expanded, anglbecomes

N i M I
n=Y Y

qg=1 r q,%,7

(52)

i 19, then according to equation (8), at every
“tfie random walk stays in the subgraph with probability

equation (32) is true, in other words,
v=-mn(as+ Z ;) + 72
port j#x

To do so, we look at equation (26) constructed foe
{1,---,N}. By Lemma 1, we have

(53)

cli+ ot kit Chrit o =1 (54)
Substituting (46) into the above equation, we get
k K’
N, i
1- i = —
doGi= 2 (55)
Jj=1 j=k+1

By equation (19), and considering the extra coefficié,iﬁt
introduced byC, as shown in (44),

Qg + Zaj =

port j#x

C N
7 + ;gz(l - Cport m,i)

N
+ Y (=) g

port j#x i=1

.. k
= TZ + Zgi(l - ch,i)
i=1 =1

k'

CZL’ ol Nhj,i
= 7"‘292’ Z A (by (55))
i=1  j—k+1
C N i K’
- Sy E S N 68
i=1 " j=k+1

None of the three industrial benchmarks contains a sub-
graph that needs to be removed, and our implementation only
removes single isolated low resistances as shown in Figure 6,
by the Y-A transformation. Therefore the following discussion
has not been implemented or tested. If removing a subgraph is
indeed necessary, the following techniques may be employed.

1) If this subgraph is a tree. The X-transformation can be
iteratively applied on leaf nodes. In each transformation,
an edge of the subgraph, i.e., a low resistance, is
removed. In the end, the subgraph disappears, without
any loss of accuracy.

If this subgraph is not a tree, or if the previous technique
introduces overly complex connectivity. Then, using
Figure 23 as an example, we can define the subgraph
as a local grid, and nodes A,B,C,D as ports. Then
the subgraph can be replaced by a macromodel, which
provides connections between A,B,C,D without trapping
random walks. This macromodeling can be carried out
either by the algorithm from [39], or by our approach
in Section 11I-A.1, without excessive loss of accuracy.

2)

APPENDIX |V
PROOF OF CONVERGENCE FOR THE ITERATIVE APPROACH
IN SECTION IV-B

The modified nodal equation set for the circuit in the form
of Figure 18(b) can be written as

(F+H)X =E (57)

where matrix ' contains the contributions of resistors and
companion models for capacitors and self-inductances, ma-

By equations (51) and (56), equation (53) must be true, atrck H contains the contributions of the companion models

our proof is complete.

(voltage-controlled current sources) for mutual inductances,
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X is the vector of node voltages, arld is the vector of  The contribution of inductof to matrix F5 is shown below,
independent sources, which include original current/voltagéth the row and column indices marked outside [14].
sources, the voltage sources from the companion models for

. . €i,1 €i2
capacitors, and the current sources from the companion models €1 WK . WK
for self-inductances [14]. Note that, because the modified " o o
nodal equations are constructed for the circuit form of Fig- , LK WK -

€i2 1,1t 9,7

ure 18(b),X includes both the end nodes of wire segments
(nodesA’s and B’s in Figure 18), and the middle nodes§’¢ Hence, the contribution of inductarto y™ Fyy is

in Figure 18) which do not exist physically. thygi‘l — WK Yer \Yer s — DK iYer 1 Yer s

The iterative algorithm in Section IV-B can be written as +hKi,iy§i,2 — WK i (Yer, — Yern)?
FXkt — _pgXk4E Therefore
Xkt — _prlgXk 4 PR (58) N
yTFQy = Z hKl?(yf’zl - y€¢,2)2 (63)
where XX is the solution vector from the previous iteration, i=1

and Xk*1 is the updated solution vector. Note that our The contribution of the mutual inductances between induc-
algorithm does not perform the matrix computation of (58}or i and inductorj to matrix H is shown below, with the
and instead, it converts the circuit to the form of Figure 18(djow and column indices marked outside the matrix, and these
and uses random walks to carry out the computation. Howeventries correspond to the voltage-controlled current sources in
our underlying iteration is equation (58). Figure 17 and Figure 18(b) [14].

Therefore, the necessary and sufficient condition for our

. : . : €1 €4,2 €51 €5,2
iterative algorithm to converge is €1 hK;; —hKi,
max|)\T(F*1H)| <1 (59) €2 —-hK;; hK;;
T €51 th,i _th,i
€j.2 —hEji  hEji

where)\,. denotes theth eigenvalue of a matrix [36]. In order o _
to prove condition (59), the following lemma is needed.  Hence, the contribution ok’; ; and K;; to yTHy is
delﬁili?ema & MatrlceSF, (F " H) and (F - H) are posmve hKiy.i (yei,lyej,l - yem yej,z - ye’i,2yej,1 + yei,2yej~2>
Matrix F is an irreducibly diagonally dominant matrix with I (YeinYes — YeirVesn — YeraYesn + Yeie;)
positive diagonal entries, for any connected power grid, and = i j(Yein = Ve, 2) We; 1 — Ye,2)
therefore is. positive definite [36]. FhK;i(Ye,r — Yein) Yejn — Yej)
Let matr|>§ F1. be the cqmponent of" that F:orresponds = 21K (Yers — Yein)(Wesr — Yeyz)
to the contributions of resistors and companion models for
capacitors, and let matri¥, be the contributions of self- Therefore
inductances. Thert’ = F; + F». Let y be any real-valued yTHy = Z

2hKi j(Yeir — Yer o) We,n — Ye,
nonzero vector. We have i Wein = Yeun) Wesn = Vo)

i,5€{1,-,N}
i#£]

T(F+H)y=y"F TF, TH 60 : L (64)
y (F+H)y =y Fy+y By +y Hy (60) This leads to (65) at the top of the page, which in turn implies
Becausel; is a diagonally dominant matrix with positive yT Ry +yTHy >0 (66)

diagonal entries, (maybe reducible, i.e., representing an un- _ .
connected network), and hence must be nonnegative definfgtbstituting (61)(66) into equation (60), we get

y ' (F+H)y>0 (67)

Now we need to show that (61) and (66) cannot both be
Let N be the number of inductors, and they are labeleshualities. Note that, in order for (65) to be an equality after
1,2,---,N. Lete;; ande; 2 be the nodes at the two endsapplying inequality (62), vectoy must satisfy the condition
of inductor ¢, in other words, they are the nodés and C i
in Figure 18; let them be defined with consistent direction, in Yein = Yei2 for ie{l,---,N}
other words, for parallel wire segments,;'s always point to For such a vectoy, we can merge; ; ande; » into one node,
the same direction. In th& matriX,Ki,i is the self-inductance and obtain a shortened Vectﬂr_ In other words, node8 and
of inductor i, and K ;, i # j, is the mutual inductance ¢ in Figure 18 are merged into one node. Correspondingly, the
between inductor and inductor;. From [7][15], we know rows fore;; ande; , in matrix F; are merged into one row by

y Fiy >0 (61)

that K ; = K, and that adding entries, and columns fer; ande; , in matrix F; are
merged into one column by adding entries. Thus we obtain a
Ki; > Z K (62) new matrixF,’, which is the same as the modified nodal left-

I N hand-side matrix if all inductors are ignored. Beca#seis an
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|yTHy} = E QhKZJ (yeqi,l - yez‘,,z)(yej,1 - yej‘2) < § h’Ki,j((yeiJ - yei,2)2 + (yej,l - yeg,2)2)
PIELL N DA€ N
i#£j i#j

< Z h‘K’i»j (yei,l - yei,2)2 + Z hKi,j (yejJ - Z/e“)Q
i,E{1, N} ije{l, - N}
i 1#]
Y Z Z hKi:j (Yein = Yer) Z Z th J(ye, 17 Yey, 2)
i=1 je{1, J 1 ie{1,-
J?fl 'L;é]
1 & 1
-2 Z (Ve ye’i=2)2 Z hi | + 92 Z (Yes o — y€j~2)2 Z hK;,;
i=1 Jj€{1,--,N} j=1 ie{l,
J# AP
1 N N
= 2 Z (yei,l - yez‘,z)Q Z |hKl J| t5 Z (ye7 1 yej,2)2 Z ‘hKZ,J|
=1 j€{1,---,N} j: i€{1l,---,N}
J#i i#]
1 & 1 &
< 52 Wy = Ve )M+ 5 Y (e, —we,,)*hE;;  (applying equation (62)
i=1 j=1
1 N 1 N N
= 9 Z (yei.l - yei,2)2hKi7i + 92 Z (yei,l - yei,z)Qh’Kivi = Z (yei,l - yei,z)QhKi,i
i=1 =1 i=1
= yThy (applying equation (63)) (65)

irreducibly diagonally dominant matrix with positive diagonaBy Lemma 4,y T F'y must be a positive scalar, and therefore,

entries, for any connected power grid, we have
14X > 0

y Ry =y TRy >0, A > -1 (71)

it follows that (61) and (66) cannot both be equalities. Similarly, from (F — H) being positive definite, we get

Thus, (67) can never be equality, and can be replaced by \<1 (72)
<

T
y (F+H)y>0 (68) Therefore

This is true for any real-valued nonzero vecgar Therefore, Al <1 (73)

matrix (F' + H) is positive definite. . . .
. .( +H) s p . This is true for any eigenvalue of matrik—!H. Therefore
Similarly, by equations (61)(66), and the fact that the : ; . . . .
" emma 5 is true, and our iterative algorithm in Section IV-B
cannot both be equalities, .
is guaranteed to converge.

y ' (F-Hy=y "Fiy+y"FRy-y"Hy >0 (69
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This is true for any real-valued nonzero vecsar Therefore,

matrix (F' — H) is positive definite. Lemma 4 is proven.

Now we move on to use Lemma 4 to prove condition (59
which is replicated as follows.

Lemma 5:max, |A.(F~'H)| <1

Let A\ be any eigenvalue of matrik—! H, and lety be the
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