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Abstract

We propose a scalable and efficient parameterized block-based statistical static timing analysis (SSTA) algorithm incorporating

both Gaussian and non-Gaussian parameter distributions, capturing spatial correlations using a grid-based model. Asa preprocessing

step, we employ independent component analysis to transform the set of correlated non-Gaussian parameters to a basis set of

parameters that are statistically independent, and principal components analysis to orthogonalize the Gaussian parameters. Given the

moments of the variational parameters, we use a Padé approximation-based moment matching scheme to generate the distributions

of the random variables representing the signal arrival times, and preserve correlation information by propagating arrival times

in a canonical form. Our experiments reveal that for the cases, when the sensitivities of Gaussian parameters outweigh that of

the non-Gaussian parameters, a Gaussian SSTA proves to be reasonably accurate. However, for the cases when the non-Gaussian

parameter sensitivities dominate the Gaussians, modelingall parameters as normal leads to significant inaccuracies in the SSTA

results. For both cases, our SSTA procedure is able to generate the circuit delay distributions with reasonably small prediction

errors. For the ISCAS89 benchmark circuits, as compared to Monte Carlo simulations, we obtain average errors of 0.99%, 2.05%,

2.33% and 2.36%, respectively, in the mean, standard deviation, 5% and 95% quantile points of the circuit delay. Experimental

results show that our procedure can handle as many as 256 correlated non-Gaussian variables in about 5 minutes of run time. For

a circuit with |G| gates and a layout withg spatial correlation grids, the complexity of our approach is O(g|G|).

I. I NTRODUCTION

As transistor and interconnect geometries shrink, the reduced level of control over the chip fabrication process results in

significant levels of variation in process parameters such as the effective channel length, gate width, gate oxide thickness, dopant

concentration, and interlayer dielectric thickness. These variations create randomness in the behavior of circuit-level electrical

parameters, such as gate and interconnect capacitances, transistor on-resistances, threshold voltages and via resistances. The

prediction of chip timing characteristics in the face of these process-driven random parameter uncertainties remainsa challenging

problem.



Traditionally, to safeguard against this variability, a static timing analysis (STA) procedure is employed at different process

corners, and margins are introduced in the design based on the STA results. This worst case design, corresponding to the

process corners, where the gate and wire delays are at their extreme levels, ensures that the design would work for any

other values of gate and interconnect delays. However, withincreasing levels of variations, corner-based method becomes

impractical and computationally expensive. The number of process corners that must be considered grows exponentiallyas the

number of uncertain parameters increase. Moreover, the corner-based method does not utilize any statistical information about

the variations of parameters, such as the correlations between the process variables arising from the spatial proximity of the

manufactured transistors on chip, or from the structural properties of the circuit such as path reconvergences, and hence can

result in overly pessimistic and suboptimal designs. The results of variation-aware timing are eventually required tobe used

for a circuit optimization tool. Since, the multi-corner-based methodology produces overly pessimistic estimates ofa circuit

timing characteristics, any optimization tool using theseresults could lead to a design employing much more resourcesthan

necessary. This may adversely impact the other performancemeasures of the circuit, such as the circuit power.

As a result, the field of statistical static timing analysis (SSTA) has recently become an active area of research. An SSTA

procedure aims at efficiently predicting the probability distribution function (PDF) and the cumulative distributionfunction

(CDF) of the delay. In other words, SSTA evaluates the statistical distributions of the delay from the statistical information

of sources of variation. A computationally efficient SSTA algorithm facilitates the easy prediction of timing yield, and can be

used within an optimization engine to robustly optimize thecircuit in the presence of parameter variations.

Existing SSTA algorithms have many flavors: they may be path-based or block-based; they may assume Gaussian or non-

Gaussian distributions; they may be parameterized in expressing all delay variables in terms of underlying parametersor not; they

may incorporate spatial correlations due to physical proximity or not; and so on. In [1], the authors provide a non-parameterized

method to perform SSTA in a block-based manner. This method is based on performing statistical operations of the assumed

independent arrival time and random variables, by piecewise-linear modeling of CDF of variables. The authors of [2] present

another non-parameterized SSTA procedure to estimate the bounds on the circuit delay PDF and CDF. In contrast, parameterized

methods for SSTA provide a convenient framework for analyzing the relationship between the statistical information ofthe

sources of variation to that of the circuit delay distributions, and are more useful in practice. A parameterized model also

enables efficient computation of the statistical sensitivities of the circuit delay with respect to the varying parameters [3]–[5].

Practical parameterized SSTA algorithms are block-based in nature, i.e., they propagate the distributions of the delay from

the primary inputs to the primary outputs of a circuit using aPERT-like (Program Evaluation and Review Technique) [6]

traversal of the circuit graph. One of the exceptions is a path-based SSTA method proposed in [7]. In this work, the authors

provide a simple procedure to perform statistical timing analysis using a path-based scheme, as a post-processing step, after

identifying a sufficiently large number of critical paths bya deterministic STA. The parameterized block-based SSTA algorithms

[8]–[12] provide efficient methods for performing statistical timing analysis, under the assumption of normality of parameter

distributions. In [8], a novel SSTA procedure is proposed byapproximating all delay and arrival time random variables as

linear functions of correlated parameters. By assuming that the random vector, comprising of the parameters of variations,

2



has all its components following a Gaussian distribution, aprincipal component analysis (PCA) transformation techniques is

employed to generate another random vector comprising of components which are statistically independent Gaussian random

variables. A similar work [9] assumes Gaussian modeling of parameters and linear delay representation to perform efficient

SSTA. Both these works, [8] and [9], use Clark’s closed-formformulae [13] to approximate the maximum of two Gaussian

random variables as another Gaussian random variable. The authors of [10] also propose a linear Gaussian SSTA procedureby

simplifying the computations involving a set of correlatednormal variables, using the PCA method. The algorithms presented

in [11] and [12] provide techniques for performing SSTA using quadratic delay models of Gaussian parameters.

For all of the abovementioned Gaussian SSTA algorithms, theassumption of normality of process variations lends itselfrather

well for generating closed-form expressions for the delay and arrival time PDFs. Although correlation and statisticaldependence

between random variables tends to increase the complexity of SSTA, recent work has presented efficient techniques for handling

such correlations under Gaussian distributions, using PCAto perform a simple variable transformation. This transformation

enables efficient SSTA, representing delays and arrival times as functions of a new set of orthogonal, statistically independent

Gaussian random variables.

However, the normality assumption is not always valid [14],and it is well known that some process parameters deviate

significantly from a Gaussian distribution. For example, via resistances exhibit an asymmetric probability distribution [15], and

the dopant concentration density is also observed to be wellmodeled by a Poisson distribution: a normality assumption may

lead to significant sources of errors in SSTA. Some recent works [15], [16] propose SSTA methods that do away with the

assumptions of normality for the parameter distributions,but to the best of our knowledge, no prior approach is scalable to

handle large number of non-Gaussian parameters, or has presented an efficient SSTA solution under correlated non-Gaussian

parameter distributions. In [15], the solution to tackle uncorrelated non-Gaussian parameters employs a numerical integration

technique. However, the method of numerical integration inhigher dimensions has an exponential computational complexity

with respect to the number of non-Gaussian parameters. Thus, the method can efficiently handle only a few non-Gaussian

sources of variation, and the runtime does not scale well with the number of such sources. The SSTA framework of [16] is

general enough to consider both Gaussian and non-Gaussian parameters of variations, as long as the non-Gaussian parameters

are uncorrelated. However, the technique relies on a regression strategy that requires a Monte Carlo simulation in the inner

loop of the SSTA procedure. Such a technique is unlikely to scale well for large circuits with numerous sources of variations.

From the discussion of the existing SSTA methods in this section, the procedures can be broadly classified into the following

four categories:

1) Linear, Gaussian SSTA:These methods employ a linear delay representation and assume normality of parameter dis-

tributions. Some examples of the techniques that offer an efficient and an accurate solution within this class of SSTA

algorithms are [7]–[10].

2) Nonlinear, Gaussian SSTA:These SSTA algorithms use a nonlinear delay model, in particular, a quadratic representation

of all gate delay and arrival time variables, but still assume that all parameters as Gaussians. The works of [11] and [12]

fall into this category of SSTA methods.
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3) Linear, non-Gaussian SSTA:This class of SSTA procedures consists of techniques that doaway with the Gaussian

assumption for all parameters, but still employ a first orderdelay model. Our SSTA method, presented in this paper, is

the only efficient and scalable known work for this class of algorithms.

4) Nonlinear, non-Gaussian SSTA:These SSTA methods are a superset of the other three classes,and cover the most general

case for performing statistical timing analysis. Such SSTAprocedures not only use a general nonlinear delay model, they

also allow the parameters to be non-normally distributed. The methods of [15] and [16] are two such examples of these

general SSTA algorithms. However, as mentioned before, these works rely on computationally expensive techniques, and

are not scalable to a large number of variables. In fact, eventhe application of these methods to a simpler case of linear

representation (the subset of class 3 SSTA methods, as described above) is just as inefficient. Thus, the quest for an

efficient SSTA technique for a nonlinear delay form that includes non-Gaussian parameters of distribution, remains an

unsolved research problem.

In this paper, we propose an efficient algorithm to perform a linear, non-Gaussian SSTA. To the best of our knowledge,

this is the only work that can handle a large number of Gaussian and non-Gaussian process parameters with correlations. The

correlations are described using a grid structure, similarto that used in [8], but also incorporates non-Gaussian distributions.

For a circuit with |G| gates and a layout withg spatial correlation grids, the complexity of our approach is O(g|G|), similar

to the Gaussian case in [8]. An early version of our work appeared in [17].

II. OUTLINE OF THE SSTA PROCEDURE

The main steps in our SSTA algorithm are:

1) Preprocessing to obtain an independent set of basis variables: We employ a technique known as independent

component analysis (ICA) [18]–[21] as apreprocessing step, with the goal of transforming the random vector of correlated

non-Gaussian components to a random vector whose components are statistically independent. We then compute moments

of the independent components from the moments of the non-Gaussian parameters. We orthogonalize the Gaussian

parameters separately, performing PCA as in [8]. Together,we refer to this set of independent variables as thebasis set.

2) Moment matching-based PDF evaluation: Next, we represent the gate delays as a linear canonical function of the

basis set. From the moments of the basis set, we compute the moments of the gate delay variables. Finally, we translate

the moments into an approximating PDF for the delay variables, using a Padé approximation-based moment matching

scheme, as proposed in [22].

3) Correlation-preserving statistical operations: We process the circuit in a block-based manner, in topological order,

computing the statistical sum and max operations at every step to compute the extracted PDFs of the arrival time variables.

These variables are stored in terms of the linear canonical form through a moment-matching procedure.

During our exposition of our procedure, it will become amplyclear that the approach borrows some techniques from several

existing algorithms from the literature. However, it is important to note that the overall algorithm is distinctly different from

any existing method.
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The rest of this paper is organized as follows. Section III describes the method of generating moments of the varying

process parameters from the process data. These moments areused as inputs to our SSTA procedure. Section IV explains

the effect on non-Gaussian parameters on the SSTA results. The linear delay model employed, to represent the gate delay

and arrival time expressions, is presented in Section V. Independent component analysis and its applicability to our SSTA

algorithm is described in Section VI. Section VII explains the method to derive the moments of the independent components.

The moment matching-based PDF evaluation scheme is delineated in Section VIII. The computations of statistical “sum”

and “max” operations are presented in Section IX. Section X contains the time complexity analysis of the proposed SSTA

algorithm. Experimental results are presented in Section XI, and Section XIII concludes this paper.

III. G ENERATING MOMENTS FROMPROCESSDATA

Interval i
([lb, ub) nm) Pr(L̂e =

Le−µLe

σLe

) ∈ i)

[-4.0.-3.0) 0.000
[-3.0,-2.6) 0.000
[-2.6,-2.3) 0.006
[-2.3,-1.9) 0.022
[-1.9,-1.5) 0.072
[-1.5,-1.2) 0.092
[-1.2,-0.8) 0.128
[-0.8,-0.4) 0.106
[-0.4,-0.1) 0.120
[-0.1,0.3) 0.108
[0.3,0.7) 0.122
[0.7,1.1) 0.110
[1.1,1.4) 0.070
[1.4,1.8) 0.036
[1.8,2.2) 0.002
[2.2,2.5) 0.002
[2.5,2.9) 0.004
[2.9,3.3) 0.000
[3.3,3.6) 0.000
[3.6,4.0) 0.000

TABLE I

A CUMULATIVE FREQUENCY TABLE FOR500RANDOMLY GENERATED

VALUES OF Le WITH µLe
= 65 nm AND σLe

= 5.2 nm.
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Fig. 1. A frequency histogram of thêLe values listed in Table I.

It is important to note that our algorithm requires minimal input information: rather than relying on closed-form distribution

of variational parameters, the knowledge of their moments is sufficient for our scheme to generate the circuit delay distribution.

This is a desirable property for an SSTA method, as it is typically difficult to extract precise distributions from process data,

and it is more realistic to obtain the moments of the parameter variations from a process engineer. For instance, given the

measurements of a particular parameterX acrossN chips1, kth moment ofX , denoted bymk(x), wherex represents a sample

point, can be easily computed asmk(x) =
∑

x xkPr(X = x). The probabilityPr(X = x) can be calculated by binning2 all

the measured values ofX in some small discrete intervals[lb, ub), and then dividing the frequency of values in each bin by

1For simplicity, we ignore the intra-die variation for parameter X in this discussion.
2Binning sample points in intervals simplifies the computation by reducing the dimensionality of total number of sample points. Alternatively, it is also

possible to use the raw process data to compute the moments byassigning a discrete probability,Pr(X = x), to each sample point.
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the total number of samplesN . This process is much easier than trying to fit an accurate closed-form PDF expression for the

measured values of parameterX across allN sample points, given by the value ofX in each of theN chips.

k mk(L̂e)
1 0.0000
2 1.0000
3 0.0384
4 2.2733
5 0.6174
6 7.9839
7 6.2385
8 39.3220
9 56.2410
10 245.0898
11 485.8118
12 1.7515× 103

13 4.1178× 103

14 1.3447× 104

15 3.4592× 104

16 1.0711× 105

17 2.8938× 105

18 8.7014× 105

19 2.4167× 106

20 7.1479× 106

TABLE II

A TABLE SHOWING THE FIRST TWENTY MOMENTS OFL̂e VALUES LISTED

IN TABLE I.
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Fig. 2. PDF ofL̂e values listed in Table I.

To understand the moment generation process, consider values of the effective channel length (Le) as shown in Table I. The

table contains 500 randomly generated values ofLe with a mean of65 nm, and a standard deviation of5.2 nm. TheseLe

values can be thought of as measurements acrossN = 500 chips, similar to the ones expected to be extracted from the real

wafer data. Table I is the cumulative frequency table for thezero-mean, unit-variance variablêLe values, derived by subtracting

from Le values, the sample mean (µLe
), and scaling the result by the reciprocal of the sample standard deviation (σLe

). The

probabilities of occurrence of the random variableL̂e in each discrete interval or bin in the range[−4, 4], shown in column

one of Table I, is computed by simply dividing the frequency of L̂e in the particular bin by the total number of measured

points, in this caseN = 500. Figure 1, depicts the frequency histogram of theL̂e values listed in Table I. The solid dark line

in Figure 1, corresponds to the PDF3 of L̂e. As seen in the figure, it is extremely difficult to fit a closed-form expression that

would closely match this PDF.

However, the moments of thêLe values can be easily computed by using the relation,mk(l̂e) =
∑

l̂e
l̂e

k
Pr(L̂e = l̂e),

where the values ofPr(L̂e = l̂e) are shown in the second column of Table I. The first twenty suchmoments are listed in

Table II. The only inputs required by our SSTA procedure are these moments of the varying parameters. As will be explained

in Section VIII, using the moments as input, the moment matching-based PDF evaluation method can generate closed-form

3It is trivial to derive the PDF ofLe from the PDF ofL̂e, as will be discussed in Section VIII.
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PDF expressions. Figure 2 shows the actual PDF ofL̂e, the PDF corresponding to fitting a Gaussian distribution tothe data of

Table I, and the PDF obtained by using the moment matching-based PDF evaluation scheme. As seen from the figure, using

the moments information, it is possible to derive the PDF ofL̂e that matches closely with the actual PDF.

IV. N ON-GAUSSIANITY IN SSTA

The circuit delay distribution depends on a number of parameters such as the effective channel length, transistor width,

metal thickness, interlayer dielectric thickness, dopantdensity, and the oxide thickness. As pointed out in Section I, not all

parameters of variations can be accurately modeled by a normally distributed random variable. Moreover, these non-Gaussian

parameters may be correlated to each other due to the effect of spatial proximity. As a result, the approximation of parameters

as normal distributions, followed by performing a GaussianSSTA, may lead to significant inaccuracies in the PDF and CDF

of the circuit delay.

1 2

Fig. 3. A simple circuit example to illustrate the effect of non-Gaussian parameters on the PDF of the circuit delay.

To illustrate the effect of such non-Gaussian parameters onthe delay distribution, we use a toy circuit, shown in Figure

3. We assumeWi and Lei
for each inverteri to be the random parameters of variation. Using a first order Taylor series

approximation, the delay of this circuit can be written as:

D = µ + a1.W1 + a2.W2 + b1.Le1
+ b2.Le2

(1)

wherea1, a2, b1, andb2 are the sensitivities of the delay with respect to the zero-mean randomly varying parametersW1, W2,

Le1
, andLe2

, respectively, andµ is the nominal delay of the circuit. Next, we perform a simpleMonte Carlo simulation to

evaluate the PDF of the circuit by considering the followingfour scenarios:

Case 1: {W1, W2} are modeled as uniformly distributed random variables in[−
√

3σW ,
√

3σW ], and{Le1
, Le2

} are assumed to

be Gaussian random variables with a normal distributionN(0, σLe
). Furthermore, all parameters are assumed to be statistically

independent with respect to each other. Figure 4(a) illustrates the PDF of the circuit delay for this case.

Case 2: Employing the same model for the distributions ofW andLe parameters as above (Case 1), but assuming thatW1 is

perfectly correlated withW2, andLe1
is perfectly correlated withLe2

. The circuit delay PDF for this case is shown in Figure

4(b).

Case 3: {Le1
, Le2

} are modeled as uniformly distributed random variables in[−
√

3σLe
,
√

3σLe
], and{W1, W2} are assumed to

be Gaussian random variables with a normal distributionN(0, σW ). Furthermore, all parameters are assumed to be statistically

independent with respect to each other. Figure 5(a) shows the PDF of the circuit delay for this case.

Case 4: Employing the same model for the distributions ofW andLe parameters as above (Case 3), but assuming thatW1
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is perfectly correlated withW2, andLe1
is perfectly correlated withLe2

. The circuit delay PDF for this case is illustrated in

Figure 5(b).

The dashed curve in Figures 4 and 5, show the actual PDF of the circuit delay obtained by performing a Monte Carlo
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Fig. 4. PDF of the delay of the example circuit of Figure 3, when {W1, W2} are modeled as uniformly distributed, and{Le1
, Le2

} are modeled as normally
distributed random variables for (a) uncorrelated and (b) correlatedW andLe process variables.
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Fig. 5. PDF of the delay of the example circuit of Figure 3, when {Le1
, Le2

} are modeled as uniformly distributed, and{W1, W2} are modeled as normally
distributed random variables for (a) uncorrelated and (b) correlatedW andLe process variables.

simulation, and correctly modelingW (for Cases 1 and 2) andLe (for Cases 3 and 4) parameters, as uniformly distributed

random variables, while the solid curve is the PDF obtained if the non-Gaussian variables were also modeled as Gaussian

variables with the same mean and standard deviation as the uniformly distributed variables. Figures 4(a) and 5(a) show the

PDFs for the cases where all of the parameters are consideredto be statistically independent with respect to each other,while

Figures 4(b) and 5(b) show the PDFs whenW1 is considered to perfectly correlated withW2, and Le1
is assumed to be

perfectly correlated withLe2
. In each case, it is seen that the circuit delay PDF deviates from a Gaussian distribution due to
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the presence of the non-Gaussian random variables. However, the deviation from a normal distribution is most significant in

Figure 5(b). The following two reasons explain this significant non-Gaussian behavior of the circuit delay PDF:

1) The delay model used for the circuit of Figure 5 in these experiments, given by Equation (1), contains termsb1 andb2,

corresponding to the sensitivities ofLe1
andLe2

, that outweigh the termsa1 anda2, corresponding to the sensitivities

of W1 and W2. In particular, |b1| = 5.2|a1|, and |b2| = 9.8|a2|. Therefore, for the experiments for Cases 1 and 2,

corresponding to the PDF curves of Figures 4(a) and 4(b), theeffect of the Gaussian parameters{Le1
, Le2

} dominates

the effect of the non-Gaussian parameters{W1, W2}, and the circuit delay PDF does not significantly aberrate from a

normal distribution.

For the experiment for Case 4, corresponding to the PDF curvein Figure 5(b),{Le1
, Le2

} are modeled as uniformly

distributed variables, therefore in this case, the non-Gaussian parameters dominate the normally distributed{W1, W2}

parameters, and the circuit delay PDF shows significant divergence from a Gaussian one.

2) For both Cases 3 and 4,{Le1
, Le2

} are modeled as non-Gaussian variables. However the Monte Carlo PDF for Case 3,

shown in Figure 5(a), assumes statistical independence of parameters. This PDF has a much closer match to a Gaussian

distribution, compared to the one shown in Figure 5(b), thatassumes perfect correlation betweenW1 [Le1
] andW2 [Le2

]

parameters. The intuition for the significant change from a normal PDF, for the correlated case, can be arrived at by

appealing to the Central Limit Theorem, according to which the addition of independent variables makes them “more

Gaussian,” but this is not necessarily true for correlated random variables.

For real circuits, where many parameters are correlated dueto the presence of the inherent spatial and structural correlations,

the presence of non-Gaussian parameters, the sensitivities of which could potentially outweigh the Gaussian ones, implies that

the circuit delay may deviate significantly from a normal distribution.

V. DELAY REPRESENTATION

To incorporate the effects of both Gaussian and non-Gaussian parameters of distribution in our SSTA framework, we represent

all delay and arrival times in a linear form as:

D = µ +

n
∑

i=1

bi.xi +

m
∑

j=1

cj.yj + e.z = µ + B
T
X + C

T
Y + e.z (2)

whereD is the random variable corresponding to a gate delay or an arrival time at the input port of a gate,xi is a non-Gaussian

random variable corresponding to a physical parameter variation,bi is the first order sensitivity of the delay with respect to the

ith non-Gaussian parameter,yj is a parameter variation modeled as a Gaussian random variable, cj is the linear sensitivity with

respect to thejth Gaussian parameter,z is the uncorrelated parameter which may be a Gaussian or a non-Gaussian random

variable,e is the sensitivity with respect the uncorrelated variable,n is the number of correlated non-Gaussian variables, and

m is the number of correlated Gaussian variables. In the vector form, B andC are the sensitivity vectors forX, the random

vector of non-Gaussian parameter variations, andY, the random vector of Gaussian random variables, respectively. Note that

we assume statistical independence between the Gaussian and non-Gaussian parameters: this is a reasonable assumptionas
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parameters with dissimilar distributions are likely to represent different types of variables, and are unlikely to be correlated.

The value of the mean delayµ is adjusted so that the random vectorsX andY are centered, i.e., each componentxi and

yi is a zero-mean random variable. The uncorrelated random variable z is also centered. Note that in the representation of

Equation (2), the random variablesxi are correlated with each other and may be of any underlying non-Gaussian distribution.

Unlike the delay models of [8], [9], we do not constraint the parameter distributions to be Gaussian. The canonical modelof

equation (2) is similar to the model of [15] without the nonlinear terms. The slight difference is that the uncorrelated parameter

z is not constrained to be a Gaussian variable.

VI. I NDEPENDENTCOMPONENT ANALYSIS

For reasons of computational and conceptual simplicity, itis useful to work with a set of statistically independent random

variables in the SSTA framework. If the components of randomvectorX were correlated Gaussian random variables with a

covariance matrix
∑

, a PCA transformationR = PxX would yield a random vectorR comprising of Gaussian uncorrelated

random variables [8]. Since for a Gaussian distribution, uncorrelatedness implies statistical independence4, the components of

R are also statistically independent.

However, such a property does not hold for general non-Gaussian distributions. In Equation (2), the random vectorX

consists of correlated non-Gaussian random variables, anda PCA transformation,S = PxX, would not guarantee statistical

independence for the components of the transformed vectorS. Since the PCA technique focuses only on second order statistics,

it can only ensure uncorrelatedness, and not the much stronger requirement of statistical independence.

Independent component analysis [18]–[21] is a mathematical technique that precisely accomplishes the desired goal of

transforming a set of non-Gaussian correlated random variables to a set of random variables that are statistically as independent

as possible, via a linear transformation. ICA has been an active area of research in the area of signal processing, feature extraction

and neural networks due to its ability to capture the essential structure of data in many applications.

A. The Cocktail Party Problem

The ICA principle can be explained by thecocktail party problemexample illustrated in Figure 6. The set up shown in the

figure, consists ofn speakers, who can be regarded as independent sources, andn receivers, represented by the ears in Figure 6.

The speakers or the independent sources emit independent speech signals, but their simultaneous speech results in interferences

of the independent signals. As shown in Figure 6, due to the interference or mixing of the independent speech signals, the

signals observed by the receivers are no longer independent. The amount of mixing of the independent speech signals may be

derived form elements of a mixing matrixA, which could depend on metrics such as the distance of each speaker from the

receiver. Mapping the cocktail party problem set up back to the ICA problem, the ICA set up consists of having a vectorS

consisting ofn statistically independent components,s1, · · · , sn, and observations ofn linear mixtures,x1, · · · , xn, of the n

4Two random variablesX and Y are uncorrelated ifE[XY ] = E[X]E[Y ], while they are independent ifE[f(X)g(Y )] = E[f(X)]E[g(Y )] for any
functionsf and g. For instance, ifX and Y are independent, thenE[XiY j ] = E[Xi]E[Y j ]. For Gaussian distributions, uncorrelatedness is identical to
independence. For a general non-Gaussian distribution, independence implies uncorrelatedness, but not vice versa.
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Fig. 6. The cocktail party problem to illustrate the independent component analysis set up.

independent components. The observed components can be thought of as the correlated non-Gaussian random variablesX in

Equation (2), produced by a linear mixing of the elements of avectorS of independent random variables, as follows:

X = AS (3)

whereA is then × n mixing matrix.

The problem of ICA is to estimate the elements of the unknown mixing matrixA, and the samples of statistically independent

componentss1, · · · , sn, as accurately as possible, given only the samples of the observed vectorX. Equation (3) can be

alternatively written as:

S = WX where

si = W
T
i X =

∑n

j=1 wijxi ∀i = 1, · · · , n (4)

In the above equation,W is the inverse of the unknown mixing matrixA. Algorithms for ICA estimate the vectorsWi that

maximize the non-Gaussianity ofWT
i X by solving a nonlinear optimization problem. Typical measures of non-Gaussianity

are kurtosis, negentropy, and mutual information; for a comprehensive reference on ICA, see [18]–[21].

For our SSTA algorithm, we use ICA as a preprocessing step to transform the correlated set of non-Gaussian random

variablesxi, · · · , xn to a set of statistically independent variablessi, · · · , sn, by the relationS = WX of Equation (4). In

practice, ICA estimates the mixing matrixA and its inverse matrixW , which yield the components,si, · · · , sn, which are

statistically as independent as possible. For the purposesof application of ICA transformation in our SSTA algorithm,we will

consider the vectorS to consist of truly statistically independent components.Experimental results, presented in Section XI,

validate this assumption.
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Like principal components, the independent components of vectorS are mathematical abstractions that cannot be directly

observed. Similar to the PCA procedure, which requires normalization of N(µ, σ) variables to N(0,1) variables, the ICA methods

also require centering and whitening of the components of vector X, i.e., prescaling the variables to have zero mean and unit

variance [20]. For a specific grid, the independent components of the non-Gaussian random variables must be computed just

once, and this can be carried out as a precharacterization step. In other words, ICA need not be recomputed for different circuits

or different placements of a circuit.Thus, the ICA preprocessing step does not impact the runtimeof the SSTA procedure.

One of the requirements of the ICA technique is that all of theoriginal source of independent sources,s1, · · · , sn, should

be non-Gaussian. Therefore, in the delay model of Equation (2), we must treat the correlated non-Gaussian random variables

X, and the correlated Gaussian random variablesY, separately. The ICA technique is applied to non-Gaussian parameters

X, and a PCA transformation is applied to Gaussian variablesY, to obtain a set of statistically independent non-Gaussian

variablesS, and a set of independent Gaussian variablesR. We then substitute the respective transformation matrices A and

Py in Equation (2) to arrive at the followingcanonical delay model:

D = µ + B
′T

S + C
′T

R + e.z

= µ +

n
∑

i=1

b′i.si +

m
∑

j=1

c′j.rj + e.z (5)

whereB
′T = B

TA, [C′T = C
TP−1

y ] is the new sensitivity vector with respect to the statistically independent non-Gaussian

components,s1, · · · , sn [Gaussian principal componentsr1, · · · , rm].

B. Generating Samples of Correlated Non-Gaussian Variables

Algorithm 1 Generate Correlated Non-Gaussian Samples

1: /*Inputs: Correlation matrixQ (n × n), mean vectorµX (n × 1), CDF of xj parameterFj(xj), ∀j = 1, · · · , n*/
2: /*Output: Matrix Corr(NUM SAMPLES × n) as samples of correlated non-Gaussian variables*/
3: /*Step1 : Generate samples of multivariate normal distribution N(µ, Q)*/
4: i=1;
5: while (i < NUM SAMPLES) do
6: Z(i)=mvnrnd(µ, Q);
7: i=i+1;
8: end while
9: /*Step2: Map the multivariate normal samples to a multivariate uniform samples in [0,1]*/

10: U=normcdf(Z);
11: /*Step3: Apply inverse CDF transformation to samples in each column ofU*/
12: j=1;
13: while (j < n) do
14: Corr(j)=F

−1
j (U);

15: j=j+1;
16: end while

The ICA method requires, as inputs, the samples of the correlated non-Gaussian parameters. If these samples are readily

available from the process data, they can be directly provided to the ICA module to generate the estimates of the mixing matrix

A, and the samples of the independent components,s1, · · · , sn. However, if instead of the samples of correlated parameters, the

12



closed-form PDFs of the non-Gaussian sources of variation are provided, we must first generate samples of the parametersfrom

the given PDF expressions5. To model the correlation between the non-normal parameters, x1, · · · , xn, the chip area is first

tiled into a grid, as in [8], and the correlation matrix,Q, associated withX is determined. The matrixQ and the mean vector

µX is used to generate the samples of the correlated non-Gaussian variables by employing the method of normal copulas [23].

Algorithm 1 shows the pseudo-code of this method, which is based on performing a series of correlation preserving transforms

on a set of random numbers.

The procedure consists of three main steps. In the first step,spanning lines 4–8, samples from a multivariate normal

distribution, N(µX, Q), are generated. As will become clear in the next steps, theseset of Gaussian random numbers are

used to generate the required non-normal numbers having a mean vectorµx, and the correlation matrixQ. The function call

mvnrnd generates these samples. In the next step, shown on line 10, the normal samples are mapped to a multivariate uniform

distribution in the range [0,1]. The transformation function normcdf is simply the CDF of the standard normal distribution. The

following relations prove that for a single standard normalrandom variabley, with a CDF denoted byFy(y), a transformation

u = Fy(y) results in a uniformly distributed variableu in the range [0,1].

Fu(u0) = Pr(u ≤ u0) = Pr(Fy(y) ≤ uo) = Pr(y ≤ F−1
y (u0)) = Fy(F−1

y (u0)) = u0 (6)

Thus, the CDF of u isFu(u0) = u0, which is same as the CDF of a uniformly distributed random variable in the range [0,1].

In our case,Z comprises of samples of multivariate normal distribution.Thus, each component of random vector associated

with Z, has a marginal distribution of a standard normal. Therefore, the function mappingU = normcdf(Z), maps each

normally distributed component of the random vector associated withZ, into a uniformly distributed variable in the range

[0,1]. The statistical dependence between the generated samples still remains after the transformation. The subroutines for

generating samples of multivariate normal distribution (mvnrnd( )), and the CDF of normal distribution (normcdf( )) are

commonly available in standard mathematical software packages, such as [24] and [25].

The last step in Algorithm 1, shown in lines 12–16, consists of transforming the multivariate uniform samples inU to the

individual non-Gaussian marginal distributions. The transformation function isF−1
j , which is the inverse of the CDF of the

jth non-Gaussian random variable. For example, if thejth non-Gaussian parameterxj is uniformly distributed in the range

[lb, ub], F−1
j (x) = lb+(ub− lb)x. It is easy to prove that mapping uniformly distributed random numbers on interval [0,1], by

a function which is an inverse CDFF−1(x) of a particular distribution, produces random numbers which have a distribution

as given by CDFF (x) [26]. Since samples in each column of the matrixU , are mapped by the required inverse CDF function

F−1
j , the correlation structure between the columns ofU is preserved after the transformation. The output of the algorithm

produces a matrixCorr, with NUM SAMPLES rows andn columns. Each column of this matrix contains samples of a

non-Gaussian parameter drawn from the required distribution. The columns are correlated with each other according to the

original linear correlation matrixQ, and their sample mean is the same as the original mean vectorµX.

5As will be explained in Section XI, we use the method of generating correlated non-Gaussian random numbers, described inthis section, for our experimental
set up that assumes, as inputs, well-known closed-form PDFsfor parametersx1, · · · , xn.
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Following the steps described in Algorithm 1, we generate samples of correlated non-Gaussian parameters. These samples

are required as input to the ICA methods, which generate the ICA transformation matrixA in Equation (3).

VII. PREPROCESSING TOEVALUATE THE MOMENTS OF THEINDEPENDENTCOMPONENTS

The inputs required for our SSTA technique correspond to themoments of parameters of variation. Consider a process

parameter represented by a random variablexi: let us denote itskth moment bymk(xi) = E[xk
i ]. We consider three possible

cases:

Case I: If the closed-form of the distribution ofxi is available, and it is of a standard form (e.g., Poisson or uniform), then

mk(xi) ∀ k can be derived from the standard mathematical tables of these distributions.

Case II: If the distribution is not in a standard form, thenmk(xi) ∀ k may be derived from the moment generating function

(MGF), if a continuous closed-form PDF of the parameter is known. If the PDF ofxi is the functionfxi
(xi), then its moment

generating functionM(t) is given by

M(t) = E[etxi ] =

∫

∞

−∞

etxifxi
(xi)dxi (7)

The kth moment ofxi can then be calculated as thekth order derivative ofM(t) with respect tot, evaluated att = 0. Thus,

mk(xi) = dkM(t)
dtk at t = 0.

Case III: If a continuous closed-form PDF cannot be determined for a parameter, the moments can still be evaluated from the

process data files as:

mk(xi) =
∑

x

xkPr(Xi = x) (8)

wherePr(xi = x) is the probability that the parameterxi assumes a valuex. This moment generation process is explained

in Section III.

Given the underlying process variables and their moments, the next step after performing ICA is to determine the moments

of the independent components,si, · · · , sn, from the moments of the correlated non-Gaussian parameters xi, · · · , xn. The

moments of the parameters,E[xk
i ], are the inputs to the SSTA algorithm.

We now refer back to the ICA transformation of Equation (3),X = AS and rewrite the relationship by taking the expectation

of both sides as:

E[xk
1 ] = E[(a11s1 + a12s2 + · · ·a1nsn)k]

E[xk
2 ] = E[(a21s1 + a22s2 + · · ·a2nsn)k]

...
...

E[xk
n] = E[(an1s1 + an2s2 + · · ·annsn)k] (9)

whereaij is an element of the mixing matrixA obtained via ICA. In the above equation, the left hand side, which is the
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kth moment of each component ofX, is known. The right hand side can be simplified by performingan efficient multinomial

expansion using the idea of binomial moment evaluation presented in [22]. The moments are computed successively, starting

from the first to the second to the third, and so on. For example, after all of the first moments have been computed, the second

moment of eachsi can be computing by rewriting Equation (9) usingk = 2 as

E[x2
1] =

n
∑

i=1

a2
1iE[s2

i ] + 2
n

∑

i=1

n
∑

j=i+1

a1ia1jE[si]E[sj ]

E[x2
2] =

n
∑

i=1

a2
2iE[s2

i ] + 2

n
∑

i=1

n
∑

j=i+1

a2ia2jE[si]E[sj ]

...
...

E[x2
n] =

n
∑

i=1

a2
niE[s2

i ] + 2

n
∑

i=1

n
∑

j=i+1

anianjE[si]E[sj ] (10)

The only unknowns in the above equation are the second moments, E[s2
i ], of eachsi, and these can be calculated easily.

In general, while solving for thekth moment ofsi using Equation (9), all of the(k− 1) moments are known from previous

computations. Moreover, since the components ofS are independent, we can perform the operationE[sa
i sb

j] = E[sa
i ]E[sb

j ],

and efficiently apply the binomial moment evaluation scheme. As indicated by Equation (10), the computation of thekth

moment of the independent components,si, · · · , sn, requires the solution of ann × n system of linear equations. Thus, to

compute2M moments of the independent components, we must solve2M systems of linear equations corresponding to (9)

for k = 1, · · · , 2M . However, since this is a part of the preprocessing phase, itmay be carried out off-line for a specific

technology, and it does not contribute to the complexity of the SSTA algorithm.

Note that while ICA does provide theW matrix, it is not easily possible to useS = WX to find the moments of the

si variables. This is because the binomial moment evaluation procedure requires the random variables to be statistically

independent, which is true for thesi variables but not thexi variables.

VIII. M OMENT MATCHING-BASED PDF EXTRACTION

To compute the PDF/CDF of the delay or arrival time random variable we adapt the probability extraction scheme,APEX,

proposed in [22]. Given2M moments of a random variable as inputs to theAPEXalgorithm, the scheme employs an asymptotic

waveform evaluate (AWE) technique to match the2M moments in order to generate anM th order linear time invariant (LTI)

system. The scheme then approximates the PDF [CDF] of a random variable by an impulse responseh(t) [step responses(t)]

of the M th order LTI system. The details of theAPEXalgorithm can be found in [22].

We return to the example of Figure 3 to explain moment matching-based PDF evaluation method. To compute the delay

PDF for the example, we must first calculate2M moments ofD from Equation (1). Assuming (W1, W2) to be perfectly

correlated identical Gaussian random variables, and (L1, L2) to be perfectly correlated, and uniformly distributed identical

random variables (Case 4 of Section IV), we have:

D̂ = a.W + b.Le (11)
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whereD̂ = D − µ, a = a1 + a2 andb = b1 + b2. AssumingW andLe as statistically independent variables, thekth moment

of D̂ can be computed by using the binomial expansion formula as:

mk[D̂] =

k
∑

i=0

(

k

i

)

aibk−imi(W )mk−i(Le) (12)

where all of thek moments ofW andLe are known from the underlying normal and uniform distributions. Since the normal

and uniform distributions used in this example are both well-studied, their moments can be obtained from mathematical tables.

Having computed2M moments ofD̂ from Equation (12), we can now employ the AWE-based PDF evaluation scheme to

approximate the PDF and CDF of̂D by an impulse response as:

f
D̂

(d̂) =











∑M

i=1 r̂i.e
p̂i.d̂ d̂ ≥ 0

0 d̂ < 0
(13)

F
D̂

(d̂) =











∑M

i=1
r̂i

p̂i
(ep̂i.d̂ − 1) d̂ ≥ 0

0 d̂ < 0
(14)

wherer̂ [p̂] are the residues [poles] of the LTI approximation.
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Fig. 7. Extracted PDF and CDF for the delay of the example circuit.

Figure 7 shows the evaluated delay PDF (fD(d) = f
D̂

(d + µ)) and CDF (FD(d) = F
D̂

(d + µ)) of the circuit of Figure 3

usingM = 10 moments. The evaluated PDF matches closely with the Monte Carlo simulation; the match for the CDF is even

better.

We can generalize the PDF evaluation idea, illustrated in the above example, to compute the PDF (CDF) of any random

delay variable expressed in the canonical form of Equation (5). For such a delay variable withl = m + n + 2 terms, the

binomial moment evaluation procedure can be employed to calculate the2M moments, as long as alll variables in the delay

expression are statistically independent. The canonical form expression of Equation (5) satisfies this independence requirement

by construction.
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We have enhanced the PDF evaluation algorithm in [22] for better numerical accuracy and stability. Instead of evaluating

the PDF of a random variableD directly, we first prescale it by defining a new random variable D̂ = D−µD

σD
, and evaluate the

PDF of D̂. Without the prescaling step, the higher order moments ofD can become extremely large (or extremely small) and

affect the numerical accuracy of the moment computation. Wecompute the flipped PDF of(−D̂), and reconstruct the final

PDF from the flipped and the original PDF to avoid numerical errors due to the final value theorem, as in [22]. The PDF and

CDF of D is retrieved from the PDF of̂D by using the relationship:

fD(d) =
1

σD

f
D̂

(

d − µD

σD

)

FD(d) = F
D̂

(

d − µD

σD

)

(15)

In general, given the moments of the independent components, precharacterized as in Section VII, we can compute the

moments of the delay and arrival time random variables from Equation (5). The moments of anN(0, 1) Gaussian distribution

corresponding to each principal component,r1, · · · , rm, are well known as:

mk(ri) =























1 k = 0

0 k = 1, 3, 5, · · ·

1 · 3 · 5 · · · (k − 1) k = 2, 4, 6, · · ·

(16)

The moments of the uncorrelated process parameterz can be easily computed using the techniques in Section VII. As we

will see in Section IX, during the SSTA propagation, the roleof z in the canonical form is to serve as a place holder for

the moments of the uncorrelated part, and these moments willbe propagated further. For each gate, given the moments of all

random variabless1, · · · , sn, r1, · · · , rm, andz, which are all statistically independent with respect to each other, we may use

the binomial evaluation method to compute the2M moments of the gate delay; a similar procedure will be used tocompute

the arrival times in the canonical form in Section IX.

IX. SSTA PROCEDURE

From the theory explained in the previous sections, we now have the ability to evaluate the PDF and the CDF of the delay

and the arrival time random variables, expressed in the linear canonical form, as a function of Gaussian and non-Gaussian

parameters of variation. In this section, we describe our SSTA framework. It is well known that the arrival time propagation

procedure, operating in topological order on the circuit graph, involves the atomic operations of “sum” and “max.” We will

show how these atomic operations can be performed to producea result that can be represented in the canonical form of

Equation (5).
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A. The “sum” Operation

The sum operation to add two arrival time or delay random variables, expressed in the linear canonical form of Equation (5),

is mostly straightforward. Consider two random variables,D1 andD2 expressed as:

D1 = µ1 +
n

∑

i=1

b′i1 .si +
m

∑

j=1

c′j1 .rj + e1.z1

D2 = µ2 +

n
∑

i=1

b′i2 .si +

m
∑

j=1

c′j2 .rj + e2.z2 (17)

The sumD3 = D1 + D2 can be expressed in the same canonical form as:

D3 = µ3 +

n
∑

i=1

b′i3 .si +

m
∑

j=1

c′j3 .rj + e3.z3 (18)

whereµ3 = µ1 + µ2, b′i3 = b′i1 + b′i2 , andc′i3 = c′i1 + b′i2 .

The one difference here, as compared to the Gaussian case (e.g., in [8]), relates to the computation of the uncorrelated

non-Gaussian parameter,e3.z3. The random variablee3.z3 = e1.z1 + e2.z2, serves as a place holder to store the moments of

(e1.z1 + e2.z2). In other words, rather than propagating an uncorrelated componentz in the canonical form, we propagate its

2M moments.

B. The “max” Operation

The PDF of the maximum of the twoindependentrandom variablesU and V , given byT = max(U, V ), can be simply

computed as:

fT (t) = FU (t)fV (t) + FV (t)fu(t) (19)

wheref represents the PDF of each random variable, andF its CDF. If U , V are not only independent, but can also be expressed

in the canonical form of Equation (5), then the PDF and CDF ofT can be easily computed using the PDF evaluation technique

described in Section IX, in a closed-form using Equation (19).

However, in general, two arrival time random variablesA1 andA2, expressed in the canonical form of Equation (5),do not

satisfy the independence requirement above, as they may both have nonzero coefficients associated with ansi and/or anri

variable. Fortunately, it is possible to work around this byusing a simple technique that permits the application of Equation (19)

to compute the PDF of random variableAmax = max(A1, A2). Let us begin with the canonical expressions forA1 andA2:

A1 = µ1 +
n

∑

i=1

b′i1 .si +
m

∑

j=1

c′j1 .rj + e1.z1

A2 = µ2 +

n
∑

i=1

b′i2 .si +

m
∑

j=1

c′j2 .rj + e2.z2 (20)
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The operationAmax = max(A1, A2) can be now simplified as:

Amax = W + max(U, V ) (21)

where

W = b′12
.s1 + c′12

.r1 +

n
∑

i=2

b′i1 .si +

m
∑

j=2

c′j1 .rj (22)

U = µ1 + (b′11
− b′12

).s1 + (c′11
− c′12

).r1 + e1.z1

V = µ2 +

n
∑

i=2

(b′i2 − b′i1).si +

m
∑

j=2

(c′i2 − c′i1).ri + e2.z2

The above representation of the max operation ensures that the random variablesU and V involved in the max operation,

max(U, V ), are statistically independent as they do not share any variables6.

Therefore, from Equations (19) and (21), we can writeAmax = W + T . Clearly, from Equation (22),W is available in the

canonical form, and our next task is to expressT in the form of Equation (5) as well, since this would permit usto write

Amax in the canonical form.

To achieve this, we employ the idea of tightness probability[9], to expressT = max(U, V ) as:

T = µT +

n
∑

i=1

b′iT
.si +

m
∑

j=1

c′jT
.rj + eT zT (23)

Our discussions in the previous sections provide us with allof the machinery required to efficiently compute the tightness

probability, pU>V = Pr(U > V ). We define a random variablêQ = V − U , and use the sum operation defined in Section

IX-A to express the random variablêQ in the canonical form. Next, employing the technique described in Section VIII, we

compute the2M moments of random variablêQ, and evaluate the CDF,F
Q̂

(q̂), as a step response of the approximated LTI

system using the following relationship:

F
Q̂

(q̂) =

M
∑

i=1

r̂i

p̂i

(ep̂i.q̂ − 1) (q̂ ≥ 0) (24)

= 0 (q̂ < 0)

wherer̂ andp̂ are the residues and poles of the approximatedM th order LTI system. The tightness probabilitypU>V is simply

given by the CDF ofQ̂ evaluated at̂q = 0, sincePr(U > V ) = Pr(Q̂ ≤ 0) = F
Q̂

(0).

Unlike [15], this method does not require the computationally expensive technique of numerical integration in high dimensions

for non-Gaussian parameters. The ability to compute the tightness probabilitypU>V analytically, from the evaluated CDF of

(Q̂ = V − U ), makes the SSTA procedure very efficient and allows us to process a large number non-Gaussian variables.

Having computed the tightness probability,pU>V , the sensitivitiesb′iT
, c′iT

, andzT of T = max(U, V ) in Equation (23)

6Note that this is a sufficient condition for independence since all variables in the expressions ofU andV , obtained from the ICA and the PCA transforms
are statistically independent.

19



can be written in terms of the sensitivities ofU andV . Specifically:

b′iT
= pU>V .b′iU

+ (1 − pU>V ).b′iU
∀i = 1, · · · , n

c′jT
= pU>V .c′jV

+ (1 − pU>V ).c′jV
∀j = 1, · · · , m (25)

Recall that the uncorrelated parameter term in Equation (23) is a place holder for the moments of the uncorrelated parameter:

the moments ofzT can also be computed using the tightness probability:zT assigned the moments of the random variable

(pU>V .eU .zU + (1 − pU>V ).eV .zV ). The adjustment of the sensitivity termeT will be explained later in this section.

The use of tightness probabilities is only a heuristic and suffers from problems of accuracy. Therefore, to reduce the error

in the heuristic, we compute the meanµT in Equation (23) and the variance ofT , σ2
T , exactly from the PDF ofT . In order

to achieve this, we use Equation (19): note that this is applicable sinceU andV are independent by construction. Using the

closed-form PDF,fT (t), we can computeµT from the first principles asµT = E[max(U, V )] =
∫

∞

−∞
tfT (t)dt.

The last term left to compute iseT , the coefficient term of the uncorrelated random variablezT . We compute this term so

that we match the variance of the closed-form PDF ofT , fT (t), alluded to above, with the variance of canonical representation

of Equation (23). The variance can be computed fromfT (t) as:

σ2
T =

∫

∞

−∞

t2fT (t)dt − (E[max(U, V )])2 (26)

Having matched the variance term in Equation (26) to the variance in the expression Equation (23), all of the terms required to

representT = max(U, V ) back to the canonical form are known. As a final step, referring back to Equation (21), we perform

the sum operation betweenW andT = max(U, V ) to complete the computation ofAmax = max(A1, A2).

X. T IME COMPLEXITY ANALYSIS

The steps to generate the ICA mixing matrixA, the PCA transform, and the moments of the independent components

si, · · · , sn do not affect the online runtime of the procedure. These preprocessing steps have a one time precharacterization

cost. Hence, the computational cost of the main steps in the SSTA procedure is comprised of the circuit graph traversal, and

the sum and max operations.

The sum operation has a time complexity ofO(n + m), wheren is the number of non-Gaussian independent components

andm is the number of Gaussian principal components.

The main steps in the max operation consists of computing moments of the delay variables, PDF evaluation by the AWE-

based method, and calculating the mean and the variance terms to express the result of max operation back to a canonical form.

The cost of computing2M moments using the binomial moment evaluation procedure isO(M(n + m)). The PDF evaluation

involves the solution of a linearM ×M system of linear equations, described by a Hankel matrix, isO(M3); in practice,M

is upper-bounded by a small constant, and excellent solution are obtained forM ≤ 10. The mean and the variance terms are

computed by one dimensional numerical integration and can be calculated in constant time. Thus, the complexity of the max

operation isO(m + n). For a layout withg spatial correlation grids,m + n = O(g). Therefore, both the sum and the max
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operation have a complexity ofO(g).

In the PERT-like traversal of the circuit graph, for each gate we must change the delay representation of Equation (2) to

that of Equation (5). In particular, we require the new sensitivity vectorsB
′T = B

TA, [C′T = C
TP−1

y ]. The dimensions of

the ICA transformation matrixA is n× n, and the PCA transformation matrixPy is m×m. However, the original sensitivity

vectorsBT andC
T are typically sparse because a gate, in a particular grid, would fanout to other gates in not more thank

different grids7, with k << Min(m, n). Therefore, the cost of computing the new sensitivity vectors, B′T andC
′T by the

multiplication of a sparse vector and a dense matrix isO(m + n) = O(g).

For a circuit graph withV nodes andE edges, the overall time complexity of the SSTA procedure isO(g(V +E)). Therefore,

the time complexity for our SSTA procedure, incorporating both Gaussian and non-Gaussian parameters, is the same as that of

SSTA techniques considering only Gaussian variables [8], [9]. However, the complexity constant for our procedure is higher

due to the steps of moments evaluation and PDF extraction, and this is not surprising since [8], [9] can be reduced to special

cases of our solution.

XI. EXPERIMENTAL RESULTS

The proposed SSTA algorithm was implemented in C++, using the MinSSTAcode [8], and tested on edge-triggered ISCAS89

benchmark circuits. All experiments were performed on Pentium-4 Linux machines with a clock speed of 3.2GHz and 2GB

of memory. TheFastICApackage [27] and theIcassosoftware [28], were used to obtain the ICA transform of Equation (3).

To generate samples of correlated non-Gaussian parameters, required as inputs to theFastICA code, we use the method of

normal copula[23], as described in Section VI-B. For all the experiments,we generate 5000 samples of each non-Gaussian

parameter to feed to the ICA module. We use the Elmore delay model and the first order Taylor series terms to represent the

canonical delay model of Equation (2). However, clearly this is not a restriction, as our canonical form is similar in form to

that in [8], [9], and any analytical or numerical delay modelmay be used, as long as the sensitivities of the delay with respect

to the varying parameters can be computed.

We consider the effective channel length,Le, the transistor widthW , and the dopant concentration,Nd as the sources of

variation. The parametersLe and W are modeled as correlated sources of variations, and the dopant concentration,Nd, is

modeled as an independent source of variation. The same framework can be easily extended to include other parameters of

variations. For simplicity, our current implementation ignores the effect of the input signal transition time on the delay at the

output port of the gate. However, according to the techniquedescribed in [29], our SSTA procedure can also be extended to

incorporate and propagate the distributions of the signal transition times. As described in [29], it is possible to express slope

at the output pin of the gate as a probability weighted sum of distributions of the slope from all input pins to the output pin of

the gate. In our SSTA framework, we can efficiently compute these weights as closed-form probabilities, using the AWE-based

PDF extraction scheme.

We use the grid-based model of [8] to generate the spatial correlations for theW and Le parameters. Due to the lack

7In the case of a gate driving a global wire which spans many grids, it is highly likely that the global wire would be buffered.
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of access to any real wafer data and process data files, we do not have the required information to realistically model the

parameter distributions. We consider the following two cases for modeling theW andLe parameters:

Case 1: W of gates in each grid are modeled as non-Gaussian parameters, andLe are modeled as Gaussian variables. Section

XI-A discusses the SSTA results for this case.

Case 2: Le of gates in each grid are modeled as non-Gaussian parameters, andW are assumed to be normally distributed

variables. Section XI-B discusses the SSTA results for thiscase.

For both cases, the independent parameterNd is assumed to follow a Poisson distribution. Theµ and σ values of the

parameters are based on the predictions from [30]. For90nm technology, we useµW = 150nm, µLe
= 60nm, σW = 7.5nm

andσLe
= 4nm. For the independent parameterNd modeled as a Poisson random variable, we useµNd

= 10 × 1017cm−3

for both nmos and pmos. We test our SSTA procedure by comparing our results for each benchmark with 10,000 Monte

Carlo (MC) simulations based on the same grid model. The samples of correlated non-Gaussian parameters for Monte Carlo

simulations are also generated using the method of normal copula, as described in Section VI-B.

A. SSTA results for Case 1

For these experiments, we modelW of gates in each grid as non-Gaussian parameters, andLe of gates in each grid as

Gaussian parameters. For the correlated non-GaussianW parameters, we randomly assign toW in each grid either a uniform

distribution in [µW −
√

3.σW , µW +
√

3.σW ], or a symmetric triangular distribution in[µW − k.σW , µW + k.σW ], given by:

fW (w) =
2(w − a)

(b − a)(c − a)
a ≤ w ≤ c

fW (w) =
2(b − w)

(b − a)(b − c)
c < w ≤ b (27)

wherea = µw − k.σw, c = µw, andb = µw + k.σw. The numberk is chosen so that the variance of the symmetric triangular

distribution described in Equation (27) is the same asσ2
w.

Benchmark Error (SSTA−MC
MC

%) Error (MCGauss−MC

MC
%)

Name # Cells # Grids µ σ 95% Pt 5% Pt µ σ 95% Pt 5% Pt
s27 13 4 0.13% 0.22% 0.13% 0.57% 0.26% 0.54% 0.24% 0.81%

s1196 547 16 0.29% 0.59% 0.97% 0.83% 0.66% 1.22% 1.57% 1.35%
s5378 2958 64 -0.53% -1.32% -1.34% -1.56% 0.93% 2.03% 1.93% 2.05%
s9234 5825 64 0.91% 1.81% 1.29% -1.31% 0.87% 1.95% 2.59% 2.61%
s13207 8260 256 1.77% 2.24% 2.39% 3.03% 2.26% 3.35% 3.55% 3.11%
s15850 10369 256 1.98% 2.51% 3.14% 3.79% 2.89% 3.82% 3.51% 3.09%
s35932 17793 256 1.15% 2.82% 3.78% 3.67% 1.56% 2.56% 4.12% 4.26%
s38584 20705 256 1.71% 3.29% 3.59% 3.87% 2.09% 3.89% 4.22% 4.17%
s38417 23815 256 1.51% 3.68% 3.50% 3.61% 2.05% 4.35% 4.93% 4.88%

Avg Abs Err - - 1.11% 2.05% 2.24% 2.47% 1.51% 2.63% 2.96% 2.93%

TABLE III

A COMPARISON OF RESULTS OF THE PROPOSEDSSTAWITH MONTE CARLO SIMULATION . W PARAMETERS ARE MODELED AS NON-GAUSSIAN

VARIABLES , AND Le PARAMETERS ARE MODELED ASGAUSSIAN VARIABLES.

Table III shows a comparison of the results of the Monte Carlo(MC) simulations with our SSTA procedure for each

benchmark circuit. We compare the mean (µ), the standard deviation (σ), the 95% and the 5% quantile points of the delay
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distribution obtained from our SSTA scheme with those generated from the Monte Carlo simulations, as the metrics of accuracy.

As seen in Table III, the results of the proposed SSTA scheme are quite close to that of Monte Carlo analysis. The average

of the absolute errors, across the nine benchmark circuits,shown in the last row of Table III, is 1.11% forµ, 2.05 % forσ,

2.24% for the 95% point, and 2.47% for the 5% quantile point. We also compare the actual Monte Carlo results with the ones

obtained by incorrectly modeling the non-normalW parameters as Gaussian variables, and then performing a Monte Carlo

analysis, termed asMCGauss. Columns eight to eleven of Table IV report the errors for comparison between the actual Monte

Carlo results, and the ones obtained by Gaussian modeling ofall parameters. As seen in the table, the errors for assuming

an incorrect Gaussian distribution forW parameters,does notresult in significant errors, implying that the circuit delay PDF

does not significantly deviate from a Gaussian distribution. It should be noted that for our gate delay models, the coefficients

of the Le terms are greater than the coefficients of theW terms by a factor of about5× to 12×. Since the sensitivities of the

GaussianLe terms outweigh the sensitivities of the non-GaussianW terms, the circuit delay PDF is dominated by the normal

parameters, and does not significantly diverge a normal distribution.

B. SSTA results for Case 2

For these experiments, we modelLe of gates in each grid as non-Gaussian parameters, andW of gates in each grid as

Gaussian parameters. For the correlated non-GaussianLe parameters, we randomly assign toLe in each grid either a uniform

distribution in [µLe
−
√

3.σLe
, µLe

+
√

3.σLe
], or a symmetric triangular distribution, similar to the onedescribed by Equation

(27), but replacingW by Le.

Benchmark Error (SSTA−MC
MC

%) Error (MCGauss−MC

MC
%)

Name # Cells # Grids µ σ 95% Pt 5% Pt µ σ 95% Pt 5% Pt
s27 13 4 -0.09% -0.34% -0.75% 0.79% 0.56% 3.23% 8.56% 2.04%

s1196 547 16 -0.23% -0.67% -0.87% -0.53% 0.84% 8.82% 11.27% 2.21%
s5378 2958 64 0.31% 1.12% 1.21% 1.28% 0.98% 10.23% 10.91% 1.21%
s9234 5825 64 0.82% 1.78% 1.32% -1.48% 1.88% 15.32% 15.28% -1.83%
s13207 8260 256 1.58% 2.34% -2.54% 2.89% 2.96% 28.13% 18.34% -2.13%
s15850 10369 256 1.85% -2.12% 3.36% 3.61% 2.63% 22.12% 17.62% 3.16%
s35932 17793 256 -1.07% 2.78% 4.01% 3.57% 2.34% 26.71% 19.17% 3.31%
s38584 20705 256 1.65% -3.56% 3.89% 3.91% 2.21% 25.67% 18.28% 2.95%
s38417 23815 256 1.34% 3.78% 3.37% 3.22% 2.81% 34.62% 21.63% 2.51%

Avg Abs Err - - 0.99% 2.05% 2.33% 2.36% 1.91% 19.42% 15.67% 2.37%

TABLE IV

A COMPARISON OF RESULTS OF THE PROPOSEDSSTAWITH MONTE CARLO SIMULATION . Le PARAMETERS ARE MODELED AS NON-GAUSSIAN

VARIABLES , AND W PARAMETERS ARE MODELED ASGAUSSIAN VARIABLES.

Table IV shows a comparison of the results of the Monte Carlo simulations with our SSTA procedure for each benchmark

circuit. As seen in Table IV, the results of the proposed SSTAscheme are quite close to that of Monte Carlo analysis. The

average of the absolute errors, across the nine benchmark circuits, is 0.99% forµ, 2.05 % forσ, 2.33% for the 95% point, and

2.36% for the 5% quantile point. These errors are reasonablysmall as compared to the accuracy penalty paid by assuming the

incorrect normal distribution modeling ofLe parameters. Columns eight to eleven of Table IV show the error incurred when

modeling the non-GaussianLe parameters as normally distributed random variables and performing Monte Carlo simulations,
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termed asMCGauss, for each benchmark circuit. For instance, for the largest benchmark circuit s38417, when assuming that

the non-GaussianLe parameters follow Gaussian distributions, the error observed is 2.81% forµ, 34.62% forσ, 21.63 % for

the 95% point and 2.51% for the 5% point. Unlike, the results in Section XI-A, modeling the non-GaussianLe parameters

as normally distributed ones, leads to significant inaccuracy in the circuit delay PDF. Due to the fact that the sensitivities of

the non-GaussianLe terms outweigh the sensitivities of the GaussianW terms, the correlated non-Gaussian parameters have

a dominating effect on the circuit delay distribution, causing it to significantly aberrate from a normal distribution.

Benchmark CPU Time (sec)
Name # Cells # Grids SSTAGauss [8] SSTA MC
s27 13 4 0.0 1.1 6.0

s1196 547 16 1.2 8.3 634.2
s5378 2958 64 17.1 41.6 3214.4
s9234 5825 64 20.3 137.9 4756.6
s13207 8260 256 108.6 303.6 8532.1
s15850 10369 256 110.8 410.8 9587.8
s35932 17793 256 315.2 761.4 10156.5
s38584 20705 256 322.4 910.6 18903.3
s38417 23815 256 377.3 1235.6 22398.5

TABLE V

A RUNTIME COMPARISON THE PROPOSEDSSTAWITH GAUSSIAN SSTAAND MONTE CARLO SIMULATION

Table V compares the runtime performance of our proposed SSTA algorithm with that of a Gaussian SSTA procedure [8],

and the Monte Carlo simulations. As expected, our SSTA procedure is considerably faster than the Monte Carlo simulations,

but has a higher runtime cost as compared to a Gaussian SSTA [8], due to the additional feature of handling non-Gaussian

variables. On an average our procedure is33× faster than Monte Carlo method, but about3× slower than the Gaussian SSTA

algorithm. Our approach can handle a large number of correlated and independent non-Gaussian parameters. The number of

grids chosen for each benchmark circuit, shown in the third column of Table V, is equal to the number of correlated Gaussian

and non-Gaussian variables. The number of independent non-Gaussian variables is the same as the number of cells in a

circuit. For instance, the SSTA procedure for the circuit s13207 processes 256 correlated Gaussian variables, 256 correlated

non-Gaussian variables, and 8260 independent non-Gaussian variables in about 5 mins of online runtime. Thus, our procedure

scales well with the number of non-Gaussian parameters. Theruntime reported in Table V does not include the time spent for

the preprocessing steps of Sections VI and VII, which are carried out only once for a process and a given discretization. For

the largest benchmark s38417, the preprocessing time takento generate the ICA matrixA, and to compute the moments of

the independent components is 3.5 hours.

In Figures 8 and 9, the PDF and CDF plots for the benchmark circuits s13207 and s38417 are provided. As seen in the

figures, the PDF and the CDF as predicted by the proposed SSTA scheme matches well with the Monte Carlo PDF and CDF.

The dashed curves in Figures 8 and 9, represent the case when theLe parameters are incorrectly modeled as Gaussian variables

with the sameµLe
andσLe

as the original non-Gaussian parameters. The plots in thesefigures show that in the presence of

correlated non-Gaussian parameters, the real circuit delay distribution deviates significantly from the one obtainedby assuming
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Fig. 8. A comparison of SSTA and Monte Carlo distribution forcircuit s13207.
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Fig. 9. A comparison of the results of SSTA and Monte Carlo forcircuit s38417.

normality for parameters. The distribution functions evaluated by SSTA approach are able to match, within reasonably small

errors, the real distribution functions.
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XIII. C ONCLUSION

In this paper, we present a novel and an efficient statisticaltiming analysis algorithm that incorporates correlated parameters,

both Gaussian and non-Gaussian. Our approach is based on PDFevaluation by matching the moments of the delay variables.

We use the independent component analysis technique in our SSTA framework to handle correlations between the non-Gaussian
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parameters. A time complexity analysis of our procedure shows that it is linear in the number of grids and the number of gates

in the circuit. Hence, our scheme provides a scalable solution to the problem of performing SSTA in the presence of a large

number of correlated non-Gaussian parameters. Experimental results validate our hypothesis that performing a Gaussian SSTA,

in the presence of dominating non-Gaussian parameters of variation, could result in significant inaccuracies in estimating the

PDF and CDF of the circuit delay. Our proposed SSTA procedureis able to match the real PDF and CDF of the delay much

more closely, and produces the delay distributions with reasonably small errors compared to the Monte Carlo distributions,

and is much faster than the Monte Carlo analysis.
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