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Abstract— This paper presents a class of power grid analyzers
based on a random-walk technique. A generic algorithm is first
demonstrated for DC analysis, with linear runtime and the
desirable property of localizing computation. Next, by combining
this generic analyzer with a divide-and-conquer strategy, a single-
level hierarchical method is built and extended to multi-level
and “virtual-layer” hierarchy. Experimental results show that
these algorithms not only achieve speedups over the generic
random-walk method, but also are more robust in solving various
types of industrial circuits. Finally, capacitors and inductors are
incorporated into the framework, and it is shown that RKC
transient analysis can be carried out efficiently. For example,
DC analysis of a 71K-node power grid with C4 pads takes 4.16
seconds; a 348K-node wire-bond DC power grid is solved in
93.64 seconds; RKC analysis of a 642K-node power grid takes
2.1 seconds per timestep.

Index Terms— Power grid, random walk, supply network,
simulation, physical design, capacitance, inductance.

I. I NTRODUCTION

POWER grid analysis is an indispensable step in high-
performance VLSI design. In successive technology gen-

erations, the VDD voltage decreases, resulting in narrower
noise margins. Meanwhile, IR drops on power grids become
worse as wire resistances increase due to the reduced intercon-
nect wire widths, and the currents through the grid increase.
Since power grids play an important role in determining circuit
performance, it is critical to analyze them accurately and
efficiently to check for signal integrity.

A typical power grid may be represented by the model in
Figure 1, consisting of wire resistances, wire inductances, wire
capacitances, decoupling capacitors, VDD pads, and current
sources that correspond to the currents drawn by logic gates
or functional blocks. There are two sub-problems to power
grid analysis:DC analysisto find steady-state node voltages,
andtransient analysiswhich is concerned with finding voltage
waveforms considering effects of capacitors, inductors and
time-varying current waveform patterns.

The DC analysis problem is formulated as:

GV = E (1)

where G is the conductance matrix for the interconnected
resistors,V is the vector of node voltages, andE is a vector of
independent sources. Traditional approaches exploit the sparse
and positive definite nature ofG to solve this system of linear
equations forV. However, the cost of doing so can become
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Fig. 1. Part of a typical power grid model.

prohibitive for a modern-day power grid with hundreds of
millions of nodes, and this will only become worse as the
circuit size is ever growing from one technology generation to
the next. Furthermore, in recent technologies, inductive effects
in the top few metal layers can no longer be ignored. The
transient analysis problem involves the solution of an equation
similar to (1) at each time point in the analysis. Especially
when mutual inductances are taken into consideration, the left-
hand-side matrix, which contains the contribution of capacitors
and inductors, is significantly denser than that for DC analysis,
making it even more expensive even at a single time point.

Different circuit models and simulation techniques have
been developed for power grid analysis, to handle large prob-
lem size, and to incorporate capacitances and inductances ef-
ficiently [2][4][5][8][16][19][23][29][30][33][34][39]. Among
them, several methods are proposed to achieve a lower time
and space computational complexity by sacrificing a cer-
tain degree of accuracy. For example, [19] proposes a grid-
reduction scheme to coarsen the circuit recursively, solves a
coarsened circuit, and then maps back to find the solution
to the original circuit. The approach in [39] utilizes the
hierarchical structure of a power grid, divides it into a global
grid and multiple local grids, and solves them separately.

In this paper, we apply a statistical approach based on
random walks to solve the problem of power grid analysis.
Random walks correspond to a classical problem in statistics,
and their use in solving linear equations dates back to as early
as [10] and [37]. Subsequently, several other solvers have been
developed [12][32][35]. The work in this paper is inspired by
[9]. A brief overview of these works is in Section II-A.

This paper is organized as follows. Based on the above
mathematical foundation, we apply random walks for power
grid analysis, and develop a basic DC analysis algorithm in
Section II that we call the generic method. Next, in Sec-
tion III, we combine the divide-and-conquer idea of [39] with
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this generic random-walk method, and present a hierarchical
random-walk method. These algorithms are extended to handle
RKC transient analysis (whereK is the inverse inductance,
or susceptance, matrix) with capacitors and inductors in
Section IV. We use test results to show that the proposed
algorithms provide good accuracy-runtime tradeoffs, and are
faster than traditional methods with acceptable error levels
in Section V. We demonstrate that the proposed algorithms
have the feature of localizing computation, which makes them
especially useful when only part of the grid is to be analyzed.
Finally, we present concluding remarks in Section VI. This
paper is an extended description of the work in [25] and [26].

II. T HE GENERIC RANDOM-WALK METHOD

This section focuses on DC analysis only, and is organized
as follows. Section II-A provides a summary of previous
works that use random walks to solve linear equations, Section
II-B presents the theoretical basis of the generic algorithm,
followed by a simple illustrative example in Section II-C. The
limitations of the generic method are discussed in Section II-E.

A. A Brief History

A random walk, also viewed as a discrete abstraction of the
physical phenomenon of Brownian motion, is one category of
the general Monte Carlo methods of numerical computation.
In this paper, we employ this method to solve systems of linear
equations that are diagonally dominant. Historically, the theory
that underlies this work was developed on two seemingly
independent tracks, related to the analysis of potential theory
[6][12][13][17][18][22] and to the solution of systems of linear
equations [10][12][32][35][37]. However, the two applications
are closely related and research on these tracks has resulted in
the development of analogous algorithms, some of which are
equivalent. These mathematical works have found meaningful
applications in electrical engineering [1][3][20][28].

Along the first track, the goal has been to solve Laplace’s
equation in a closed region with given boundary values (i.e.,
under Dirichlet conditions), and it was proven that the value at
a location can be estimated by observing a number of Brown-
ian particles that start from this location and travel until they
hit the boundary, and taking the average of the boundary values
at the end points [6][13][18]. An important improvement was
proposed in [22], which proved that, instead of simulating tiny
movements of a Brownian particle, the particle can leap from
a location to a random point on a sphere that is centered at
this location, and that shapes other than a sphere can be used,
given the corresponding Green function1. Another important
development [17] extended the theory to solving Poisson’s
equation under Dirichlet conditions, and more general elliptic
differential equations (under certain restrictions).

The second parallel track, which considered the solution
of systems of linear equations, will be discussed in greater
detail here, since it is directly related to our algorithm. The
first work that proposed a random-walk based linear solver is

1Many years later, this evolved to [20], a successful Monte Carlo algorithm
in VLSI design automation.

[10], although it was presented as a solitaire game of drawing
balls from urns. It was proven in [10] that, for any matrix
G such thatmaxr |λr(I −G)| < 1, where λr denotes the
rth eigenvalue of a matrix, a game can be constructed and
a random variable2 X. can be defined such thatE[X] =
(G−1)ij , where(G−1)ij is an entry of the inverse matrix ofG.
In [10], the variableX is a “payment” when exiting the game.
Under certain settings, the algorithm of [10] is equivalent to
the “home” and “award” concepts in our theory, which is
presented in the next section.

Two years later, the work in [37] continued this discussion
in the formulation of random walks, and proposed the use of
another random variable3 Y to replaceX. A “mass” value was
defined for every step in a walk, andY was defined as the
total amount of “mass” carried through a walk. It was proven
in [37] that E[Y ] = E[X], and it was argued that, in certain
special cases,Y has a lower variance thanX, and hence is
likely to converge faster. Under certain settings, the algorithm
of [37] is equivalent to the “motel” concept in our method.

Both [10] and [37] have the advantage of being able to
compute part of an inverse matrix without solving the whole
system, in other words, localizing computation. Over the years,
various descendant stochastic solvers have been developed
[12][32][35]. Some of them, e.g., [32][35], do not have the
property of localizing computation.

From a different perspective, the work in [9] aimed at in-
vestigating random walks by using electrics. It drew a parallel
between resistive networks and random walks, and interpreted
the relationship between conductances and probabilities. With
underlying rules similar to [10], [9] proved many insightful
conclusions linking statistics and electrics.

In summary, the theory of our proposed generic random-
walk algorithm is directly inspired by [9], but is mathemat-
ically a combination of [10] and [37], and it inherits the
property of localizing computation. Not surprisingly, in po-
tential theory, there is a method that can be viewed as roughly
parallel to our basic framework: the counterpart is [17].
Besides these legacies, our algorithm also includes efficiency-
improving techniques, which are not seen in previous works,
and which play a crucial role in obtaining a performance that
is practically useful.

B. Principles

We will focus our discussion on the analysis of a VDD grid,
pointing out the difference for a ground grid where applicable.
For the DC analysis of a power grid, let us look at a single
node x in the circuit, as illustrated in Figure 2. Applying
Kirchoff’s Current Law, Kirchoff’s Voltage Law and the device
equations for the conductances, we have:

degree(x)∑

i=1

gi(Vi − Vx) = Ix (2)

where the nodes adjacent tox are labeled1, 2, · · · , degree(x),
Vx is the voltage at nodex, Vi is the voltage at nodei, gi is the

2The notation that is used in [10] forX is G, but we have changed the
notation since we useG to signify another quantity in our discussion.

3Again, the notation is changed for clarity: [37] referred to this asM .
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Fig. 2. A representative node in the power grid.

Fig. 3. An instance of a random walk “game.”

conductance between nodei and nodex, andIx is the current
load connected to nodex. Equation (2) can be rewritten as:

Vx =
degree(x)∑

i=1

gi∑degree(x)
j=1 gj

Vi − Ix∑degree(x)
j=1 gj

(3)

We can see that this implies that the voltage at any node is a
linear function of the voltages at its neighbors. We also observe
that the sum of the linear coefficients associated with theVi’s
is 1. For a power grid problem withN non-VDD nodes, we
haveN linear equations similar to the one above, one for each
node. Solving this set of equations gives the exact solution.

Now let us look at a random walk “game,” given a finite
undirected connected graph (for example, Figure 3) represent-
ing a street map. A walker starts from one of the nodes, and
goes to an adjacent nodei every day with probabilitypx,i

for i = 1, 2, · · · , degree(x), wherex is the current node, and
degree(x) is the number of edges connected to nodex. These
probabilities satisfy the following relationship:

degree(x)∑

i=1

px,i = 1 (4)

The walker pays an amountmx to a motel for lodging
everyday, until he/she reaches one of the homes, which are
a subset of the nodes. If the walker reaches home, he/she will
stay there and be awarded a certain amount of money,m0. We
will consider the problem of calculating the expected amount
of money that the walker has accumulated at the end of the
walk, as a function of the starting node, assuming he/she starts
with nothing. This gain function is therefore defined as

f(x) = E[total money earned|walk starts at nodex] (5)

It is obvious that

f(one of the homes) = m0 (6)

For a non-home nodex, assuming that the nodes adjacent to
x are labeled1, 2, · · · , degree(x), the f variables satisfy

f(x) =
degree(x)∑

i=1

px,if(i)−mx (7)

For a random-walk problem withN non-home nodes, there
areN linear equations similar to the one above, and solving
this set of equations gives the exact values off at all nodes.

It is easy to draw a parallel between this problem and
power grid analysis. Equation (7) becomes identical to (3), and
equation (6) reduces to the condition of perfect VDD nodes if

px,i =
gi∑degree(x)

j=1 gj

i = 1, 2, · · · , degree(x)

mx =
Ix∑degree(x)

j=1 gj

m0 = VDD f(x) = Vx (8)

The formulation for ground net analysis is analogous; the
major differences are that (i) theIx’s have negative values, (ii)
VDD is replaced by zero. As a result, the walker earns money
in each step, but gets no award at home.

In other words, for any power grid problem, we can
construct a random walk problem that is mathematically
equivalent, i.e., characterized by the same set of equations.
It can be proven that such an equation set has and only has
one unique solution [9]. It is both the solution to the random
walk problem, and the solution to the power grid problem.
Therefore, if we find an approximated solution for the random
walk, it is also an approximated solution for the power grid.

A natural way to approach the random walk problem is to
perform a certain number of experiments and use the average
money left in those experiments as the approximated solution.
If this amount is averaged over a sufficiently large number
of walks by playing the “game” a sufficient number of times,
then by the law of large numbers [38], an acceptably accurate
solution can be obtained. This is the idea behind the proposed
generic algorithmthat forms the most basic implementation.

According to the Central Limit Theorem [38], the error is a
0-mean Gaussian variable with variance inversely proportional
to M , whereM is the number of experiments. Thus we have
an accuracy-runtime tradeoff. Instead of fixingM , we use a
stopping criterion driven by a user-specified error margin,∆:

P [−∆ < Ve − V < ∆] > 99% (9)

whereVe is the estimated voltage fromM experiments. If the
variance of these results isV ar, the above criterion becomes

Q

(
∆√

V ar/M

)
< 0.005

V ar

M
<

(
∆

Q−1(0.005)

)2

(10)

where Q is the standard normal complementary cumulative
distribution function, defined as

Q(x) =
1√
2π

∫ ∞

x

e−
u2
2 du
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According to condition (10),M is decided on the run, and has
different values for different nodes. It is worth noting that for
each node, for a fixed confidence level,M ∝ 1

∆2 .
In equations (9)(10), and in our implementation, the 99%

confidence level is used for illustrative purpose. In practice,
the stopping criterion (9) can be adaptive to different node
voltages: for a node with high estimated voltage drop, i.e.,
a dangerous node, we can switch the criterion to higher
confidence level, lower∆, or both; for a node with low
estimated voltage drop, i.e., a safe node, the computation stops
after satisfying a relaxed criterion with lower confidence level
or larger∆. In other words, the computation for a node voltage
starts with a low-accuracy criterion; when this accuracy level
is met, a decision is made based on the estimated voltage
drop at this time: if this value is below a certain threshold,
the computation stops, otherwise the algorithm switches to
a higher-accuracy criterion and continues; when the new
accuracy level is met, another decision is made based on the
new estimated voltage drop, and even higher accuracy can be
used if necessary, and so on. Using this adaptive strategy, more
runtime would be spent on potential failure nodes, to get more
accurate voltages, while safe nodes only get coarse estimation.

A desirable feature of the proposed algorithm is that it
localizes the computation, i.e., it can calculate a single node
voltage without having to solve the whole circuit. This is
especially meaningful when the designer knows which part
of the power grid is problematic, or when the designer makes
a minor change in the design and wishes to see the impact. For
example, if the objective of the analysis is to find the voltage
at a single node, then this approach can perform a number
of random walks starting from that node. In a typical power
grid that has a sufficient number of pads that are reasonably
close to any node, such a walk is likely to terminate soon at
a home. As compared to a conventional approach that must
solve the full set of matrix equations to find the voltage at any
one node, the computational advantage of this method could
be tremendous, and we validate this in Section V.

When solving for multiple node voltages, an efficiency-
enhancing technique can be used. Since the voltage at each
already calculated node is known, it becomes a new home
in the game with an award amount equal to its calculated
voltage. In other words, any later random walk that reaches
such a node terminates, and is rewarded a money amount
equal to the calculated voltage. This operation speeds up the
algorithm dramatically, as there are more terminals to end
a walk, and therefore the average number of steps in each
walk is reduced. At the same time, this operation improves
accuracy without increasingM , because each experiment that
ends at such a node is equivalent to multiple experiments.
A cost of this speedup is that the error at a calculated node
also affects later computation, in other words, this speedup
technique is not 100% positive, but another accuracy-runtime
tradeoff. Practically, it is such a good deal that we can almost
ignore the cost: errors tend to cancel each other, and the impact
on accuracy is minor, while the speedup is dramatic.

Due to this speedup technique, the nodes computed early in
the algorithm and those computed late are treated differently.
For the first node, random walks are carried out in the original

Fig. 4. A simple circuit example.

Fig. 5. The random-walk game corresponding to the circuit in Figure 4.

game where home nodes correspond to voltage sources only.
As more and more nodes are calculated, they all become
new homes in the game, and random walks from later nodes
are carried out in a game with a larger and larger number
of homes. Therefore, the ordering of nodes could potentially
affect the performance. In the implementation, we use the
read-in ordering without any processing, which is close to
a random ordering; a truly random ordering can be easily
obtained by permuting the read-in ordering if necessary. We
prefer a random ordering, because as computation proceeds,
the density of home nodes is increased evenly throughout the
whole circuit, and the performance of the algorithm is stable.
Finally, we want to point out that, stopping criterion with the
same error margin∆ is applied to all nodes, regardless of their
positions in the ordering, and that we only need to compute
nodes that are of interest, which, in the context of the generic
algorithm, refer to the bottom-metal-layer nodes only.

C. A Simple Example

In order to show how the proposed algorithm works, let
us look at a simple circuit, as shown in Figure 4. The true
voltages at node A, B, C and D are 0.6, 0.8, 0.7 and 0.9,
respectively. Applying equation (8) to this circuit, we construct
an equivalent random-walk game, as shown in Figure 5,
where numbers inside circles represent motel prices and home
awards, and numbers beside the arrows represent the transition
probabilities from each node to a neighboring node.

To find out the voltage of node A, we start the walker at
node A with zero balance. He/she pays the motel price of
$0.2, then either goes up with probability 0.33 to the terminal
and end this walk, or goes down with probability 0.67 to node
C, then pays $0.022, and continues from there. Such a walk
could be very short: for example, the walker may directly go
up and end up with $0.8. Alternatively, the walk could be
very long, if it keeps going back and forth between A, B, C
and D, and the walker could end up with very little money;
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TABLE I

CONVERGENCE OF THE SIMPLE EXAMPLE. ∆ IS THE ERROR MARGIN IN

EQUATION (9), VA IS THE ESTIMATED VOLTAGE AT NODE A, M IS THE

ACTUAL NUMBER OF WALKS USED.

∆ Exp #1 Exp #2 Exp #3 Exp #4 Exp #5

VA M VA M VA M VA M VA M

0.05 0.6097 174 0.6067 156 0.5803 184 0.6418 103 0.6241 117

0.02 0.6087 1150 0.6075 946 0.5979 1140 0.5837 1254 0.6084 1232

0.01 0.6034 4562 0.6013 4664 0.6043 4315 0.5982 4441 0.6016 4619

however, the probability of such a walk is low. We perform
M such experiments and take the average of theM results as
the expected gain during one walk, and change the units from
dollars to volts to obtain the estimated voltage of node A.

Table I shows how the estimated voltage converges to the
true value of 0.6V. The five columns in the table represent
five different runs of the proposed algorithm, corresponding
to different seeds for the random number generator.

Finally, as discussed in Section II-B, when we move on to
other nodes after computing node A, node A can be used as a
new home node, with an award equal to its estimated voltage.

D. Runtime Trends

Due to the speedup technique at the end of Section II-B,
the number of walks for a node,M , decreases as computation
proceeds. However, for flip-chip power grids (designs with
C4 packaging) with similar structures, it is practically upper-
bounded by certain constantM ′, which corresponds to the
number of walks needed to compute the node with the
maximumV ar, according to (10). Such a “difficult” node is
likely to be the one that is the most faraway from C4 pads, for
example, at the center of a square outlined by four adjacent C4
pads. If we consider two imaginary flip-chip circuits with the
same structure around each C4 pad, one having a certain size,
the other being infinitely large (infinitely many C4 pads), and
if we consider the center node of a square outlined by four
adjacent C4 pads in each of the two circuits, the twoV ar
values would be roughly the same. Therefore, the maximum
V ar is independent of the circuit size, and consequentlyM ′

is independent of the circuit size.
In the implementation, we will impose a constant limit,L,

on the number of steps in a walk; details are provided in
Section V. Thus, for a power grid withN non-VDD nodes, we
can estimate worst-case time complexity asO(LM ′N), where
each unit corresponds to one random-number generation, a few
logic operations and one addition. Therefore, the worst-case
runtimes are linear in the circuit sizeN , for flip-chip designs.

Because of the fact thatM decreases as computation
proceeds, the above worst-case discussion is an overestimate,
and we will now look at the actual runtime, which can be
viewed as the average-case runtime or the typical runtime. In
order to argue that the average runtime per node is independent
of the circuit size, let us consider two circuits with sizesN1

andN2, which are each solved with random ordering of nodes.
At the same stage of the computation, for example, when

TABLE II

THE TIME COMPLEXITY OF THE GENERIC ALGORITHM FOR ARTIFICIAL

FLIP-CHIP DESIGNS.

Circuit Node number Pad number Total step number

#1 2.5K 1 2.4e7

#2 10K 4 7.5e7

#3 250K 100 1.7e9

#4 1M 400 6.4e9

5%N1 nodes are solved in the first circuit and5%N2 nodes are
solved in the second circuit, because the densities of “homes”
are the same (roughly 5%) in both circuits, the average lengths
of walks are the same in both circuits, and the typicalV ar
values are also the same in both circuits, which means that the
typical M values are the same in both circuits at this time.
Therefore, the CPU time for the(5%N1 + 1)th node in the
first circuit, is the same as the CPU time for the(5%N2+1)th

node in the second circuit, in the average sense, and this is
true for other percentage values as well. Therefore, the overall
average runtime per node, which is equal to the average over
all percentages, should be the same value for both circuits, and
independent of circuit sizes. Therefore, for flip-chip designs
with similar structures, the overall runtime is linear in circuit
size. This point is validated by the following simulations.

Four artificial circuits are constructed to verify the linearity
of the average runtime, in the case of flip-chip designs, and
the results are listed in Table II. They are made with the same
node-count to pad-count ratio. They all have a regular two-
dimensional grid structure, with the nodes forming a two-
dimensional array of size50 × 50, 100 × 100, 500 × 500
and 1000 × 1000 respectively, each edge of the grid being a
1Ω resistor, and each node having a current load of 0.05mA.
The perfect voltage sources are at the intersections of the
(25 + 50i)th horizontal wires and the(25 + 50j)th vertical
wires, wherei andj are nonnegative integers. (This structure is
not realistic, but serves the purpose of time-complexity study.)
The range of voltage drop is roughly the same 0–0.1V, for
all four circuits, and they are solved with the same accuracy
P [−5mV < error < 5mV] > 99%, and with random ordering
of nodes. The metric of complexity is the total step number
of all the walks, where each step corresponds to one random-
number generation, a few logic operations and one addition.
Table II shows a sublinear complexity for small sizes, and
more strictly linear complexity for larger sizes. These results
agree with the earlier discussion of linear runtime.

For wire-bond power grids, however, the time complexity
of the generic algorithm is superlinear.

E. Limitations of the Generic Method

In Section V, we will use simulation results to show that
the generic method has good performance for some industrial
circuits. However, it also has been found that the generic
method requires large runtimes for certain types of circuits.

One issue is shown in Figure 6. If a single low resistance is
isolated by other high resistances, because the random walker
is more likely to choose the direction with lower resistance,
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Fig. 6. An isolated low resistance forms a “trap.”

Fig. 7. A schematic of a wire-bond power grid structure with peripheral VDD

pins.

he/she could spend many steps oscillating between nodesa
andb. Our algorithm employs a pre-processing step to detect
such isolated low resistances, and uses the Y-∆ transformation
[27] to remove them without losing accuracy. In general, a
subgraph formed by several low resistances can be isolated by
other high resistances and form a “trap”, and the corresponding
discussion is provided in Appendix III.

Although the above problem can be taken care of inside the
generic random-walk framework, there are two other major
problems that cannot:

1) In wire-bond power grids, a small number of perfect
voltage sources are located on four sides of the top metal
layer, and a walk from a central node takes a very large
number of steps to terminate. Figure 7 illustrates this
power grid structure. In general, for a large graph with
very few homes, the runtime is high.

2) In certain power grids, wire resistances in a metal layer
are significantly larger than the resistances of the vias
connecting the layer to the next metal layer beneath it.
Because the random walk is more likely to choose a
direction with lower resistance, this structure forms a
barrier that makes it difficult for the walker to go up to
the top layer and reach a perfect voltage source. Figure 8
illustrates this effect. Note that this is different from the
isolated-resistor problem in Figure 6. These vias are not
isolated by high resistances, but are located between
relatively well-connected lower layers and relatively
bad-connected upper layers. Even if the vias are shorted,
or removed by the Y-∆ transformation, random walks

Fig. 8. The barrier effect. Grey rectangles represent high wire resistances,
white rectangles represent low via resistances, and curves show the route of
the random walker when he/she attempts to approach the top metal layer.

Fig. 9. Hierarchical strategy in [39].

are still likely to stay in the lower layers. In reallife
circuits, this is the situation where the pitch of power
wires in one metal layer is much larger than the pitch
in the next layer beneath it.

It is worth noting the fundamental reason for the first prob-
lem. The way that random walks estimate a node voltage drop,
is to capture the significant paths of current supply. Therefore,
the detailed structure and current demand distribution of a
power grid affect the runtime of random walks. For most flip-
chip designs, the current load at a node is mainly supplied
by several nearby voltage pads, therefore random walks only
account for these relatively short paths, and random walks
are relatively short. For chips where there exists long-distance
current delivery, which is true for wire-bond power grids,
random walks try to capture all devices that significantly affect
the target node, and hence can be very long.

In the next section, we will introduce the hierarchical
random-walk method that overcomes these problems naturally,
and speeds up solutions to industrial circuits.

III. H IERARCHICAL RANDOM-WALK METHODS

This section begins with a mathematical derivation of the
single-level hierarchical method in Section III-A; the advan-
tages of this method are discussed in Section III-B. Section
III-C applies this concept to develop two variations, the multi-
level method and the virtual-layer method, which are proven
to be effective on industrial circuits. The discussion will be
focused on DC analysis only.

A. Principles

The hierarchical strategy in [39] is illustrated in Figure 9.
The whole power grid is divided into a global grid and
multiple local grids, and interfacing nodes are defined as ports.
From the global perspective, the behavior of a local grid is
completely described by the following equation.

Iports = AVports + S (11)

whereIports is the vector of currents flowing from the global
grid into this local grid,Vports is the vector of port voltages,
A is a square matrix,S is a constant vector. In DC analysis,
matrix A represents the effective conductances between the
ports, and vectorS represents local current sources.

The algorithmic flow of [39] is shown in Figure 10. First,
macromodels, i.e., theA matrices andS vectors, are extracted
from local grids. Next, the set of linear equations for the global
grid is solved and port voltages obtained. Finally, local grids
are solved individually. For realistic power grids, compared
with a direct solver that solves equation (1), this algorithm
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Fig. 10. Algorithm flow in [39].

solves a smaller equation set in each step. When the number
of ports is reasonably small, and theA matrices are reasonably
sparse, a speedup is achieved.

1) ConstructingA andS: An exact method for calculating
A andS is provided in [39], and 0-1 integer linear program-
ming (ILP) is used to makeA sparse, at the expense of a
bounded loss in accuracy. We will now demonstrate a random
walk approach to buildA and S, and to achieve sparsity
naturally as a part of this procedure.

The proposed macromodeling approach is based on the
following lemma, which allows us to symbolically estimate
one node voltage as an linear function of voltages at an
arbitrary set of nodes. Its proof is provided in Appendix I.

Lemma 1: If we define k nodesh1, h2, · · · , hk to be the
home nodes, i.e., terminals where random walks end, then for
any nodei, the estimatedVi usingM random walks is in the
following form:

Vi = c1Vh1 + c2Vh2 + · · ·+ ckVhk
− ξ (12)

whereξ is a constant,Vhj is the voltage at terminal nodehj ,
and coefficients have the following format

cj =
number of walks ending athj

M
(13)

satisfying the relationship

c1 + c2 + · · ·+ ck = 1 (14)
This lemma states that, given any set of nodes

h1, h2, · · · , hk, and for any nodei, we can find the values
c1, c2, · · · , ck and ξ by running random walks, such that
the symbolical equation (12) is approximately true for any
possible voltages at those nodes. The meaning ofcj is given
by (13), whileξ is the average motel expense in one walk.

To constructA and S, we look at the ports one by one.
Figure 11 illustrates an example of a portx that has several
connections to the global grid and to a local grid. The current
flowing from the global grid throughx into the local grid is

Ix = I1 + I2 + · · ·+ IN (15)

where the neighbors ofx inside the local grid are labeled
1, 2, · · · , N , andI1, I2, · · · , IN are the currents flowing from
port x to each of them.

Now consider nodei, one of the neighbors ofx: this could
be either an internal node or a port node. If nodei is a port,

Ii = giVport x − giVi (16)

where Vport x and Vi are voltages at nodex and nodei
respectively, andgi is the conductance betweenx and i.

Fig. 11. The branches ofIx.

On the other hand, if nodei is an internal node, we may
run M random walks from nodei, with the ports being the
terminals at which walks end, and estimateVi symbolically.
Since there is usually no internal VDD/GND pads in a local
grid, the set of all possible terminals is{h1, h2, · · · , hk} =
{port 1, port 2, · · · ,port k}. By Lemma 1, the following
equation can be constructed.

Vi = c1Vport 1 + c2Vport 2 + · · ·+ ckVport k − ξ (17)

Returning to the scenario in Figure 11, we see that for any
node i, one of thek ports in equation (17) isx itself. The
current,Ii, from port x to an internal nodei is

Ii = giVport x − giVi

= gi(1− cport x)Vport x − gi

∑

port j 6=x

cjVport j + giξ

∀i = 1, 2, · · · , N (18)

Equation (16) can be viewed as a special case of (18).
Substituting equations (16) and (18) into (15), we obtain

Ix = α1Vport 1 + α2Vport 2 + · · ·+ αkVport k + γ

where αj = −
N∑

i=1

gicj(node i) for j 6=x

αx =
N∑

i=1

gi(1− cport x(node i))

γ =
N∑

i=1

giξ(node i) (19)

This is what we need:α1, α2, · · · , αk is a row in matrixA,
and theγ term is an element in vectorS. So far we have
found the entries inA and S that correspond to portx. For
every port node of a local grid, we do the same thing, i.e., we
construct equations (17) and (18) by running random walks
from every internal neighbor of the port node, and then obtain
equation (19) by adding (18)’s up. This way, we can construct
matrix A row by row and vectorS entry by entry.

The sparsity of theA matrix is controlled by the number
of random-walk experiments,M . When equation (17) is
constructed, it is an approximation to the real relation between
Vi and port voltages, which would be a full equation, in
other words,c1, · · · , ck would be all nonzero values in the
exact equation. However, due to the relationship shown in
equation (13), any coefficient below1M cannot appear in the
constructed equation (17). Therefore, effectively, insignificant
terms are automatically dropped in the process of Lemma 1.
This eventually leads to the sparsity ofA. M can be viewed
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as the resolution of the estimation. The largerM is, the more
entries in equation (17) are nonzero, and the denserA is.

Although the numberM provides a control over the
sparsity-accuracy tradeoff, andM can be dynamically deter-
mined by a stopping criterion similar to (9) defined onγ,
there is not an analytical formulation of the relation between
M and the accuracy of matrixA. In our implementation of
the hierarchical method reported in Section V,M is pre-
determined and fixed in each run, and different tradeoff points
are found by changingM . It is worth noting that our approach
is compatible with [39], i.e., our three steps and the three steps
of [39] are interchangeable and can form a hybrid scheme; the
ILP method in [39] can also be used as a post-processing to
make our constructed matrixA sparser. There is, however, a
difference between the two that gives our method an advantage
over [39] for not-easily-partitionable designs, and this will be
discussed in Section III-B.

Lemma 2:The sum of each row of the estimatedA matrix
is zero.

From equation (19), all weights of the port voltages are
negative except forαx. For any row in matrixA, from
equations (14) and (19), we get

k∑

port j=1

αj = αx +
∑

port j 6=x

αj

=
N∑

i=1

gi(1− cport x(node i))

−
∑

port j 6=x

N∑

i=1

gicj(node i)

=
N∑

i=1

gi(1−
k∑

port j=1

cj(node i))

= 0 (applying equation (14)) (20)

Thus we have proven Lemma 2. In general,A will not be
symmetric even though the exactA matrix has this property;
however, it is preferable to leave it this way in order to preserve
accuracy. As we will show in the next section, this is not a
barrier to solving the global grid.

2) Solving the global grid:Now we move on to step 2
in Figure 10, solving the global grid based on the extracted
macromodels. In order to do so using random walks, we
interpret each macromodel as an imaginary circuit. Due to
Lemma 2, equation (19) can be converted to the following.

Ix =
∑

port j 6=x

(−αj)(Vport x − Vport j) + γ (21)

Equation (21) can be viewed as a circuit, in which(−αj)
conductance connects nodex and nodej, and an independent
current sourceγ flows out of nodex. This is an imaginary
circuit, because each resistor only exists for one direction (cor-
responding to the asymmetry of the computedA matrix), i.e.,
the conductance from nodex to nodej could be different from
the conductance from nodej to nodex. Figure 12 illustrates
this imaginary circuit composed of directed resistors.

Fig. 12. The imaginary circuit interpretation of a macromodel in DC analysis.

Fig. 13. Random walks in the hierarchical algorithm are shorter than those
in the generic algorithm.

Based on this imaginary circuit interpretation, the global
grid can be solved by running random walks from each port
nodes, and the port voltages may be obtained.

3) Solving the local grids:Next, we move on to step 3 in
Figure 10, solving the bottom-metal-layer nodes in each local
grid, based on the port voltages computed in step 2. The ports
correspond to “homes” in this random-walk game, and each
walk from the bottom layer typically ends within a reasonably
small number of steps.

B. Benefits of Hierarchy

The approach in [39] requires the demarcation of partitions
corresponding to small cuts between partitions, since this
would lead to small port matrices. In our approach, such
partitioning is not necessary, and the algorithm only needs
to distinguish local nodes, global nodes, and ports. Therefore
multiple local grids are not needed, and only the boundary
between the global grid and the local grid needs to be decided.
This can be done in various ways, and we recommend the
following natural approach: given a power grid, we choose a
layer of vias as the border between the global grid and the
local grid, define the upper ends of these vias as ports, and
the lower ends as the internal neighbors of the ports.

Choosing this layer of vias is a new degree of tradeoff:
if a lower layer is chosen, the global grid size is larger, the
number of ports is larger, and consequently solving the global
grid takes more runtime; on the other hand, the local grid
is smaller, there are more terminals, i.e., solved ports, and
therefore solving the local grid takes less time. In practice,
we choose a layer of vias such that the global grid is roughly
10% of the entire circuit size.

Compared to the generic random-walk algorithm, the hier-
archical algorithm has two major advantages:

1) The hierarchical method is faster. The reason is illus-
trated in Figure 13. When solving the global grid, each
random walk starts from a port and ends at a perfect
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voltage source; when solving the local grid, each random
walk starts from a bottom layer node and ends at a port.
In either case, a walk has fewer steps than a walk in
the generic method that starts from a bottom layer node
and has to reach a perfect voltage source at the top
metal layer. Also, when random walks are shorter, the
variance of the results of walks tends to be lower, and
consequently, a higher accuracy can be achieved with
the same number of walks, or fewer walks are needed
to achieve the same accuracy level. Although we pay the
overhead of building macromodels, the overall savings
typically dominate this cost. We will validate this by our
experimental results in Section V.

2) The hierarchical method is more robust. As illustrated
in Figure 8, in certain power grids, a highly resistive
metal layer forms a barrier that makes it difficult for
the walker to go up to the top layer, and the runtime of
generic method is therefore very long. The hierarchical
method solves these circuits simply by defining ports
right on this barrier. In other words, instead of relying
on the random walker to pass this barrier, we cut a walk
into two segments, and preserve the barrier nature in
the macromodel. This can also be viewed as an extreme
case of the speedup shown in Figure 13. Corresponding
results can be found in Section V. If there exist more
than one such barrier structures in a power grid, they
can all be handled by multi-level hierarchy, which is
presented in the next section.

As mentioned in Section II-E, a more general problem of the
generic random-walk method is that in a large graph with very
few homes, the runtime is high. One example is wire-bond
power grids with pads at the periphery, shown in Figure 7. In
the next section, we will show how such graphs can be handled
when the idea of hierarchy evolves to the virtual-layer concept.

Finally, we want to point out a defect of hierarchy. In the
hierarchical algorithm, we can no longer solve a single node
only: the overhead of building and solving the hierarchy has
to be paid first. In other words, the algorithm does not have
the completelocality anymore. One way to maintain apartial
locality is to use multiple local grids: when a change is made
in the design, only the macromodel of the local grid containing
the change needs to be rebuilt and re-solved. Note that this is
not included in our implementation, which uses a single local
grid, as discussed at the beginning of this section.

C. Variations of Hierarchy

A natural extension of the algorithm in Section III-A is to
use multi-level hierarchy. Making use of all available vias,
we can build macromodel on top of macromodel. After this
bottom-up traversal, the circuit is reduced to a global grid, then
port voltages are solved in a top-down order, and the bottom
layer voltages are obtained in the end. Compared with the
single-level method, the extra cost of the multi-level method
is building multiple macromodels, while the benefit is shorter
walks in each level. Hence there is a tradeoff in choosing the
number of levels. Since the single-level hierarchical method is
better than generic method, we expect the multi-level method

Fig. 14. The original graph with ports marked, and the extracted virtual
layer.

to be even faster and more robust. Test results in Section
V show that the multi-level method has a similar accuracy-
runtime tradeoff as the single-level method.

Another extension leads to the concept of a “virtual-layer,”
when we choose ports such that the global grid physically
does not exist. In other words, there are no direct connec-
tions between these ports in the original circuit: this can
be considered to be similar in flavor to grid coarsening in
[19]. When we abstract all connections of these ports into a
macromodel, this macromodel provides imaginary connections
between ports, and the global grid is totally composed of such
virtual connections, as shown in Figure 14.

For example, in a large graph where the number of homes is
very limited and all homes are located at periphery, a random
walk from a center node typically needs a very large number of
steps. We may traverse the graph (for example, a breadth-first
search in our implementation), and mark one port in everyp
nodes. Forp = 10, the sampling rate is 1/10; this number
cannot be too low, because we have to guarantee that the
virtual layer will be a connected graph. Special arrangements
must be made such that each home is surrounded by ports,
because edges leading to a home should not be abstracted
into the macromodel. Then all connections of these ports are
abstracted into a macromodel, except for those leading to a
home. Thus the virtual layer is constructed and the size is
10% of the original graph. After solving it, we go back to
the local grid, i.e., the original graph, and because there are
solved ports all over the graph, it can be solved efficiently.

This virtual-layer method will be shown useful when solv-
ing a wire-bond power grid in Section V.

IV. RKC TRANSIENT ANALYSIS

In this section, we extend the random-walk algorithms to
transient analysis, where voltage waveforms are to be found
while considering the effects of capacitances, inductances and
time-varying current waveforms. Throughout this section, and
in the implementation, the backward Euler approximation with
a constant timesteph is used to convert differential equations
to linear equations. We assume that the timestep sizeh is kept
constant in a transient analysis.

A. Capacitors

Let us first incorporate capacitors into the proposed frame-
work. The equations to be solved are as follows [14]:

GV(t) + CV′(t) = E(t) (22)

whereG is a conductance matrix,C is the matrix introduced
by capacitors,V(t) is the vector of node voltages, andE(t)
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Fig. 15. Rules for the transient analysis “game.”

is the vector of independent sources. Applying the backward
Euler formula with a timestep ofh, the equations become

(G +
C

h
)V(t) = E(t) +

C

h
V(t− h) (23)

This transformation translates the problem to solving a linear
equation set. As before, we consider one single nodex, at one
time step at timet, and we have:

degree(x)∑

i=1

gi(Vi(t)− Vx(t)) =
Cx

h
(Vx(t)− Vx(t− h)) + Ix(t)

(24)
whereVx, Vi, Ix and gi are as defined in equation (2), and
Cx is the capacitance between nodex and ground.

For a RC network with capacitors between two non-ground
nodes, those capacitors can be replaced by resistors and current
sources, while a current source between two nodes can be
replaced by two current sources between the two nodes and
ground. Then the following algorithm is applicable. Here we
only discuss the case described in equation (24).

Equation (24) can be converted to the following form

Vx(t) =
degree(x)∑

i=1

gi∑degree(x)
j=1 gj + Cx

h

Vi(t)

+
Cx

h∑degree(x)
j=1 gj + Cx

h

Vx(t− h)− Ix(t)∑degree(x)
j=1 gj + Cx

h

(25)

The rules of the random-walk game are changed to ac-
commodate the changes in the above equation. As shown in
Figure 15, each nodex has an additional connection, and
the walker could end the walk and be awarded the amount
Vx(t− h) with probability

Cx

h∑degree(x)
j=1 gj + Cx

h

Intuitively, this rule is equivalent to replacing each capacitor
by a resistor and a voltage source.

Under this new rule, the random-walk game is mathemati-
cally equivalent to the equation set (23), and both the generic
method and the hierarchical method can perform transient
analysis of a RC network, timestep by timestep. In each
timestep, theV (t−h) values are updated with the node voltage
values solved from the previous timestep.

The complete locality of the DC generic algorithm is still
valid in the RC generic algorithm: we can compute a single
node voltage at a single time point, without solving any other
nodes or any other timesteps. If we want to compute the
voltage at nodex at time t, the walks start at nodex in the
random walk game for timet; some walks may reachV (t−h)
terminals, and then they continue in the random walk game for
time (t−h); some of these may reachV (t−2h) terminals, and
then they continue in the random walk game for time(t−2h),
and so on. The real terminals where walks end are those from
physical voltage sources, which are present at all times. The
farthest a walk can go in time is the time point zero, which
is a DC analysis game. In short, “travelling back time” makes
the complete locality feasible, and this is inspired by [1].

The hierarchical method is affected by the additionalV (t−
h) terminals in various ways, and we will now take a close
look. When we build macromodels as described by Lemma 1,
the set of possible terminals not only contains ports, but also
the V (t − h) terminals inside the local grid. Consequently,
instead of equation (17), we get the following equation.

Vi = c1Vport 1 + c2Vport 2 + · · ·+ ckVport k + ck+1Vhk+1

+ · · ·+ ck′Vhk′ − ξ (26)

where hk+1, · · · , hk′ are theV (t − h) terminals inside the
local grid. Since theV (t − h)’s are known values, they can
be lumped into a constant

ξ′ = ξ − (ck+1Vhk+1 + · · ·+ ck′Vhk′ ) (27)

and we get

Vi = c1Vport 1 + c2Vport 2 + · · ·+ ckVport k − ξ′ (28)

With equation (28), we can continue the macromodeling
and construct equations (18) and (19). However the sum of
c1, · · · , ck is no longer one, and that relation is replaced by

c1 + c2 + · · ·+ ck ≤ 1 (29)

As a consequence of (29), Lemma 2 is replaced by the
following lemma in transient analysis.

Lemma 3:The estimatedA matrix in transient analysis is
diagonally dominant.

To prove Lemma 3, we rewrite equation (29) as

1− cport x ≥
∑

port j 6=x

cj (30)

Applying this inequality and equation (19), we get

αx ≥
N∑

i=1

gi

∑

port j 6=x

cj(node i)

=
∑

port j 6=x

N∑

i=1

gicj(node i)

=
∑

port j 6=x

(−αj) =
∑

port j 6=x

|αj | (31)

This inequality holds for any row of matrixA, and thus we
have proven Lemma 3.
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Fig. 16. The imaginary circuit interpretation of a macromodel in transient
analysis.

Also because of inequality (29), as well as Lemma 3
replacing Lemma 2, the formulation of the imaginary circuit,
equation (21), becomes the following in transient analysis.

Ix =
∑

port j 6=x

(−αj)(Vx − Vport j)

+(αx +
∑

port j 6=x

αj)Vx + γ

=
∑

port j 6=x

(−αj)(Vx − Vport j)

+(αx +
∑

port j 6=x

αj)(Vx − γ1) + γ2 (32)

There are many ways to splitγ into γ1 and γ2. One of
them is very meaningful:γ1 is a weighted average of some
V (t−h)’s inside this local grid,γ2 is a weighted sum of some
current-loads inside this local grid, as shown below.

γ1 =
Cx

h Vx(t− h) +
∑N

i=1
gi

M

∑k′

j=k+1 Nhj ,iVhj

Cx

h +
∑N

i=1
gi

M

∑k′
j=k+1 Nhj ,i

(33)

γ2 =
N∑

i=1

gi

M

M∑
q=1

∑
r

Iq,i,r

sq,i,r
(34)

where the neighbors ofx inside the local grid are labeled
1, 2, · · · , N ; Cx is capacitance between portx and ground;
gi is conductance betweenx and i; (k′ − k) is the number
of V (t − h) terminals inside the local grid, and they are
hk+1, · · · , hk′ ; Nhj ,i is the number of walks fromi that end at
terminalhj ; Iq,i,r is the current load flowing out of the node
at therth step of theqth walk from nodei; sq,i,r is the sum
of the conductances connected to the node at therth step of
the qth walk from nodei. The proof of equations (33) and
(34) is provided in Appendix II.

Due to Lemma 3, the term(αx +
∑

port j 6=x αj) is non-
negative, and equation (32) can still be interpreted as a
circuit. Figure 16 illustrates this new imaginary circuit:(−αj)
conductance connects nodex and nodej; (αx+

∑
port j 6=x αj)

conductance connectsx to a voltage source with voltage equal
to γ1; an independent current sourceγ2 flows out of nodex.

B. Inductors

Inductances include self inductances and mutual induc-
tances. Under the backward Euler approximation, a self induc-
tance becomes a resistor and a current source in parallel, and
can be easily handled by the random-walk algorithms. How-
ever, mutual inductances are difficult to incorporate into the
proposed framework, because of their induced extra unknown
variables: the currents through the inductors.

Fig. 17. Companion model of a pair of inductors, adapted from [15].

Fig. 18. A wire segment model.

Therefore, we use the inverse inductance, or susceptance,
matrix K [7][15] to model inductors. It has also been shown
that theK matrix has better locality than the partial inductance
matrix L, and hence reduces the problem size of circuit
simulation [7][15]. TheK matrix is defined as the inverse
of theL matrix, and the device equations under the backward
Euler approximation are

KV(t) =
I(t)− I(t− h)

h
(35)

whereV(t) is the vector of voltage drops over the inductors,
I(t−h) is the vector of known currents through the inductors
from the previous timestep,I(t) is the vector of unknown
currents through the inductors in the present timestep, andh
is the timestep size. Equation (35) can be written as

I(t) = hKV(t) + I(t− h) (36)

and the corresponding companion model is illustrated in
Figure 17, where only a pair of coupled inductors are shown.

In our circuit model, each wire segment is aπ model,
which is composed of a resistor and an inductor in series,
and capacitors at two ends. Figure 18(a) shows this model,
where capacitors are not drawn. By substituting the companion
model of the inductor, we obtain the circuit in Figure 18(b),
where the inductor is replaced by a resistor and two current
sources in parallel. One of the two current sources is equal to
the current from the last timestep, which is a known constant;
the other source is a voltage-controlled current source which
corresponds to the current induced by other inductors, i.e.,
a function of VB ’s and VC ’s from a number of other wire
segments. The model in (b) can be further converted to (c)
and then to (d), which is a circuit form that can be handled
by our random-walk algorithms.
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One complication caused by mutual inductances is that the
current sources in Figure 18(d) is a function of not onlyVA’s
andVB ’s, but alsoVC ’s, while VC ’s are not among the system
variables when we solve the circuit in form (d). In other words,
the voltage-controlled current sources can not be expressed as
a linear function of node voltages.

To resolve the above problem, we propose an iterative
approach to compute node voltages in each timestep, and
in each iteration, we assume the voltage-controlled current
sources to have constant values. First we useVB ’s and VC ’s
of all wire segments from the previous timestep as the initial
guess, and compute the values of the current sources in
Figure 18(b)(c)(d). Next, by assuming these current sources
to be constant, we use random walks to solve the circuit in
form (d), and obtain newVA andVB values. Then, we update
VC ’s and hence current sources in (b)(c)(d), and solve in form
(d) again. This process iterates until voltages converge.

In the hierarchical algorithm, if we only consider mutual
inductances inside the global grid, i.e., the top few metal
layers, then the above iteration is only done in the stage
of solving the global grid. However, if we consider the
general case, where mutual inductances exist in the local grid
and between the local and global grids as well, then one
iteration in the above iterative process includes all three stages:
macromodeling, solving the global grid, and solving the local
grid. Note that with the bookkeeping technique presented in
the next section, these computations can be done efficiently
without running random walks.

The above iterative approach is guaranteed to converge, and
the proof is provided in Appendix IV. In our simulations, the
iterative process converges within three iterations, when the
convergence criterion is maximum voltage difference being
less than10−5V. The results are reported in Section V.

C. Bookkeeping

For transient analysis, traditional direct linear equation
solvers are efficient in computing solutions for succeeding
timesteps after initial matrix factorization since only a for-
ward/backward substitution step is required for each additional
time step. Analogously, our random-walk algorithm employs
a speed-up mechanism.

In the generic method, we first perform a DC analysis
that is used as the initial condition; next, when computing
the first transient timestep, we keep a record for each node.
This record keeps a count of, in theseM walks, how many
times the walker ends at VDD, how many times the walker
ends at someV (t − h), how many times the walker pays
for a motel at some node, and so on. Then, in the follow-
up timesteps, we do not perform random walks any more,
and simply use these records recursively and assume that the
walker gets awards at same locations, pays for same motels,
and only the award amounts and motel prices have changed.
Thus, with bookkeeping, new voltages can be computed by
some multiplications and additions efficiently.

This bookkeeping technique is based on the observation
that, the routes taken by the walks are decided solely by the
resistor values corresponding to the resistances in the original

circuit, and the resistances that arise from the companion
models for the capacitors and inductors. Under a constant
timestep size, these are all unchanged from one timestep to the
next, and therefore, using the same routes is justifiable. The
task of bookkeeping maintains the set of nodes visited in these
walks, and the frequency with which they are visited. From
one timestep to the next, however, the current source values in
the circuit will change, and the voltage/current sources from
companion models will change, sinceV (t− h) at a capacitor
will be different from V (t − 2h), and I(t − h) through a
inductor will be different fromI(t − 2h), etc. This implies
that the motel prices and reward values will change. With the
help of the bookkeeping information, the voltage at each node
can simply be found as a weighted sum of values at nodes
visited, which are maintained in the bookkeeping record.

In the hierarchical methods, we also keep a record for
solving the global grid, as well as building the vectorS,
becauseS needs to be updated whenever the current sources
or V (t− h) sources in the local grid change.

The space complexity demanded by this bookkeeping is
approximately linear in the number of nodes, and is not worse
than the space complexity of a traditional direct solver. This
will be shown in Section V. Another concern is whether using
the same record repeatedly could cause error accumulation.
Our simulation results show that the error level is acceptable
even after 1000 timesteps.

Finally, the values that need to be repeatedly updated in
transient analysis are listed as follows:

1) V (t− h) values in Figure 15, for every timestep.
2) Current source values in Figure 18(b)(c)(d), for every

iteration in every timestep.
3) Hierarchical methods update vectorS, which is a func-

tion of current sources andV (t−h) sources in the local
grid, for every timestep.

4) In the case of the hierarchical method where there are
mutual inductances in the local grid and between the
local and global grids, vectorS needs to be updated,
for every iteration in every timestep, as described in the
previous section.

V. RESULTS

In this section, we use three industrial benchmarks to
evaluate the proposed algorithms for DC analysis. Then, RC
and RKC circuits generated based on structures of real-life
circuits are used to test the performance of transient analysis.
Computations are carried out on a Linux workstation with
2.8GHz CPU frequency.

The three industrial power grids are:

1) Industry1 is a 70,729-node circuit, and we solve for
the 15,876 bottom-metal-layer VDD nodes and 15,625
bottom-metal-layer ground nodes. The voltage range of
VDD bottom layer is 1.1324–1.1917V.

2) Industry2 has 218,947 nodes, in which 25,137 bottom-
metal-layer VDD nodes and 18,803 bottom-metal-layer
ground nodes are to be solved. The voltage range of
VDD bottom layer is 1.61248–1.79822V, that of ground
bottom layer being 0.000334–0.066505V.
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Fig. 19. Estimated voltages at a single node for various values ofM .

3) Industry3 is a wire-bond ground net with 347,566 nodes,
and the bottom layer has a voltage range of 0.024347–
0.110860.

One implementation issue is the choice of random number
generator. A random number uniformly distributed between
0 and 1 is needed for making a decision at each step in a
random walk. The higher the required quality is for random
numbers, the longer the runtime is. In all our implementations,
we use the generator on page 279 of [24]. The simulation
results show that it provides sufficient quality for power grid
analysis application.

Figure 19 shows the results of computing the solution for
only one node in Industry1, using the generic algorithm. The
markers are estimated voltage values for differentM ’s, and
the dashed line is the true voltage. The ultra-accurate right-
most point, for whichM is 4000, only takes 0.42 second
runtime, and thus shows the efficiency of using our algorithm
to solve individual nodes without solving the whole circuit.
This is ideal in the scenario of incremental design, where
the designer makes a change and wants to see the effect on
a node voltage. Note that in the hierarchical algorithms, we
can no longer solve a single bottom-metal-layer node only:
the overhead of building and solving the hierarchy has to be
paid first. For example, if we use the single-level hierarchical
method to solve one bottom-metal-layer node in Industry2, this
overhead is 15 seconds. In the scenario of incremental design,
this is still better than solving the whole linear equation set.

As indicated in Section II-B, one implementation issue is
that, in order to avoid any possible deadlock, we need to set a
limit, L, on the number of steps in a walk. Any walk that fails
to end withinL steps will be forced to end, and be awarded
VDD if inside the VDD net, be awarded 0 if inside the ground
net. This operation is optimistic and will results in a bias in the
estimated voltage; however, if the limit is chosen appropriately,
the error will be very small as the probability of a walk of
this length is minute. Thus a new degree of accuracy-runtime
tradeoff is introduced, and we empirically set this limit to be
10,000 steps as a good tradeoff point, where the bias error is
acceptable and not much runtime is wasted. For example, when
the generic method solves Industry1 with∆ being 4mV, there
are 2.5K walks that violate this step limit and are forced to end,
and the starting nodes of these 2.5K walks are 1.6K nodes;
for these 1.6K nodes, the average error is 1.86mV and the

Fig. 20. Runtime-∆ tradeoff for the computation of all bottom-metal-layer
nodes in Industry1.

Fig. 21. Accuracy-runtime tradeoff curves for solving Industry1 using the
generic random-walk method, the single-level hierarchical method, and a two-
level hierarchical method.

maximum error is 5.97mV. (For reference, the overall average
error is 1.64mV, and the overall maximum error is 8.86mV.
Thus, the impact of the step limit is minor.) For hierarchical
methods, there are typically no or only a few violations.

The above tradeoff only affects runtime indirectly, while the
error margin∆ in Equation (9) decidesM , which is directly
proportional to runtime and needs careful investigation. Fig-
ure 20 plots the relation between∆ and runtime for solving
the complete Industry1, i.e., finding all bottom-metal-layer
voltages, using the generic random-walk method. The runtime
is always larger than 8 seconds because the minimum value
of M is set to be 40. The lower part of this curve shows the
quadratic relation betweenM and∆: M ∝ 1

∆2 . For example,
the runtime is around 15 seconds when∆ is 4mV, and roughly
60 seconds when∆ is 2mV.

Figure 21 plots the tradeoff between average error and
runtime solving Industry1, where the three curves are for
the generic random-walk method, the single-level hierarchical
method, and a two-level hierarchical method, respectively. All
hierarchies are divided at vias. All three methods use pre-
determined and fixedM in each run, and points on the curves
correspond to differentM values. Both hierarchical methods
achieve roughly 3–4 times speedup over the generic method,
with the same average error.

In practice, the user decides the tradeoff point by choosing
M values according to the needs of the analysis. Here for
runtime comparison purpose, we choose a reasonable tradeoff
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Fig. 22. Accuracy-runtime tradeoff curves for solving Industry2, using the
single-level hierarchical method and a three-level hierarchical method.

TABLE III

DC ANALYSIS COMPARISON. N IS CIRCUIT SIZE, E1 IS AVERAGE ERROR,

E2 IS MAX ERROR, T IS RUNTIME, NT IS NORMALIZED RUNTIME,

DEFINED AS RUNTIME PER THOUSAND NODES, P IS PEAK MEMORY, AND

NP IS NORMALIZED PEAK MEMORY, DEFINED AS PEAK MEMORY PER

THOUSAND NODES. G DENOTES THE GENERIC RANDOM-WALK METHOD ,

S DENOTES THE SINGLE-LEVEL HIERARCHICAL METHOD, AND M

DENOTES THE MULTI-LEVEL HIERARCHICAL METHOD.

Benchmark N E1(mV)E2(mV) T NT(sec)P(MB) NP(MB)

G 1.1 9.8 17.40 sec 0.245 10.7 0.15

Industry1 S 71K 1.1 6.6 4.34 sec 0.061 11.4 0.16

M 1.1 9.4 4.16 sec 0.059 16.8 0.24

G 10.9 142.2 329.57 sec 1.50 27.3 0.12

Industry2 S 219K 1.4 30.7 20.82 sec 0.095 37.0 0.17

M 1.4 35.3 30.12 sec 0.138 41.4 0.19

G 4.3 7.6 71 min 12.2 57.7 0.17

Industry3 S 348K 4.4 18.8 498.02 sec 1.43 72.4 0.21

M 3.6 17.0 93.64 sec 0.27 84.6 0.24

Chip2 by the 2.7M N/A N/A 25 min 0.56 300 0.11

method of [39]

point on each of the three curves, and list them in Table III.
Figure 22 plots the tradeoff between average error and

runtime solving Industry2, using the single-level hierarchical
method and a three-level hierarchical method. All hierarchies
are divided at vias. Both methods use pre-determined and
fixed M in each run, and points on the curves correspond
to differentM values. The curve for the generic random-walk
method is omitted because its runtime is unacceptably high
for this circuit. The reason has been discussed in Section II:
a highly resistive metal layer on top of low-resistance vias
forms a barrier structure. This circuit shows an example of
the robustness introduced by hierarchy. Again, the tradeoff
point should be decided by the designer. Here we choose a
reasonable tradeoff point on each of the curves for Table III.
One tradeoff point of the generic method is also listed.

The runtime comparison is shown in Table III. The three
rows Industry2-G, Industry3-G and Industry3-S, are results
with robustness problems, as discussed in Section II-E, while
the boldface rows are results without the problems, or with

them overcome. The numbers for chip2 in [39] are listed as
a baseline. In viewing the numbers, it is important to note
that our computer is approximately 3 times faster than those
used by [39], according to SPEC benchmarks [31]. Runtimes
reported by [39] show superlinear time complexity; chip2 is
their smallest circuit, and therefore has the smallest normalized
runtime. Since the time complexity of random-walk algorithms
is linear in circuit size (for circuits with similar structure), as
power grid size increases, they will outperform [39] more.
Note that due to factors such as benchmark structure, coding,
compiling, and platform difference, this is only an approximate
comparison, even after considering the 3X factor.

For Industry1, both hierarchical methods show a 4X
speedup over the generic method. For Industry2, the speedup
is dramatic, and shows the robustness introduced by hierarchy.

The multi-level hierarchical method does not show a run-
time advantage over the single-level method for Industry2.
The reason is that, the benefit of the multi-level hierarchy,
which is easier access to home nodes, is not worth the cost of
building multiple macromodels, for the Industry2 case with C4
packaging. However, it is worthwhile for Industry3, a similar-
sized circuit with wire-bond packaging.

Industry3 is a wire-bond power grid, a difficult circuit type
to solve. Even after it is reduced to its top metal layer only,
there are still 80K nodes, yet there are only 20 perfect voltage
sources distributed on four sides of the top metal layer. Thus
it requires high runtimes if using the generic method or the
single-level method, as listed in Table III. We employ a two-
level hierarchical method, the top level being a virtual layer, as
discussed in Section III-C. This scheme solves this benchmark
in a reasonable amount of time, with acceptable error. The
results are listed in Table III, and the normalized runtime is
seen to be higher than solving other circuit types.

In order to evaluate the transient analysis, since we were
unable to obtain real-life RC/RLC power grid circuits, we
generated four circuits with realistic parameters. RC1 and RC2
listed in Table IV are RC networks based on the structure
of Industry1. RKC1 and RKC2 listed in Table V are RKC
networks based on the structure of Industry2. Inductances are
assumed to be only in the top two metal layers, and are
estimated using formulas provided by [11]. ThenK matrices
are constructed by the method proposed by [7], using 7-by-7
and 7-by-5 window sizes for the two metal layers. Current-load
waveforms are designed such that inductive effect is visible:
simulation using a direct solver shows that if inductors in
circuit RKC1 are ignored, the induced error is up to 21mV.

The results of RC analysis using both the generic method
and the hierarchical method are shown in Table IV. CPU
times are measured for the timesteps that follow the initial
DC analysis and the first transient step. The solution for circuit
RC1 is compared with HSPICE, while circuit RC2 is too large
to be simulated in HSPICE. Note that E1 is the average over all
nodes at all timesteps, and E2 is the maximum over all nodes at
all timesteps. The peak memory numbers are small for RC1,
and are omitted. The runtimes are several times faster than
traditional direct solver runtimes reported in [39], even after
normalization by the speed factor of 3. The space complexity
is higher for the hierarchical method, because bookkeeping is
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TABLE IV

RC TRANSIENT ANALYSIS RESULTS. N IS THE CIRCUIT SIZE, TS IS THE

NUMBER OF TIMESTEPS, T IS CPU TIME PER TIMESTEP FOR SUBSEQUENT

TIMESTEPS, E1 IS THE AVERAGE ERROR, E2 IS THE MAX ERROR, AND P IS

THE PEAK MEMORY. G DENOTES THE GENERIC RANDOM-WALK METHOD ,

AND S DENOTES THE SINGLE-LEVEL HIERARCHICAL METHOD.

Ckt N TS T(sec) E1(mV) E2(mV) P(MB)

RC1 G 3.7K 500 0.0026 1.6 11.9 –

S 0.0014 2.0 13.7 –

RC2 G 2.3M 1000 0.65 N/A N/A 680

S 0.64 N/A N/A 854

TABLE V

RKC TRANSIENT ANALYSIS RESULTS. N IS THE CIRCUIT SIZE, TS IS THE

NUMBER OF TIMESTEPS, T IS CPU TIME PER TIMESTEP FOR SUBSEQUENT

TIMESTEPS, E1 IS THE AVERAGE ERROR, E2 IS THE MAX ERROR, AND P IS

THE PEAK MEMORY.

Ckt N TS T(sec) E1(mV) E2(mV) P(MB)

RKC1 6.4K 1000 0.0165 0.8 13.9 –

RKC2 642K 1000 2.1 N/A N/A 837

needed not only for the bottom-metal-layer nodes, but also
for building and solving the global grid. However, the peak
memory of the hierarchical method is still lower than that
of traditional methods reported in [39], in terms of memory
consumption per million nodes.

The results of RKC analysis are shown in Table V. The
single-layer hierarchical method is used, and the algorithm
discussed in Section IV-B is used when solving the global
grid with inductors. Note that inductances are assumed to
be only in the top two metal layers, and hence only in the
global grid. CPU times are measured for the timesteps that
follow the initial DC analysis and the first transient step. The
solution for circuit RKC1 is compared with a traditional direct
solver, while circuit RKC2 is too large to be simulated by a
direct solver. Note that E1 is the average over all nodes at
all timesteps, and E2 is the maximum over all nodes at all
timesteps. The peak memory is small for RKC1, and is omit-
ted. Comparing with Table IV, we can see that RKC analysis
has higher time and space complexity than RC analysis. This
is due to the extra storage for mutual inductances, and the
extra iterations of computation.

When viewing Tables IV and V, one common concern is
error accumulation: although the error of one timestep is low, it
could add up to large error over many timesteps. This concern
drives us to measure E1 and E2. Note that E1 is the average
over all timesteps, and E2 is the maximum over all timesteps.
They suggest that the errors are acceptable after 500/1000
timesteps. Practically, they suggest that errors tend to cancel
each other, and that the accumulation has a very slow rate.

VI. CONCLUSION AND EXTENSION

This paper presents a random-walk based power grid ana-
lyzer. A generic algorithm is first developed, and then several
hierarchical methods are built to make the algorithm faster and
more robust in solving various types of circuits. Capacitors

and inductors are incorporated, and a RKC transient analysis
algorithm is proposed. Experimental results show that these
algorithms reach good runtime-accuracy tradeoffs.

A. Potential Applications

Possible scenarios that the proposed algorithms offer advan-
tages over traditional methods are summarized as follows:

1) DC analysis of a whole circuit. Random-walk algorithms
provide a solution with runtime linear in circuit size.
Although existing iterative solvers also have linear run-
time, the random-walk solvers provide an alternative
that allow users to tradeoff between speed and accuracy,
and this tradeoff can be naturally tuned by changing
the number of walks, or the error margin. This is
useful when ultra-accurate solution is not necessary, for
example, early-stage performance analysis.

2) Transient analysis of a whole circuit. Iterative solvers are
inefficient for transient analysis. Compared with direct-
solver based techniques, simulation results show that,
with acceptable errors, random-walk algorithms have
the following advantages: linear runtime for the initial
timestep, as opposed to superlinear runtime of a direct
solver, and hence better suited for large designs; lower
memory consumption; lower runtime for the follow-
up timesteps. Again, the tradeoff between accuracy and
runtime/memory consumption can be easily tuned.

3) Solving a small number of nodes. The generic algorithm
can compute any single node voltage without solving
the whole circuit, and can be very useful in incremental
design. This advantage holds for all chips with C4
packaging. For wire-bond packaging, it is partially com-
promised: a hierarchical method needs to be used, and
there is an overhead of building and solving hierarchy.

4) Parallel computing. Random-walk based algorithms are
inherently compatible with parallel computing. The
computations for different nodes, and even random
walks for the same node, can be carried out indepen-
dently on different processors. The only communication
needed between parallel processors is to share the volt-
ages of already computed nodes, to take advantage of
the speedup technique at the end of Section II-B.

B. Potential Extension to AWE/PRIMA

The proposed algorithm can also be used to perform mo-
ment generation for power grid transient analysis in the fre-
quency domain using asymptotic waveform evaluation (AWE)
or passive reduced-order interconnect macromodeling algo-
rithm (PRIMA). An existing stochastic moment generation
approach is [21], which, in each step, randomly samples one
or two capacitors and removes all others, in order to facilitate
computation for large RC networks. Our method is different.

For transient analysis formulated by equation (22) (note that
in RLC analysis,y(t) includes entries of inductor currents,
andC includes inductance entries), the moment generation is
solving the following equation sets one by one [30],

Gm0 = [1, 0, 0, · · · , 0]T

Gmi = −Cmi−i for i = 1, 2, · · · , k (37)
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wherem0,m1, · · · ,mk are the moment vectors to be solved.
In each iteration, the moment generation is equivalent to
replacing each capacitor with a constant current source, re-
placing each inductor with a constant voltage source, and
performing DC analysis.

The above computation can be carried out using our
random-walk algorithms, with one extension to handle the
voltage sources induced by inductors. In DC analysis of a
circuit with a voltage sourceV0 between two non-ground non-
VDD nodesx andy, such thatVx − Vy = V0, we combinex
andy into one single supernodexy in the random-walk game,
and useVy as its nominal voltage. By Kirchoff’s Current Law
∑

i∈Nx

gx,i(Vi − V0 − Vy) +
∑

i∈Ny

gy,i(Vi − Vy) = Ix + Iy

Vy =
∑

i∈Nx

gx,i∑
j∈Nx

gx,j +
∑

j∈Ny
gy,j

(Vi − V0)

+
∑

i∈Ny

gy,i∑
j∈Nx

gx,j +
∑

j∈Ny
gy,j

Vi

− Ix + Iy∑
j∈Nx

gx,j +
∑

j∈Ny
gy,j

(38)

whereNx is the set of nodes adjacent tox excludingy, Ny

is the set of nodes adjacent toy excluding x, gi,j is the
conductance between nodei and nodej, Ix and Iy are the
current loads connected to nodex and y. The new rule is
that if the random walker goes from nodexy to a neighbor
of x, he/she has to pay extra moneyV0; correspondingly, if
he/she walks from a neighbor ofx to nodexy, he/she gainsV0.
Note that ifx andy has a common neighbor, it is considered
as two different directions from nodexy’s point of view.
Under this new rule, we can perform moment computation
in AWE/PRIMA using random walks. The bookkeeping tech-
nique in Section IV-C is applicable, and after solvingm0 and
m1, the followup computations can be done efficiently.

APPENDIX I
PROOF OFLEMMA 1

Consider the random-walk game that hask terminals
h1, h2, · · · , hk. For each individual walk in the game, the
money earned at the end of the walk is composed of an
award, which is a terminal voltage, minus a sequence of motel
expenses. The result of theqth walk from nodei is:

Wq = Vend q − uq (39)

whereq ∈ {1, 2, · · · ,M} is the index of the walk,Vend q ∈
{Vh1 , Vh2 , · · · , Vhk

} is the voltage at the terminal where the
random walk ends,uq is the sum of all motel expenses.

When we take the average of the results from theM random
walks, we obtain an estimatedVi in the following form:

Vi =

∑M
q=1 Wq

M
= c1Vh1 + c2Vh2 + · · ·+ ckVhk

− ξ (40)

where

cj =
Nj

M
, j ∈ {1, · · · , k} and ξ =

∑M
q=1 uq

M
(41)

where Nj is the number of walks that end at terminalhj .
Because every random walk stops at a terminal,Nj ’s must
satisfy the following condition.

k∑

j=1

Nj = M (42)

Therefore,

c1 + c2 + · · ·+ ck =
k∑

j=1

Nj

M
=

M

M
= 1 (43)

APPENDIX II
PROOF OF EQUATIONS(33) AND (34)

In RC transient analysis, considering the general case where
there exists capacitanceCx between portx and ground, then
equation (15) becomes

Ix = I1 + I2 + · · ·+ IN +
Cx

h
(Vx − Vx(t− h)) (44)

where the neighbors ofx inside the local grid are labeled
1, 2, · · · , N , andI1, I2, · · · , IN are the currents flowing from
port x to each of them. By equations (19) and (27), and
considering the extra term introduced byCx, the γ term in
(32) can be expanded as follows.

γ = −Cx

h
Vx(t− h) +

N∑

i=1

giξ
′
i

= −Cx

h
Vx(t− h)

+
N∑

i=1

gi(ξi − (ck+1,iVhk+1 + · · ·+ ck′,iVhk′ ))(45)

where gi is the conductance betweenx and i, and
ξ′i, ξi, ck+1,i, · · · , ck′,i are the corresponding coefficients de-
fined in equations (26) and (27) constructed fori ∈
{1, · · · , N}. From (26), we know that(k′ − k) is the number
of V (t− h) terminals inside the local grid, and that they are
hk+1, · · · , hk′ . From (41), we have

cj,i =
Nhj ,i

M
, j ∈ {k + 1, · · · , k′} (46)

ξi =

∑M
q=1 uq,i

M
(47)

whereNhj ,i is the number of walks fromi that end at terminal
hj , anduq,i is the sum of expenses paid at motels during the
qth walk from nodei. Substituting (46)(47) into (45), we get

γ = −Cx

h
Vx(t− h)

+
N∑

i=1

gi(

∑M
q=1 uq,i

M
−

k′∑

j=k+1

Nhj ,i

M
Vhj )

= −Cx

h
Vx(t− h) +

N∑

i=1

gi

M

M∑
q=1

uq,i

−
N∑

i=1

gi

M

k′∑

j=k+1

Nhj ,iVhj (48)
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Define

γ1 =
Cx

h Vx(t− h) +
∑N

i=1
gi

M

∑k′

j=k+1 Nhj ,iVhj

Cx

h +
∑N

i=1
gi

M

∑k′
j=k+1 Nhj ,i

(49)

γ2 =
N∑

i=1

gi

M

M∑
q=1

uq,i (50)

Then

γ = γ2 − γ1(
Cx

h
+

N∑

i=1

gi

M

k′∑

j=k+1

Nhj ,i) (51)

By equation (8),uq,i can be further expanded, andγ2 becomes

γ2 =
N∑

i=1

gi

M

M∑
q=1

∑
r

Iq,i,r

sq,i,r
(52)

whereIq,i,r is the current load flowing out of the node at the
rth step of theqth walk from nodei, andsq,i,r is the sum of
the conductances connected to the node at therth step of the
qth walk from nodei.

So far we have derived equations (49) and (52), which
are (33) and (34) respectively. These two equations have
their physical meanings:γ1 is a weighted average of some
V (t−h)’s inside this local grid,γ2 is a weighted sum of some
current-loads inside this local grid. Now we need to show that
equation (32) is true, in other words,

γ = −γ1(αx +
∑

port j 6=x

αj) + γ2 (53)

To do so, we look at equation (26) constructed fori ∈
{1, · · · , N}. By Lemma 1, we have

c1,i + · · ·+ ck,i + ck+1,i + · · ·+ ck′,i = 1 (54)

Substituting (46) into the above equation, we get

1−
k∑

j=1

cj,i =
k′∑

j=k+1

Nhj ,i

M
(55)

By equation (19), and considering the extra coefficientCx

h
introduced byCx as shown in (44),

αx +
∑

port j 6=x

αj =
Cx

h
+

N∑

i=1

gi(1− cport x,i)

+
∑

port j 6=x

(−
N∑

i=1

gicj,i)

=
Cx

h
+

N∑

i=1

gi(1−
k∑

j=1

cj,i)

=
Cx

h
+

N∑

i=1

gi

k′∑

j=k+1

Nhj ,i

M
(by (55))

=
Cx

h
+

N∑

i=1

gi

M

k′∑

j=k+1

Nhj ,i (56)

By equations (51) and (56), equation (53) must be true, and
our proof is complete.

Fig. 23. An isolated subgraph formed by low resistances, and isolated by
high resistances.

APPENDIX III
REMEDIES FOR ISOLATED LOW-RESISTANCE SUBGRAPHS

As the general case of Figure 6, a subgraph formed by sev-
eral low resistances can be isolated by other high resistances
and form a “trap”, and random walks may spend many steps
inside this subgraph. Figure 23 shows an example.

It is worth pointing out that a pre-processing step to remove
such a subgraph is only necessary when the ratio between the
surrounding high resistances and the inside low resistances is
extremely high. For example, if at every node in the subgraph,∑

inside
g∑

outside
g

= 19, then according to equation (8), at every

step, the random walk stays in the subgraph with probability∑
inside

g∑
inside

g+
∑

outside
g

= 0.95. However,0.9520 < 0.36, in other

words, the probability that a random walk stays in the subgraph
for more than 20 steps in less than 0.36. Therefore, in this
example, removing this subgraph may not be necessary.

None of the three industrial benchmarks contains a sub-
graph that needs to be removed, and our implementation only
removes single isolated low resistances as shown in Figure 6,
by the Y-∆ transformation. Therefore the following discussion
has not been implemented or tested. If removing a subgraph is
indeed necessary, the following techniques may be employed.

1) If this subgraph is a tree. The Y-∆ transformation can be
iteratively applied on leaf nodes. In each transformation,
an edge of the subgraph, i.e., a low resistance, is
removed. In the end, the subgraph disappears, without
any loss of accuracy.

2) If this subgraph is not a tree, or if the previous technique
introduces overly complex connectivity. Then, using
Figure 23 as an example, we can define the subgraph
as a local grid, and nodes A,B,C,D as ports. Then
the subgraph can be replaced by a macromodel, which
provides connections between A,B,C,D without trapping
random walks. This macromodeling can be carried out
either by the algorithm from [39], or by our approach
in Section III-A.1, without excessive loss of accuracy.

APPENDIX IV
PROOF OF CONVERGENCE FOR THE ITERATIVE APPROACH

IN SECTION IV-B

The modified nodal equation set for the circuit in the form
of Figure 18(b) can be written as

(F + H)X = E (57)

where matrixF contains the contributions of resistors and
companion models for capacitors and self-inductances, ma-
trix H contains the contributions of the companion models
(voltage-controlled current sources) for mutual inductances,
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X is the vector of node voltages, andE is the vector of
independent sources, which include original current/voltage
sources, the voltage sources from the companion models for
capacitors, and the current sources from the companion models
for self-inductances [14]. Note that, because the modified
nodal equations are constructed for the circuit form of Fig-
ure 18(b),X includes both the end nodes of wire segments
(nodesA’s andB’s in Figure 18), and the middle nodes (C ’s
in Figure 18) which do not exist physically.

The iterative algorithm in Section IV-B can be written as

FXk+1 = −HXk + E

Xk+1 = −F−1HXk + F−1E (58)

whereXk is the solution vector from the previous iteration,
and Xk+1 is the updated solution vector. Note that our
algorithm does not perform the matrix computation of (58),
and instead, it converts the circuit to the form of Figure 18(d),
and uses random walks to carry out the computation. However,
our underlying iteration is equation (58).

Therefore, the necessary and sufficient condition for our
iterative algorithm to converge is

max
r

∣∣λr(F−1H)
∣∣ < 1 (59)

whereλr denotes therth eigenvalue of a matrix [36]. In order
to prove condition (59), the following lemma is needed.

Lemma 4:MatricesF , (F + H) and(F −H) are positive
definite.

Matrix F is an irreducibly diagonally dominant matrix with
positive diagonal entries, for any connected power grid, and
therefore is positive definite [36].

Let matrix F1 be the component ofF that corresponds
to the contributions of resistors and companion models for
capacitors, and let matrixF2 be the contributions of self-
inductances. ThenF = F1 + F2. Let y be any real-valued
nonzero vector. We have

yT(F + H)y = yTF1y + yTF2y + yTHy (60)

BecauseF1 is a diagonally dominant matrix with positive
diagonal entries, (maybe reducible, i.e., representing an un-
connected network), and hence must be nonnegative definite:

yTF1y ≥ 0 (61)

Let N be the number of inductors, and they are labeled
1, 2, · · · , N . Let ei,1 and ei,2 be the nodes at the two ends
of inductor i, in other words, they are the nodesB and C
in Figure 18; let them be defined with consistent direction, in
other words, for parallel wire segments,ei,1’s always point to
the same direction. In theK matrix,Ki,i is the self-inductance
of inductor i, and Ki,j , i 6= j, is the mutual inductance
between inductori and inductorj. From [7][15], we know
that Ki,j = Kj,i, and that

Ki,i >
∑

j∈{1,···,N}
j 6=i

|Ki,j | (62)

The contribution of inductori to matrixF2 is shown below,
with the row and column indices marked outside [14].

ei,1 ei,2

ei,1

ei,2




hKi,i −hKi,i

−hKi,i hKi,i




Hence, the contribution of inductori to yTF2y is

hKi,iy
2
ei,1

− hKi,iyei,1yei,2 − hKi,iyei,1yei,2

+hKi,iy
2
ei,2

= hKi,i(yei,1 − yei,2)
2

Therefore

yTF2y =
N∑

i=1

hKi,i(yei,1 − yei,2)
2 (63)

The contribution of the mutual inductances between induc-
tor i and inductorj to matrix H is shown below, with the
row and column indices marked outside the matrix, and these
entries correspond to the voltage-controlled current sources in
Figure 17 and Figure 18(b) [14].

ei,1 ei,2 ej,1 ej,2

ei,1

ei,2

ej,1

ej,2




hKi,j −hKi,j

−hKi,j hKi,j

hKj,i −hKj,i

−hKj,i hKj,i




Hence, the contribution ofKi,j andKj,i to yTHy is

hKi,j(yei,1yej,1 − yei,1yej,2 − yei,2yej,1 + yei,2yej,2)
+hKj,i(yei,1yej,1 − yei,1yej,2 − yei,2yej,1 + yei,2yej,2)

= hKi,j(yei,1 − yei,2)(yej,1 − yej,2)
+hKj,i(yei,1 − yei,2)(yej,1 − yej,2)

= 2hKi,j(yei,1 − yei,2)(yej,1 − yej,2)

Therefore

yTHy =
∑

i,j∈{1,···,N}
i 6=j

2hKi,j(yei,1 − yei,2)(yej,1 − yej,2)

(64)
This leads to (65) at the top of the page, which in turn implies

yTF2y ± yTHy ≥ 0 (66)

Substituting (61)(66) into equation (60), we get

yT(F + H)y ≥ 0 (67)

Now we need to show that (61) and (66) cannot both be
equalities. Note that, in order for (65) to be an equality after
applying inequality (62), vectory must satisfy the condition

yei,1 = yei,2 for i ∈ {1, · · · , N}
For such a vectory, we can mergeei,1 andei,2 into one node,
and obtain a shortened vectory′. In other words, nodesB and
C in Figure 18 are merged into one node. Correspondingly, the
rows forei,1 andei,2 in matrix F1 are merged into one row by
adding entries, and columns forei,1 andei,2 in matrix F1 are
merged into one column by adding entries. Thus we obtain a
new matrixF1

′, which is the same as the modified nodal left-
hand-side matrix if all inductors are ignored. BecauseF1

′ is an
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∣∣yTHy
∣∣ =

∣∣∣∣∣∣∣

∑
i,j∈{1,···,N}

i 6=j

2hKi,j(yei,1 − yei,2)(yej,1 − yej,2)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣

∑
i,j∈{1,···,N}

i6=j

hKi,j((yei,1 − yei,2)
2 + (yej,1 − yej,2)

2)

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

∑
i,j∈{1,···,N}

i 6=j

hKi,j(yei,1 − yei,2)
2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∑
i,j∈{1,···,N}

i 6=j

hKi,j(yej,1 − yej,2)
2

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
1
2

N∑

i=1

∑
j∈{1,···,N}

j 6=i

hKi,j(yei,1 − yei,2)
2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1
2

N∑

j=1

∑
i∈{1,···,N}

i6=j

hKi,j(yej,1 − yej,2)
2

∣∣∣∣∣∣∣

=
1
2

N∑

i=1

(yei,1 − yei,2)
2

∣∣∣∣∣∣∣

∑
j∈{1,···,N}

j 6=i

hKi,j

∣∣∣∣∣∣∣
+

1
2

N∑

j=1

(yej,1 − yej,2)
2

∣∣∣∣∣∣∣

∑
i∈{1,···,N}

i6=j

hKi,j

∣∣∣∣∣∣∣

≤ 1
2

N∑

i=1

(yei,1 − yei,2)
2

∑
j∈{1,···,N}

j 6=i

|hKi,j |+ 1
2

N∑

j=1

(yej,1 − yej,2)
2

∑
i∈{1,···,N}

i 6=j

|hKi,j |

≤ 1
2

N∑

i=1

(yei,1 − yei,2)
2hKi,i +

1
2

N∑

j=1

(yej,1 − yej,2)
2hKj,j (applying equation (62))

=
1
2

N∑

i=1

(yei,1 − yei,2)
2hKi,i +

1
2

N∑

i=1

(yei,1 − yei,2)
2hKi,i =

N∑

i=1

(yei,1 − yei,2)
2hKi,i

= yTF2y (applying equation (63)) (65)

irreducibly diagonally dominant matrix with positive diagonal
entries, for any connected power grid, we have

yTF1y = y′TF1
′y′ > 0,

it follows that (61) and (66) cannot both be equalities.
Thus, (67) can never be equality, and can be replaced by

yT(F + H)y > 0 (68)

This is true for any real-valued nonzero vectory. Therefore,
matrix (F + H) is positive definite.

Similarly, by equations (61)(66), and the fact that they
cannot both be equalities,

yT(F −H)y = yTF1y + yTF2y − yTHy > 0 (69)

This is true for any real-valued nonzero vectory. Therefore,
matrix (F −H) is positive definite. Lemma 4 is proven.

Now we move on to use Lemma 4 to prove condition (59),
which is replicated as follows.

Lemma 5:maxr

∣∣λr(F−1H)
∣∣ < 1

Let λ be any eigenvalue of matrixF−1H, and lety be the
corresponding eigenvector. By Lemma 4,(F + H) is positive
definite, and we have

yT(F + H)y > 0
yTF (I + F−1H)y > 0

yTF (1 + λ)y > 0
(1 + λ)(yTFy) > 0 (70)

By Lemma 4,yTFy must be a positive scalar, and therefore,

1 + λ > 0
λ > −1 (71)

Similarly, from (F −H) being positive definite, we get

λ < 1 (72)

Therefore
|λ| < 1 (73)

This is true for any eigenvalue of matrixF−1H. Therefore
Lemma 5 is true, and our iterative algorithm in Section IV-B
is guaranteed to converge.
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