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Abstract

We propose a scalable and efficient parameterized bloatdbstatistical static timing analysis (SSTA) algorithmdrmorating
both Gaussian and non-Gaussian parameter distributiapgjring spatial correlations using a grid-based modeh peprocessing
step, we employ independent component analysis to transfioe set of correlated non-Gaussian parameters to a bdsig se
parameters that are statistically independent, and pahcomponents analysis to orthogonalize the Gaussiamgdeas. Given the
moments of the variational parameters, we use a Padé appation-based moment matching scheme to generate thédigins
of the random variables representing the signal arrivaésimand preserve correlation information by propagatimyartimes
in a canonical form. Our experiments reveal that for the €asden the sensitivities of Gaussian parameters outwdighdf
the non-Gaussian parameters, a Gaussian SSTA proves tadmably accurate. However, for the cases when the nonsiaaus
parameter sensitivities dominate the Gaussians, modellnqgarameters as normal leads to significant inaccuracigee SSTA
results. For both cases, our SSTA procedure is able to gentita circuit delay distributions with reasonably smakdiction
errors. For the ISCAS89 benchmark circuits, as compareddot®Carlo simulations, we obtain average errors of 0.999§5%,
2.33% and 2.36%, respectively, in the mean, standard davjei% and 95% quantile points of the circuit delay. Experital
results show that our procedure can handle as many as 258ated non-Gaussian variables in about 5 minutes of run tfoe

a circuit with |G| gates and a layout with spatial correlation grids, the complexity of our approasi®{g|G|).

I. INTRODUCTION

As transistor and interconnect geometries shrink, the aedidevel of control over the chip fabrication process rssin
significant levels of variation in process parameters ssdhe effective channel length, gate width, gate oxide tigsk, dopant
concentration, and interlayer dielectric thickness. Eheariations create randomness in the behavior of cirevitlelectrical
parameters, such as gate and interconnect capacitareesistor on-resistances, threshold voltages and viataesss. The
prediction of chip timing characteristics in the face ofda@rocess-driven random parameter uncertainties remaimallenging

problem.



Traditionally, to safeguard against this variability, atit timing analysis (STA) procedure is employed at différprocess
corners, and margins are introduced in the design basedeoSTA results. This worst case design, corresponding to the
process corners, where the gate and wire delays are at tkteéme levels, ensures that the design would work for any
other values of gate and interconnect delays. However, initheasing levels of variations, corner-based method heso
impractical and computationally expensive. The numberrotess corners that must be considered grows exponeragtlye
number of uncertain parameters increase. Moreover, theectrased method does not utilize any statistical infolonagbout
the variations of parameters, such as the correlationsdasivthe process variables arising from the spatial proyiofithe
manufactured transistors on chip, or from the structurapprties of the circuit such as path reconvergences, anceheam
result in overly pessimistic and suboptimal designs. Tisalte of variation-aware timing are eventually requirecb®oused
for a circuit optimization tool. Since, the multi-corneaded methodology produces overly pessimistic estimates adfcuit
timing characteristics, any optimization tool using thessults could lead to a design employing much more resouhzes
necessary. This may adversely impact the other performameasures of the circuit, such as the circuit power.

As a result, the field of statistical static timing analys&STA) has recently become an active area of research. An SSTA
procedure aims at efficiently predicting the probabilitgtdbution function (PDF) and the cumulative distributiumction
(CDF) of the delay. In other words, SSTA evaluates the sizgisdistributions of the delay from the statistical infoaition
of sources of variation. A computationally efficient SSTA@lithm facilitates the easy prediction of timing yield,dacan be
used within an optimization engine to robustly optimize tireuit in the presence of parameter variations.

Existing SSTA algorithms have many flavors: they may be matbed or block-based; they may assume Gaussian or non-
Gaussian distributions; they may be parameterized in espre all delay variables in terms of underlying parameiersot; they
may incorporate spatial correlations due to physical pnityi or not; and so on. In [1], the authors provide a non-patamzed
method to perform SSTA in a block-based manner. This methdzhsed on performing statistical operations of the assumed
independent arrival time and random variables, by piealinear modeling of CDF of variables. The authors of [2]genet
another non-parameterized SSTA procedure to estimateotingdls on the circuit delay PDF and CDF. In contrast, paraizetd
methods for SSTA provide a convenient framework for analyzihe relationship between the statistical informatiorthef
sources of variation to that of the circuit delay distribas, and are more useful in practice. A parameterized mddel a
enables efficient computation of the statistical sensigigiof the circuit delay with respect to the varying parame{3]-[5].

Practical parameterized SSTA algorithms are block-basethture, i.e., they propagate the distributions of theyd&lam
the primary inputs to the primary outputs of a circuit usind®’BRT-like (Program Evaluation and Review Technique) [6]
traversal of the circuit graph. One of the exceptions is &+baised SSTA method proposed in [7]. In this work, the agthor
provide a simple procedure to perform statistical timinglgsis using a path-based scheme, as a post-processingiep
identifying a sufficiently large number of critical paths &yleterministic STA. The parameterized block-based SSgérahms
[8]-[12] provide efficient methods for performing statisti timing analysis, under the assumption of normality afapzeter
distributions. In [8], a novel SSTA procedure is proposedapproximating all delay and arrival time random variablss a

linear functions of correlated parameters. By assuming te& random vector, comprising of the parameters of vaiati



has all its components following a Gaussian distributiopyriacipal component analysis (PCA) transformation teghas is
employed to generate another random vector comprising miponents which are statistically independent Gaussiadoran
variables. A similar work [9] assumes Gaussian modelingabmeters and linear delay representation to perform exftici
SSTA. Both these works, [8] and [9], use Clark’s closed-fdormulae [13] to approximate the maximum of two Gaussian
random variables as another Gaussian random variable.Uthera of [10] also propose a linear Gaussian SSTA procdulure
simplifying the computations involving a set of correlateamal variables, using the PCA method. The algorithmsepriesi

in [11] and [12] provide techniques for performing SSTA wgiquadratic delay models of Gaussian parameters.

For all of the abovementioned Gaussian SSTA algorithmsassamption of normality of process variations lends itsstier
well for generating closed-form expressions for the delay arrival time PDFs. Although correlation and statistidapendence
between random variables tends to increase the compleh@$ A, recent work has presented efficient techniques fodlirag
such correlations under Gaussian distributions, using RCperform a simple variable transformation. This transfation
enables efficient SSTA, representing delays and arrivagias functions of a new set of orthogonal, statisticallyepeahdent
Gaussian random variables.

However, the normality assumption is not always valid [1lad it is well known that some process parameters deviate
significantly from a Gaussian distribution. For example, résistances exhibit an asymmetric probability distrdruf15], and
the dopant concentration density is also observed to bemadleled by a Poisson distribution: a normality assumpti@y m
lead to significant sources of errors in SSTA. Some recenksvit5], [16] propose SSTA methods that do away with the
assumptions of normality for the parameter distributidng, to the best of our knowledge, no prior approach is scalédbl
handle large number of non-Gaussian parameters, or hasnpedsan efficient SSTA solution under correlated non-Ganss
parameter distributions. In [15], the solution to tacklecomelated non-Gaussian parameters employs a numertegration
technique. However, the method of humerical integratiohigher dimensions has an exponential computational codtyple
with respect to the number of non-Gaussian parameters., Thesmethod can efficiently handle only a few non-Gaussian
sources of variation, and the runtime does not scale well wie number of such sources. The SSTA framework of [16] is
general enough to consider both Gaussian and non-Gaussiameters of variations, as long as the non-Gaussian ptaame
are uncorrelated. However, the technique relies on a reigrestrategy that requires a Monte Carlo simulation in theer
loop of the SSTA procedure. Such a technique is unlikely tdeswell for large circuits with numerous sources of vadas.

From the discussion of the existing SSTA methods in thisi@ecthe procedures can be broadly classified into the fatigw
four categories:

1) Linear, Gaussian SSTAlhese methods employ a linear delay representation ananassarmality of parameter dis-
tributions. Some examples of the techniques that offer &niexft and an accurate solution within this class of SSTA
algorithms are [7]-[10].

2) Nonlinear, Gaussian SSTAhese SSTA algorithms use a nonlinear delay model, in péatica quadratic representation
of all gate delay and arrival time variables, but still assuimat all parameters as Gaussians. The works of [11] and [12]

fall into this category of SSTA methods.



3) Linear, non-Gaussian SSTAhis class of SSTA procedures consists of techniques thaavery with the Gaussian

assumption for all parameters, but still employ a first omdiglay model. Our SSTA method, presented in this paper, is

the only efficient and scalable known work for this class goaithms.

4) Nonlinear, non-Gaussian SSTAhese SSTA methods are a superset of the other three classkespver the most general

case for performing statistical timing analysis. Such S$fécedures not only use a general nonlinear delay modsl, the

also allow the parameters to be non-normally distributdte methods of [15] and [16] are two such examples of these

general SSTA algorithms. However, as mentioned beforegtherks rely on computationally expensive techniques, and

are not scalable to a large number of variables. In fact, #verapplication of these methods to a simpler case of linear

representation (the subset of class 3 SSTA methods, asiltEs@above) is just as inefficient. Thus, the quest for an

efficient SSTA technique for a nonlinear delay form that unlels non-Gaussian parameters of distribution, remains an

unsolved research problem.

In this paper, we propose an efficient algorithm to perforninadr, non-Gaussian SSTA. To the best of our knowledge,

this is the only work that can handle a large number of Ganssm non-Gaussian process parameters with correlatitves. T
correlations are described using a grid structure, sintdahat used in [8], but also incorporates non-Gaussiamilligions.
For a circuit with |G| gates and a layout with spatial correlation grids, the complexity of our approe&i®ig|G|), similar

to the Gaussian case in [8]. An early version of our work apgeban [17].

Il. OUTLINE OF THE SSTA PRROCEDURE

The main steps in our SSTA algorithm are:

1) Preprocessing to obtain an independent set of basis variables: We employ a technique known as independent

component analysis (ICA) [18]-[21] aspaeprocessing stepvith the goal of transforming the random vector of corredhat

non-Gaussian components to a random vector whose comsaarengtatistically independent. We then compute moments

of the independent components from the moments of the narsgkn parameters. We orthogonalize the Gaussian

parameters separately, performing PCA as in [8]. Togethenefer to this set of independent variables askihsis set

2) Moment matching-based PDF evaluation: Next, we represent the gate delays as a linear canonicatidunof the

basis set. From the moments of the basis set, we compute thenti® of the gate delay variables. Finally, we translate

the moments into an approximating PDF for the delay varighlsing a Padé approximation-based moment matching

scheme, as proposed in [22].
3) Correlation-preserving statistical operations. We process the circuit in a block-based manner, in topokdgicder,
computing the statistical sum and max operations at evepytstcompute the extracted PDFs of the arrival time vargable

These variables are stored in terms of the linear canoniced through a moment-matching procedure.

During our exposition of our procedure, it will become amplgar that the approach borrows some techniques from devera

existing algorithms from the literature. However, it is iortant to note that the overall algorithm is distinctly @ifént from

any existing method.



The rest of this paper is organized as follows. Section lgadibes the method of generating moments of the varying
process parameters from the process data. These momenisemtaas inputs to our SSTA procedure. Section IV explains
the effect on non-Gaussian parameters on the SSTA resuitslifiear delay model employed, to represent the gate delay
and arrival time expressions, is presented in Section Vepeddent component analysis and its applicability to ouFASS
algorithm is described in Section VI. Section VIl explaihg tmethod to derive the moments of the independent companent
The moment matching-based PDF evaluation scheme is didohéa Section VIIl. The computations of statistical “sum”
and “max” operations are presented in Section IX. SectionoKtains the time complexity analysis of the proposed SSTA

algorithm. Experimental results are presented in SectibraXd Section XllI concludes this paper.

IIl. GENERATING MOMENTS FROMPROCESSDATA
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([1b,ub) nm) | Pr(L. = Ztke) € 4)
[4.0.-3.0) 0.000
[3.0,-2.6) 0.000
2.6,2.3) 0.006
2.3,-1.9) 0.022
1.9,-1.5) 0.072
[15-12) 0.092 014
[[1.2,-0.8) 0.128
[0.8,-0.4) 0.106 0.12 7&[&[‘
[(0.4,-0.1) 0.120
[-0.1,0.3) 0.108 s, 0-10¢
[0.3,0.7) 0.122 =
[0.7,1.0) 0.110 3 008
[1.1,1.9) 0.070 8
[1.4,1.8) 0.036 @ 0.06f
18,2.2) 0.002
2.2,2.5) 0.002 0.04}
25,2.9) 0.004
[2.9,3.3) 0.000 0.02
[3.3,3.6) 0.000 \
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A CUMULATIVE FREQUENCY TABLE FOR500RANDOMLY GENERATED
VALUES OF Le WITH pur,, = 65 nm AND o, = 5.2 nm.
Fig. 1. A frequency histogram of thB. values listed in Table I.

It is important to note that our algorithm requires mininmgbut information: rather than relying on closed-form disition
of variational parameters, the knowledge of their momensufficient for our scheme to generate the circuit delayidigion.
This is a desirable property for an SSTA method, as it is glpiddifficult to extract precise distributions from prosedata,
and it is more realistic to obtain the moments of the parame&tgations from a process engineer. For instance, given th
measurements of a particular parameteacrossN chips, k" moment ofX, denoted byn(x), wherex represents a sample
point, can be easily computed as,(z) = Y., ¥ Pr(X = x). The probabilityPr(X = z) can be calculated by binniRgll
the measured values df in some small discrete interval®, ub), and then dividing the frequency of values in each bin by

For simplicity, we ignore the intra-die variation for parater X in this discussion.
2Binning sample points in intervals simplifies the computatby reducing the dimensionality of total number of sampings. Alternatively, it is also
possible to use the raw process data to compute the momemssigning a discrete probabilitf?r(X = z), to each sample point.



the total number of samples. This process is much easier than trying to fit an accuratgedidorm PDF expression for the

measured values of paramet€racross allN sample points, given by the value &f in each of theN chips.

k mig (Le)
1 0.0000
2 1.0000
3 0.0384
4 2.2733
5 0.6174
6 7.9839
7 6.2385
8 39.3220 = o4 ‘ ‘ ‘ f-"’o ‘ ;Actua; PDF
9 56.2410 % 035/ PDFby figting/’;‘ PDF by
10 245.0898 c a Gaussian § —+—moment
> R matching
11 485.8118 L 03y . e Gaussian fit| |
12 | 1.7515 x 103 2 Actual PDF
13| 4.1178 x 10° g %
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A TABLE SHOWING THE FIRST TWENTY MOMENTS OFL, VALUES LISTED ‘
IN TABLE I.

Fig. 2. PDF ofL, values listed in Table I.

To understand the moment generation process, considersvafithe effective channel length ) as shown in Table I. The
table contains 500 randomly generated valued.ofwith a mean of65 nm, and a standard deviation 6f2 nm. TheseL.
values can be thought of as measurements adkoss 500 chips, similar to the ones expected to be extracted fromehé r
wafer data. Table | is the cumulative frequency table forzém-mean, unit-variance variahle values, derived by subtracting
from L. values, the sample meap), and scaling the result by the reciprocal of the sampledstahdeviation 1, ). The
probabilities of occurrence of the random varialile in each discrete interval or bin in the ranfe4, 4], shown in column
one of Table I, is computed by simply dividing the frequendyZq in the particular bin by the total number of measured
points, in this caséV = 500. Figure 1, depicts the frequency histogram of fhevalues listed in Table I. The solid dark line
in Figure 1, corresponds to the PDBf L.. As seen in the figure, it is extremely difficult to fit a clostetm expression that
would closely match this PDF.

However, the moments of the, values can be easily computed by using the relatmyg(l;) = Zl; l;kPr(ﬁe = l;),
where the values oPr(Ee = l;) are shown in the second column of Table I. The first twenty suoments are listed in
Table Il. The only inputs required by our SSTA procedure hes¢ moments of the varying parameters. As will be explained
in Section VIII, using the moments as input, the moment matghased PDF evaluation method can generate closed-form

31t is trivial to derive the PDF ofL. from the PDF ofL., as will be discussed in Section VIII.



PDF expressions. Figure 2 shows the actual PDE gfthe PDF corresponding to fitting a Gaussian distributiothdata of
Table I, and the PDF obtained by using the moment matchisgéd®DF evaluation scheme. As seen from the figure, using

the moments information, it is possible to derive the PDR pfthat matches closely with the actual PDF.

IV. NON-GAUSSIANITY IN SSTA

The circuit delay distribution depends on a number of patarsesuch as the effective channel length, transistor width
metal thickness, interlayer dielectric thickness, dop#etsity, and the oxide thickness. As pointed out in Sectjomot all
parameters of variations can be accurately modeled by aallyraiistributed random variable. Moreover, these non<3&n
parameters may be correlated to each other due to the effgpatial proximity. As a result, the approximation of paeders
as normal distributions, followed by performing a Gauss&8iTA, may lead to significant inaccuracies in the PDF and CDF

of the circuit delay.

7 o o7’

1 2 1

Fig. 3. A simple circuit example to illustrate the effect @mGaussian parameters on the PDF of the circuit delay.

To illustrate the effect of such non-Gaussian parametertherdelay distribution, we use a toy circuit, shown in Figure
3. We assuméV; and L., for each inverteri to be the random parameters of variation. Using a first ordsfiof series

approximation, the delay of this circuit can be written as:
D = p+ar.Wi+axWse+ bl-Lel + b2.Le2 (1)

whereas, as, by, andby are the sensitivities of the delay with respect to the zeeamrandomly varying parametdig,, s,
L.,, and L.,, respectively, angi is the nominal delay of the circuit. Next, we perform a simplente Carlo simulation to
evaluate the PDF of the circuit by considering the followfogr scenarios:

Case 1. {W,, W,} are modeled as uniformly distributed random variablels-i/3oyy, v3ow], and{L.,, L., } are assumed to
be Gaussian random variables with a normal distribufi{0, o1, ). Furthermore, all parameters are assumed to be statigtical
independent with respect to each other. Figure 4(a) ibibssrthe PDF of the circuit delay for this case.

Case 2: Employing the same model for the distributionsidf and L. parameters as above (Case 1), but assumingithat
perfectly correlated witi,, and L., is perfectly correlated wittL.,. The circuit delay PDF for this case is shown in Figure
4(b).

Case3: {L.,, L., } are modeled as uniformly distributed random variablels-ig/30z, , /301, ], and{W;, W, } are assumed to
be Gaussian random variables with a normal distribufit(, o). Furthermore, all parameters are assumed to be statfigtical
independent with respect to each other. Figure 5(a) shoaw®BF of the circuit delay for this case.

Case 4: Employing the same model for the distributions1éf and L. parameters as above (Case 3), but assuminglihat



is perfectly correlated wittW,, and L., is perfectly correlated witt..,. The circuit delay PDF for this case is illustrated in

Figure 5(b).

The dashed curve in Figures 4 and 5, show the actual PDF ofitheitcdelay obtained by performing a Monte Carlo
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simulation, and correctly modeling” (for Cases 1 and 2) and. (for Cases 3 and 4) parameters, as uniformly distributed

random variables, while the solid curve is the PDF obtairfeithe non-Gaussian variables were also modeled as Gaussian

variables with the same mean and standard deviation as if@mly distributed variables. Figures 4(a) and 5(a) shtw t

PDFs for the cases where all of the parameters are consittete statistically independent with respect to each othikile

Figures 4(b) and 5(b) show the PDFs whin is considered to perfectly correlated with’z, and L., is assumed to be

perfectly correlated witlL.,. In each case, it is seen that the circuit delay PDF deviates & Gaussian distribution due to



the presence of the non-Gaussian random variables. Howteeedeviation from a normal distribution is most signifitam

Figure 5(b). The following two reasons explain this sigmifit non-Gaussian behavior of the circuit delay PDF:

1) The delay model used for the circuit of Figure 5 in theseeeixpents, given by Equation (1), contains terbpsand b,
corresponding to the sensitivities 6f, and L.,, that outweigh the terms; andas, corresponding to the sensitivities
of Wy and Ws. In particular,|b1| = 5.2|a;|, and |bz| = 9.8]as|. Therefore, for the experiments for Cases 1 and 2,
corresponding to the PDF curves of Figures 4(a) and 4(b)effeet of the Gaussian parametdis,,, L.,} dominates
the effect of the non-Gaussian parametfliig;, W>}, and the circuit delay PDF does not significantly aberratenfia
normal distribution.

For the experiment for Case 4, corresponding to the PDF cuanfégure 5(b),{L.,, L., } are modeled as uniformly
distributed variables, therefore in this case, the nonsGian parameters dominate the normally distribt8a , W5}
parameters, and the circuit delay PDF shows significantrgiérece from a Gaussian one.

2) For both Cases 3 and 4L.,, L., } are modeled as non-Gaussian variables. However the Monte BBF for Case 3,
shown in Figure 5(a), assumes statistical independencarafeters. This PDF has a much closer match to a Gaussian
distribution, compared to the one shown in Figure 5(b), #ssumes perfect correlation betwé&n [L.,] and W5 [L.,]
parameters. The intuition for the significant change fromoenmral PDF, for the correlated case, can be arrived at by
appealing to the Central Limit Theorem, according to whisl addition of independent variables makes them “more
Gaussian,” but this is not necessarily true for correlatatiom variables.

For real circuits, where many parameters are correlatedaltiee presence of the inherent spatial and structural letioes,
the presence of non-Gaussian parameters, the sensitigfti@hich could potentially outweigh the Gaussian ones ligsghat

the circuit delay may deviate significantly from a normaltdigition.

V. DELAY REPRESENTATION

To incorporate the effects of both Gaussian and non-Gaupsia@ameters of distribution in our SSTA framework, we repra
all delay and arrival times in a linear form as:
n m
D=p+> bizi+ Y ciyj+ez=p+B'X+CTY +ez )
i=1 j=1
whereD is the random variable corresponding to a gate delay or @arahtime at the input port of a gate, is a non-Gaussian
random variable corresponding to a physical parameteatiani, b; is the first order sensitivity of the delay with respect to the
i*h non-Gaussian parameter, is a parameter variation modeled as a Gaussian random kawalis the linear sensitivity with
respect to the't" Gaussian parameter,is the uncorrelated parameter which may be a Gaussian or 4aassian random
variable,e is the sensitivity with respect the uncorrelated variablés the number of correlated non-Gaussian variables, and
m is the number of correlated Gaussian variables. In the vdéotm, B and C are the sensitivity vectors faX, the random
vector of non-Gaussian parameter variations, andhe random vector of Gaussian random variables, resgéctMote that

we assume statistical independence between the GausglanoanGaussian parameters: this is a reasonable assungstion



parameters with dissimilar distributions are likely to megent different types of variables, and are unlikely to beatated.

The value of the mean delgy is adjusted so that the random vectd{sandY are centered, i.e., each compongpiand
y; IS a zero-mean random variable. The uncorrelated randomablar: is also centered. Note that in the representation of
Equation (2), the random variables are correlated with each other and may be of any underlyimy@aussian distribution.
Unlike the delay models of [8], [9], we do not constraint thergmeter distributions to be Gaussian. The canonical mafdel
equation (2) is similar to the model of [15] without the nowar terms. The slight difference is that the uncorrelatrdipeter

z is not constrained to be a Gaussian variable.

V1. INDEPENDENTCOMPONENTANALYSIS

For reasons of computational and conceptual simplicitis ilseful to work with a set of statistically independentdam
variables in the SSTA framework. If the components of rand@ttor X were correlated Gaussian random variables with a
covariance matri®y ., a PCA transformatiolR = P, X would yield a random vectaR comprising of Gaussian uncorrelated
random variables [8]. Since for a Gaussian distributiorganrelatedness implies statistical independénitee components of
R are also statistically independent.

However, such a property does not hold for general non-Gaughistributions. In Equation (2), the random veckr
consists of correlated non-Gaussian random variablesaaR@A transformationS = P, X, would not guarantee statistical
independence for the components of the transformed vB&ctBince the PCA technique focuses only on second ordertatstis
it can only ensure uncorrelatedness, and not the much straequirement of statistical independence.

Independent component analysis [18]-[21] is a mathenatiédnique that precisely accomplishes the desired goal of
transforming a set of non-Gaussian correlated randomhblasgdo a set of random variables that are statistically dsgandent
as possible, via a linear transformation. ICA has been aveaatea of research in the area of signal processing, featdraction

and neural networks due to its ability to capture the esskstiiucture of data in many applications.

A. The Cocktail Party Problem

The ICA principle can be explained by tlvecktail party problenmexample illustrated in Figure 6. The set up shown in the
figure, consists of speakers, who can be regarded as independent sourcesreceivers, represented by the ears in Figure 6.
The speakers or the independent sources emit indepenciudtspignals, but their simultaneous speech results irfenémces
of the independent signals. As shown in Figure 6, due to ttexference or mixing of the independent speech signals, the
signals observed by the receivers are no longer indepentleatamount of mixing of the independent speech signals reay b
derived form elements of a mixing matri#, which could depend on metrics such as the distance of eadkspfrom the
receiver. Mapping the cocktail party problem set up backh® IICA problem, the ICA set up consists of having a ve&or
consisting ofn statistically independent components, - - -, s,,, and observations of linear mixturesx,, - -, z,, of then

4Two random variablesy andY are uncorrelated i£[XY] = E[X]E[Y], while they are independent E[f(X)g(Y)] = E[f(X)]E[g(Y)] for any
functions f and g. For instance, ifX andY are independent, theR[X*'Y 7] = E[X*]|E[Y”]. For Gaussian distributions, uncorrelatedness is idante
independence. For a general non-Gaussian distributiolependence implies uncorrelatedness, but not vice versa.

10



Mixing matrix A

(77 @

€
17
§3 Q (@ X3

n sources, m=n observations

X

X,

Sources
Observed signals

Fig. 6. The cocktail party problem to illustrate the indegemt component analysis set up.

independent components. The observed components can lighthaf as the correlated non-Gaussian random variaXlés

Equation (2), produced by a linear mixing of the elements wéetor S of independent random variables, as follows:

X = AS €))

where A is then x n mixing matrix
The problem of ICA is to estimate the elements of the unknovxing matrix A, and the samples of statistically independent
componentssy, - - -, s,, as accurately as possible, given only the samples of theredd vectorX. Equation (3) can be

alternatively written as:

S WX where

8i

WX =37 wyz; YVi=1,---,n (4)

In the above equatior} is the inverse of the unknown mixing matrik. Algorithms for ICA estimate the vecto’®; that
maximize the non-Gaussianity &' X by solving a nonlinear optimization problem. Typical me@suof non-Gaussianity
are kurtosis, negentropy, and mutual information; for a pm@hensive reference on ICA, see [18]-[21].

For our SSTA algorithm, we use ICA as a preprocessing stepattsform the correlated set of non-Gaussian random
variablesz;, - - -, x,, to a set of statistically independent variablgs: - -, s,,, by the relationS = WX of Equation (4). In
practice, ICA estimates the mixing matrix and its inverse matriX¥/’, which yield the components,, -- -, s,, which are
statistically as independent as possible. For the purpafsggplication of ICA transformation in our SSTA algorithme will
consider the vectoB to consist of truly statistically independent componemsperimental results, presented in Section XI,

validate this assumption.
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Like principal components, the independent componentseofor S are mathematical abstractions that cannot be directly
observed. Similar to the PCA procedure, which requires adimation of N, o) variables to N(0,1) variables, the ICA methods
also require centering and whitening of the components ofoveX, i.e., prescaling the variables to have zero mean and unit
variance [20]. For a specific grid, the independent comptsnehthe non-Gaussian random variables must be computed jus
once, and this can be carried out as a precharacterizaéipnistother words, ICA need not be recomputed for differécuits
or different placements of a circuithus, the ICA preprocessing step does not impact the rundiniee SSTA procedure.

One of the requirements of the ICA technique is that all of dhiginal source of independent sources,- - -, s, should
be non-Gaussian. Therefore, in the delay model of Equaprmie must treat the correlated non-Gaussian random Vesiab
X, and the correlated Gaussian random variaBfesseparately. The ICA technique is applied to non-Gaussaameters
X, and a PCA transformation is applied to Gaussian varialWleso obtain a set of statistically independent non-Gaussian
variablesS, and a set of independent Gaussian varialledVe then substitute the respective transformation matutcand

P, in Equation (2) to arrive at the followinganonical delay model

D = p+BTS+CTR+ez

u—l—Zbg.si—i—Zc}.rj +e.z (5)
i=1 j=1

whereB'T = BT A, [C'T = CT P 1] is the new sensitivity vector with respect to the stataticindependent non-Gaussian
y y p p

componentssy, - - -, s, [Gaussian principal components, - - -, 7,,].

B. Generating Samples of Correlated Non-Gaussian Varg@able

Algorithm 1 Generate Correlated Non-Gaussian Samples
1: [*Inputs: Correlation matrix) (n x n), mean vectopx (n x 1), CDF of z; parametetF;(z;),Vj =1,---,n*/
: *Output: Matrix Corr(NUM_SAMPLES x n) as samples of correlated non-Gaussian variables*/
: [*Stepl : Generate samples of multivariate normal distidsuN (u, Q)*/
1=1,;
: while (i < NUM_SAMPLES) do
Z(@)=mvnrnd(u, Q);
i=i+1;
. end while
: I*Step2: Map the multivariate normal samples to a multetiuniform samples in [0,1]*/
: U=normcdf(2);
: [*Step3: Apply inverse CDF transformation to samples inheaglumn of U*/
i
: while ( < n) do
Corr(j)=FJ71(U);
J=i+l,
: end while

© O N O U ®WN

[
o hwWNPRO

The ICA method requires, as inputs, the samples of the ateelnon-Gaussian parameters. If these samples are readily
available from the process data, they can be directly peal/td the ICA module to generate the estimates of the mixinigixna

A, and the samples of the independent components; -, s,,. However, if instead of the samples of correlated pararagtiee
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closed-form PDFs of the non-Gaussian sources of variatiepvided, we must first generate samples of the paranfebens
the given PDF expressiohsTo model the correlation between the non-normal parameter- - -, z,,, the chip area is first
tiled into a grid, as in [8], and the correlation matr@}, associated witfX is determined. The matrig and the mean vector
ux is used to generate the samples of the correlated non-@aussgiables by employing the method of normal copulas [23].
Algorithm 1 shows the pseudo-code of this method, which seldaon performing a series of correlation preserving tanss

on a set of random numbers.

The procedure consists of three main steps. In the first stggnning lines 4-8, samples from a multivariate normal
distribution, N (ux, @), are generated. As will become clear in the next steps, tees®f Gaussian random numbers are
used to generate the required non-normal numbers havingaa mextoru,, and the correlation matrig). The function call
mvnrnd generates these samples. In the next step, shown on lineel@ptmal samples are mapped to a multivariate uniform
distribution in the range [0,1]. The transformation funathor medf is simply the CDF of the standard normal distribution. The
following relations prove that for a single standard normeaidom variable/, with a CDF denoted by, (y), a transformation

u = F,(y) results in a uniformly distributed variablein the range [0,1].

Fu(uo) = Pr(u < ug) = Pr(F,(y) < u,) = Pr(y < Fy *(uo)) = F,(F; " (uo)) = uo (6)

Thus, the CDF of u i, (ug) = uo, which is same as the CDF of a uniformly distributed randomatée in the range [0,1].

In our case,Z comprises of samples of multivariate normal distributidhus, each component of random vector associated
with Z, has a marginal distribution of a standard normal. Theggftre function mappind/ = normecdf(Z), maps each
normally distributed component of the random vector asdedi with Z, into a uniformly distributed variable in the range
[0,1]. The statistical dependence between the generategles still remains after the transformation. The subreasifor
generating samples of multivariate normal distributiomvrnd( )), and the CDF of normal distributiom¢rmcdf( )) are
commonly available in standard mathematical software pgeg, such as [24] and [25].

The last step in Algorithm 1, shown in lines 12—-16, consigtgansforming the multivariate uniform samplesiinto the
individual non-Gaussian marginal distributions. The sfanmation function ist_l, which is the inverse of the CDF of the
4" non-Gaussian random variable. For example, if ffenon-Gaussian parametes is uniformly distributed in the range
[1b, ub], Fj_l(x) = lb+ (ub—1Ib)z. It is easy to prove that mapping uniformly distributed ramdnumbers on interval [0,1], by
a function which is an inverse CDF~!(x) of a particular distribution, produces random numbers tviiave a distribution
as given by CDFF'(x) [26]. Since samples in each column of the matiixare mapped by the required inverse CDF function
Fj‘l, the correlation structure between the columndJjofs preserved after the transformation. The output of therélgn
produces a matrixCorr, with NUM_SAMPLES rows andn columns. Each column of this matrix contains samples of a
non-Gaussian parameter drawn from the required distabuffhe columns are correlated with each other accordingeo t
original linear correlation matrix), and their sample mean is the same as the original mean vegtor

5As will be explained in Section XI, we use the method of getiegacorrelated non-Gaussian random numbers, describtisisection, for our experimental
set up that assumes, as inputs, well-known closed-form AH&Hfsarameterscy, -« -, zy.

13



Following the steps described in Algorithm 1, we generataas of correlated non-Gaussian parameters. These sample

are required as input to the ICA methods, which generate@ettansformation matrix4 in Equation (3).

VIl. PREPROCESSING TAEVALUATE THE MOMENTS OF THEINDEPENDENTCOMPONENTS

The inputs required for our SSTA technique correspond tontleenents of parameters of variation. Consider a process
parameter represented by a random variabidet us denote it&'" moment bym,(z;) = E[z¥]. We consider three possible
cases:

Case |: If the closed-form of the distribution of; is available, and it is of a standard form (e.g., Poisson dfotm), then
my(x;) V k can be derived from the standard mathematical tables oé tistributions.

Case Il: If the distribution is not in a standard form, them,(z;) V £k may be derived from the moment generating function
(MGF), if a continuous closed-form PDF of the parameter ievin. If the PDF ofz; is the functionf,,(z;), then its moment

generating functionV/(¢) is given by

M) = Bl = / ¢ £, (21 da )
The k" moment ofz; can then be calculated as th&' order derivative ofM/ (¢) with respect ta, evaluated at = 0. Thus,
mi(x;) = dk%c(t) att =0.
Case llI: If a continuous closed-form PDF cannot be determined foarmmeter, the moments can still be evaluated from the

process data files as:

mi(z;) = Y aFPr(X; =x) (8)

where Pr(z; = x) is the probability that the parameter assumes a value. This moment generation process is explained
in Section IIl.

Given the underlying process variables and their momemésnéxt step after performing ICA is to determine the moments
of the independent components, - - -, s,,, from the moments of the correlated non-Gaussian parameter- -, z,. The
moments of the parameterB|z"¥], are the inputs to the SSTA algorithm.

We now refer back to the ICA transformation of Equation (8)= AS and rewrite the relationship by taking the expectation

of both sides as:

Elz}] = El(a1151 + a1252 + - a1,50)"]
ElzY] = E[(a2151 + agesz + - - - aznsn)"]
E[zF] = E[(anisi + anas2 + -+ annsn)] 9)

wherea;; is an element of the mixing matri¥d obtained via ICA. In the above equation, the left hand sideicwis the
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k" moment of each component ¥, is known. The right hand side can be simplified by performangefficient multinomial
expansion using the idea of binomial moment evaluationgresl in [22]. The moments are computed successivelyjrgjart
from the first to the second to the third, and so on. For exangfier all of the first moments have been computed, the second

moment of eachs; can be computing by rewriting Equation (9) usihg= 2 as

Elx}l = Y alE[s]1+2) > aniay,Elsi]Els;]
=1 =1 j=i+1

Elx3] = Y a3E[s]1+2) > asias;Elsi]Els;]
=1 =1 j=i+1

El}] = > alEls]]+2> Y anian;Elsi|Els;] (10)
=1 1=1 j=i+1

The only unknowns in the above equation are the second memept], of eachs;, and these can be calculated easily.

In general, while solving for thé&®™ moment ofs; using Equation (9), all of thék — 1) moments are known from previous
computations. Moreover, since the component$are independent, we can perform the operatigisy s?] = E[s¢]E[s%],
and efficiently apply the binomial moment evaluation schese indicated by Equation (10), the computation of thi&
moment of the independent components, - -, s,,, requires the solution of an x n system of linear equations. Thus, to
compute2 M moments of the independent components, we must shl¥esystems of linear equations corresponding to (9)
for k = 1,---,2M. However, since this is a part of the preprocessing phasmait be carried out off-line for a specific
technology, and it does not contribute to the complexityhaf SSTA algorithm.

Note that while ICA does provide thB” matrix, it is not easily possible to us®& = WX to find the moments of the

s; variables. This is because the binomial moment evaluatimtquure requires the random variables to be statistically

independent, which is true for thg variables but not the; variables.

VIIl. M OMENT MATCHING-BASED PDF EXTRACTION

To compute the PDF/CDF of the delay or arrival time randonialde we adapt the probability extraction scherAPEX
proposed in [22]. GiveR M moments of a random variable as inputs to AiREXalgorithm, the scheme employs an asymptotic
waveform evaluate (AWE) technique to match th& moments in order to generate aft* order linear time invariant (LTI)
system. The scheme then approximates the PDF [CDF] of a nawvddable by an impulse responké) [step response(t)]
of the M*" order LTI system. The details of th®PEXalgorithm can be found in [22].

We return to the example of Figure 3 to explain moment matghiased PDF evaluation method. To compute the delay
PDF for the example, we must first calcul&&/ moments ofD from Equation (1). Assumingi¥;, Ws) to be perfectly
correlated identical Gaussian random variables, and {») to be perfectly correlated, and uniformly distributed rieal

random variables (Case 4 of Section V), we have:

D = aW+b.L. (11)



whereD = D — 1y a = ay +ay andb = by + by. AssumingiW and L, as statistically independent variables, #& moment
of D can be computed by using the binomial expansion formula as:
my|D] = Xk: (’“) a'bF~im(W)my_i (Le) (12)
=0 t
where all of thek moments ofiV and L. are known from the underlying normal and uniform distribas. Since the normal
and uniform distributions used in this example are both sseltied, their moments can be obtained from mathematbdds.
Having computed2M moments ofD from Equation (12), we can now employ the AWE-based PDF ewimn scheme to

approximate the PDF and CDF &f by an impulse response as:

N Z?ilfi_eﬁi'd JZO

fold) = X (13)
0 d<0
M 7o opid 7
Fod) = § Zmn o 20 (14)
0 d<0

where7 [p] are the residues [poles] of the LTI approximation.
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Fig. 7. Extracted PDF and CDF for the delay of the exampleuitirc

Figure 7 shows the evaluated delay PDip(d) = f5(d + 1)) and CDF {'p(d) = F5(d + p)) of the circuit of Figure 3
using M = 10 moments. The evaluated PDF matches closely with the Monti® Ganulation; the match for the CDF is even
better.

We can generalize the PDF evaluation idea, illustrated enabove example, to compute the PDF (CDF) of any random
delay variable expressed in the canonical form of Equati)n For such a delay variable with= m + n + 2 terms, the
binomial moment evaluation procedure can be employed wutzk the2)/ moments, as long as dllvariables in the delay
expression are statistically independent. The canonical £xpression of Equation (5) satisfies this independesmpeirement

by construction.
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We have enhanced the PDF evaluation algorithm in [22] fotebetumerical accuracy and stability. Instead of evalgatin

the PDF of a random variabl® directly, we first prescale it by defining a new random vaeabl= D;“D, and evaluate the

D

PDF of D. Without the prescaling step, the higher order moment® afan become extremely large (or extremely small) and
affect the numerical accuracy of the moment computation.céfmpute the flipped PDF ((f—f)), and reconstruct the final
PDF from the flipped and the original PDF to avoid numericabes due to the final value theorem, as in [22]. The PDF and
CDF of D is retrieved from the PDF ob by using the relationship:

fold) = —fp (d‘“D)

0D 0D

Py <d_“D) (15)

0D

Fp(d)

In general, given the moments of the independent componprésharacterized as in Section VII, we can compute the
moments of the delay and arrival time random variables frapadion (5). The moments of aN (0, 1) Gaussian distribution

corresponding to each principal component,- - -, r,,,, are well known as:

1 k=0
mi(ri) =4 0 k=1,3,5,--- (16)
1-3-5---(k—1) k=246,

The moments of the uncorrelated process parametmn be easily computed using the techniques in Section \dlwa

will see in Section IX, during the SSTA propagation, the rofez in the canonical form is to serve as a place holder for
the moments of the uncorrelated part, and these momentbeviiiropagated further. For each gate, given the moments of al
random variablesy, - - -, s,, r1, - -, ™m, andz, which are all statistically independent with respect toheather, we may use
the binomial evaluation method to compute the@ moments of the gate delay; a similar procedure will be usecbtopute

the arrival times in the canonical form in Section IX.

IX. SSTA PROCEDURE

From the theory explained in the previous sections, we nove ltfae ability to evaluate the PDF and the CDF of the delay
and the arrival time random variables, expressed in thatimanonical form, as a function of Gaussian and non-Gaussia
parameters of variation. In this section, we describe ourASfBamework. It is well known that the arrival time propaipat
procedure, operating in topological order on the circudpdr, involves the atomic operations of “sum” and “max.” Wel wi
show how these atomic operations can be performed to produesult that can be represented in the canonical form of

Equation (5).
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A. The “sum” Operation

The sum operation to add two arrival time or delay randomaldeis, expressed in the linear canonical form of Equatipn (5

is mostly straightforward. Consider two random variablBsg,and D, expressed as:

D, = m +Zb/i1'si +Zc}1.rj +e1.21
i=1 j=1
Dy = s+ Z b, -si + Z i+ ea.zo a7)

i=1 j=1

The sumD3; = Dy + D5 can be expressed in the same canonical form as:
n m
D3 = pus+ Z bi,-si + Z 033.7’]- + e3.23 (18)
i=1 j=1

whereus = py + pa2, bj, = b, +b},, andc), = c;, +bi,.

The one difference here, as compared to the Gaussian caseirie[8]), relates to the computation of the uncorrelated
non-Gaussian parametey,.zs. The random variables.zs = e;.21 + e2.22, Serves as a place holder to store the moments of
(e1.21 + e2.22). In other words, rather than propagating an uncorrelatecbomentz in the canonical form, we propagate its

2M moments.

B. The “max” Operation

The PDF of the maximum of the twimdependentandom variableg/ and V', given byT = max(U, V), can be simply

computed as:

fr(t) = Fy(t) fv(t) + Fv (t) fu(t) (19)

wheref represents the PDF of each random variable, /it CDF. If U, V' are not only independent, but can also be expressed
in the canonical form of Equation (5), then the PDF and CDFF' afan be easily computed using the PDF evaluation technique
described in Section IX, in a closed-form using Equation)(19

However, in general, two arrival time random variablesand A, expressed in the canonical form of Equation ¢,not
satisfy the independence requirement above, as they méyHase nonzero coefficients associated withsamnd/or anr;
variable. Fortunately, it is possible to work around thisusing a simple technique that permits the application ofdfiqn (19)

to compute the PDF of random variabdg,,,., = max(A;1, As). Let us begin with the canonical expressions forand As:

Al = i+ Z bgl .8; + Z cg-l i+ er.z
i=1 j=1
Ay = s+ Z bi,-si + Z ), Tj +e2.22 (20)

i=1 j=1
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The operation4,,,,., = max(A;, A2) can be now simplified as:

Amaz = W +max(U,V) (22)
where
w = b/lz.sl + 0/12.7’1 + Z bgl .8 + Z c;»] Ty (22)
i=2 j=2
U = i+ (by, —bl,).s1+ (¢, —cl,)r +erz

n m
V = up+ 2:(1722 — b;l).si + Z(C;z — cgl).ri + €9.29
i=2 j=2

The above representation of the max operation ensureshtbatahdom variable8” and V' involved in the max operation,
max(U, V), are statistically independent as they do not share anphias.

Therefore, from Equations (19) and (21), we can wrtg,, = W + T'. Clearly, from Equation (22)iV is available in the
canonical form, and our next task is to expr&dssn the form of Equation (5) as well, since this would permittaswrite
Anqz 1N the canonical form.

To achieve this, we employ the idea of tightness probabifityto expressl’ = max(U, V) as:

T = pr+ Z b;T.si + Z c;-T.rj + erzr (23)
i=1 j=1

Our discussions in the previous sections provide us witlofathe machinery required to efficiently compute the tigiste
probability, py~v = Pr(U > V). We define a random variabl@ = V — U, and use the sum operation defined in Section
IX-A to express the random variabt@ in the canonical form. Next, employing the technique déstiin Section VIII, we
compute the2l/ moments of random variabl@, and evaluate the CDIFQ(Q), as a step response of the approximated LTI

system using the following relationship:

“(e” 1) (§20) (24)

A

=
Il
|3

=

Il
<
—
2
A
o
=

where# andp are the residues and poles of the approximat&d order LTI system. The tightness probability .y is simply
given by the CDF of)) evaluated atj = 0, since Pr(U > V) = Pr(Q <0) = F5(0).

Unlike [15], this method does not require the computatilyratpensive technique of numerical integration in high @nsions
for non-Gaussian parameters. The ability to compute thertess probability;~ analytically, from the evaluated CDF of
(Q = V — U), makes the SSTA procedure very efficient and allows us toge® a large number non-Gaussian variables.

/
CiT ,

Having computed the tightness probability;~ v, the sensitivitied and zp of T = max(U, V) in Equation (23)

/
i

6Note that this is a sufficient condition for independencessiall variables in the expressions@fandV, obtained from the ICA and the PCA transforms
are statistically independent.
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can be written in terms of the sensitivities Gf and V. Specifically:

b, = pusvby, + (1 —pysv).b, Vi=1,---,n

/

Cip = pU>V.c;-V +(1- pU>V)-C;‘V Vi=1,---,m (25)

Recall that the uncorrelated parameter term in Equatiohi€28 place holder for the moments of the uncorrelated paemme
the moments oty can also be computed using the tightness probabilityassigned the moments of the random variable
(pusv-eu.zu + (1 — pusv).ev.zy). The adjustment of the sensitivity teren- will be explained later in this section.

The use of tightness probabilities is only a heuristic anffessi from problems of accuracy. Therefore, to reduce therer
in the heuristic, we compute the meam in Equation (23) and the variance @f, o2, exactly from the PDF of’". In order
to achieve this, we use Equation (19): note that this is apple since/ andV are independent by construction. Using the
closed-form PDFfr(t), we can computg from the first principles agr = E[max(U, V)] = [*_tfr(t)dt.

The last term left to compute isy, the coefficient term of the uncorrelated random variahleWe compute this term so
that we match the variance of the closed-form PDH poff(¢), alluded to above, with the variance of canonical reprediemt
of Equation (23). The variance can be computed fronit) as:

o /Oo t2 fr(t)dt — (E[max (U, V)])? (26)

Having matched the variance term in Equation (26) to theavae in the expression Equation (23), all of the terms reqtio
represenf’ = max(U, V') back to the canonical form are known. As a final step, refgrback to Equation (21), we perform

the sum operation betweé#i and7T = max(U, V') to complete the computation of,,,, = max(A;1, A2).

X. TIME COMPLEXITY ANALYSIS

The steps to generate the ICA mixing matuy the PCA transform, and the moments of the independent coemts
si, -+, 8n, do not affect the online runtime of the procedure. These rpgssing steps have a one time precharacterization
cost. Hence, the computational cost of the main steps in 8A$rocedure is comprised of the circuit graph traversad, a
the sum and max operations.

The sum operation has a time complexity®@fn + m), wheren is the number of non-Gaussian independent components
andm is the number of Gaussian principal components.

The main steps in the max operation consists of computing emésnof the delay variables, PDF evaluation by the AWE-
based method, and calculating the mean and the variance terexpress the result of max operation back to a canonioal fo
The cost of computing M moments using the binomial moment evaluation procedué® & (n + m)). The PDF evaluation
involves the solution of a lineal/ x M system of linear equations, described by a Hankel matrig)(i&/3); in practice,M
is upper-bounded by a small constant, and excellent sol@ie obtained fo/ < 10. The mean and the variance terms are
computed by one dimensional numerical integration and @ndbculated in constant time. Thus, the complexity of thet ma

operation isO(m + n). For a layout withg spatial correlation gridsy: +n = O(g). Therefore, both the sum and the max
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operation have a complexity @(g).

In the PERT-like traversal of the circuit graph, for eachegae must change the delay representation of Equation (2) to
that of Equation (5). In particular, we require the new siarisi vectorsB'" = BT A, [C'T = CTP,!]. The dimensions of
the ICA transformation matrixl is n x n, and the PCA transformation matr, is m x m. However, the original sensitivity
vectorsBT and C™T are typically sparse because a gate, in a particular gridjdManout to other gates in not more than
different gridg, with k& << Min(m,n). Therefore, the cost of computing the new sensitivity viectB’T and C'T by the
multiplication of a sparse vector and a dense matri® { + n) = O(g).

For a circuit graph witH” nodes and® edges, the overall time complexity of the SSTA procedure(ig(V + E)). Therefore,
the time complexity for our SSTA procedure, incorporatimgrtbGaussian and non-Gaussian parameters, is the same a$ tha
SSTA techniques considering only Gaussian variables §§],However, the complexity constant for our procedure ghber
due to the steps of moments evaluation and PDF extracti@hthas is not surprising since [8], [9] can be reduced to sgeci

cases of our solution.

XI. EXPERIMENTAL RESULTS

The proposed SSTA algorithm was implemented in C++, usieginSSTAcode [8], and tested on edge-triggered ISCAS89
benchmark circuits. All experiments were performed on Rem4 Linux machines with a clock speed of 3.2GHz and 2GB
of memory. TheFastICApackage [27] and thicassosoftware [28], were used to obtain the ICA transform of Eguraf3).

To generate samples of correlated non-Gaussian parametgtsred as inputs to thEastlCA code, we use the method of
normal copula[23], as described in Section VI-B. For all the experimemts, generate 5000 samples of each non-Gaussian
parameter to feed to the ICA module. We use the Elmore delajeirend the first order Taylor series terms to represent the
canonical delay model of Equation (2). However, clearly tisi not a restriction, as our canonical form is similar innfcio

that in [8], [9], and any analytical or numerical delay mod®y be used, as long as the sensitivities of the delay withexds

to the varying parameters can be computed.

We consider the effective channel length,, the transistor widtiV, and the dopant concentratioN; as the sources of
variation. The parameters, and W are modeled as correlated sources of variations, and thant@oncentrationNy, is
modeled as an independent source of variation. The samearark can be easily extended to include other parameters of
variations. For simplicity, our current implementatiomages the effect of the input signal transition time on thiaylat the
output port of the gate. However, according to the techndgsgcribed in [29], our SSTA procedure can also be extended to
incorporate and propagate the distributions of the sigraisition times. As described in [29], it is possible to eg¥ slope
at the output pin of the gate as a probability weighted sumigifidutions of the slope from all input pins to the output joif
the gate. In our SSTA framework, we can efficiently compugséhweights as closed-form probabilities, using the AWg&eHa
PDF extraction scheme.

We use the grid-based model of [8] to generate the spatiakledions for thel and L. parameters. Due to the lack

“In the case of a gate driving a global wire which spans manysgit is highly likely that the global wire would be buffered
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of access to any real wafer data and process data files, we tdeaxe the required information to realistically model the
parameter distributions. We consider the following twoesafr modeling thé?” and L. parameters:

Case 1: WV of gates in each grid are modeled as non-Gaussian paraaatdis. are modeled as Gaussian variables. Section
XI-A discusses the SSTA results for this case.

Case 2: L. of gates in each grid are modeled as non-Gaussian paramatertl’ are assumed to be normally distributed
variables. Section XI-B discusses the SSTA results for ¢hise.

For both cases, the independent paraméfgris assumed to follow a Poisson distribution. Theand o values of the
parameters are based on the predictions from [30].9Barm technology, we usgy = 150nm, pur, = 60nm, ow = 7.5nm
andoy, = 4nm. For the independent paramet®; modeled as a Poisson random variable, we uge = 10 x 10'7cm =3
for both nmos and pmos. We test our SSTA procedure by conganim results for each benchmark with 10,000 Monte
Carlo (MC) simulations based on the same grid model. The ks correlated non-Gaussian parameters for Monte Carlo

simulations are also generated using the method of nornmallapas described in Section VI-B.

A. SSTA results for Case 1

For these experiments, we modél of gates in each grid as non-Gaussian parameters,anaf gates in each grid as
Gaussian parameters. For the correlated non-GauBgigarameters, we randomly assignito in each grid either a uniform

distribution in [y — v/3.0w, pw + V3.0 ], or a symmetric triangular distribution iiuy — k.ow, uw + k.ow], given by:

B 2(w —a)
W) = age-a 1=UEC
fw(w) = % c<w<b 27)

wherea = p, — k.0, ¢ = iy, @andb = u,, + k.0,. The numberk is chosen so that the variance of the symmetric triangular

distribution described in Equation (27) is the sameras

Benchmark Error (35222 MC %) Error (W%)

Name # Cells | # Grids m o 95% Pt| 5% Pt 1 o 95% Pt| 5% Pt
s27 13 4 0.13% | 0.22% | 0.13% | 0.57% | 0.26% | 0.54% | 0.24% | 0.81%
51196 547 16 0.29% | 0.59% | 0.97% | 0.83% | 0.66% | 1.22% | 1.57% | 1.35%
s5378 2958 64 -0.53% | -1.32% | -1.34% | -1.56% | 0.93% | 2.03% | 1.93% | 2.05%
59234 5825 64 0.91% | 1.81% | 1.29% | -1.31% | 0.87% | 1.95% | 2.59% | 2.61%

s13207 8260 256 1.77% | 2.24% | 2.39% | 3.03% | 2.26% | 3.35% | 3.55% | 3.11%
s$15850 10369 256 1.98% | 2.51% | 3.14% | 3.79% | 2.89% | 3.82% | 3.51% | 3.09%
35932 17793 256 1.15% | 2.82% | 3.78% | 3.67% | 1.56% | 2.56% | 4.12% | 4.26%
$38584 20705 256 1.71% | 3.29% | 3.59% | 3.87% | 2.09% | 3.89% | 4.22% | 4.17%
s38417 23815 256 1.51% | 3.68% | 3.50% | 3.61% | 2.05% | 4.35% | 4.93% | 4.88%
Avg Abs Err - - 1.11% | 2.05% | 2.24% | 2.47% | 1.51% | 2.63% | 2.96% | 2.93%

TABLE Il
A COMPARISON OF RESULTS OF THE PROPOSE®STAWITH MONTE CARLO SIMULATION . W PARAMETERS ARE MODELED AS NONGAUSSIAN
VARIABLES, AND L. PARAMETERS ARE MODELED ASGAUSSIAN VARIABLES.

Table Il shows a comparison of the results of the Monte C&WE) simulations with our SSTA procedure for each

benchmark circuit. We compare the meau), (the standard deviatiorr), the 95% and the 5% quantile points of the delay
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distribution obtained from our SSTA scheme with those gateel from the Monte Carlo simulations, as the metrics of smu

As seen in Table lll, the results of the proposed SSTA schemejaite close to that of Monte Carlo analysis. The average
of the absolute errors, across the nine benchmark ciralitsyn in the last row of Table Ill, is 1.11% for, 2.05 % foro,
2.24% for the 95% point, and 2.47% for the 5% quantile poirt. 860 compare the actual Monte Carlo results with the ones
obtained by incorrectly modeling the non-norniéll parameters as Gaussian variables, and then performing @aeMzarlo
analysis, termed a&/ Cs,4s5- Columns eight to eleven of Table 1V report the errors for panson between the actual Monte
Carlo results, and the ones obtained by Gaussian modelirzdi plarameters. As seen in the table, the errors for assuming
an incorrect Gaussian distribution for parametersgdoes notresult in significant errors, implying that the circuit dglBDF
does not significantly deviate from a Gaussian distributioshould be noted that for our gate delay models, the caefiis

of the L. terms are greater than the coefficients of Wieterms by a factor of aboutx to 12x. Since the sensitivities of the
GaussianL, terms outweigh the sensitivities of the non-Gaussdianerms, the circuit delay PDF is dominated by the normal

parameters, and does not significantly diverge a normaiilalision.

B. SSTA results for Case 2

For these experiments, we model of gates in each grid as non-Gaussian parametersVamf gates in each grid as
Gaussian parameters. For the correlated non-Gaussigarameters, we randomly assigniip in each grid either a uniform
distribution in[ur, —v/3.01,, ., ++/3.01,], or @ symmetric triangular distribution, similar to the ahescribed by Equation

(27), but replacingV by L..

Benchmark Error (23242 o) Error (F€Gausa—C %)
Name # Cells | # Grids 1 o 95% Pt| 5% Pt m o 95% Pt | 5% Pt
s27 13 4 -0.09% | -0.34% | -0.75% | 0.79% | 0.56% | 3.23% | 8.56% | 2.04%
s1196 547 16 -0.23% | -0.67% | -0.87% | -0.53% | 0.84% | 8.82% | 11.27% | 2.21%
s5378 2958 64 0.31% | 1.12% | 1.21% | 1.28% | 0.98% | 10.23% | 10.91% | 1.21%
s9234 5825 64 0.82% | 1.78% | 1.32% | -1.48% | 1.88% | 15.32% | 15.28% | -1.83%

513207 8260 256 1.58% | 2.34% | -2.54% | 2.89% | 2.96% | 28.13% | 18.34% | -2.13%
515850 10369 256 1.85% | -2.12% | 3.36% | 3.61% | 2.63% | 22.12% | 17.62% | 3.16%
s$35932 17793 256 -1.07% | 2.78% | 4.01% | 3.57% | 2.34% | 26.71% | 19.17% | 3.31%
s38584 20705 256 1.65% | -3.56% | 3.89% | 3.91% | 2.21% | 25.67% | 18.28% | 2.95%
538417 23815 256 1.34% | 3.78% | 3.37% | 3.22% | 2.81% | 34.62% | 21.63% | 2.51%
Avg Abs Err - - 0.99% | 2.05% | 2.33% | 2.36% | 1.91% | 19.42% | 15.67% | 2.37%

TABLE IV
A COMPARISON OF RESULTS OF THE PROPOSE®SSTAWITH MONTE CARLO SIMULATION . L, PARAMETERS ARE MODELED AS NONGAUSSIAN
VARIABLES, AND W PARAMETERS ARE MODELED ASGAUSSIAN VARIABLES.

Table IV shows a comparison of the results of the Monte Cartaukations with our SSTA procedure for each benchmark
circuit. As seen in Table IV, the results of the proposed SSTAeme are quite close to that of Monte Carlo analysis. The
average of the absolute errors, across the nine benchmatlitsj is 0.99% foi, 2.05 % foro, 2.33% for the 95% point, and
2.36% for the 5% quantile point. These errors are reasorsbbll as compared to the accuracy penalty paid by assuméng th
incorrect normal distribution modeling df. parameters. Columns eight to eleven of Table IV show ther éncurred when

modeling the non-Gaussiaip parameters as normally distributed random variables arfdpging Monte Carlo simulations,
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termed asM Cqquss, fOr each benchmark circuit. For instance, for the largestchmark circuit s38417, when assuming that
the non-Gaussiaf, parameters follow Gaussian distributions, the error oleseis 2.81% foru, 34.62% foro, 21.63 % for

the 95% point and 2.51% for the 5% point. Unlike, the resultSection XI-A, modeling the non-Gaussidn parameters

as normally distributed ones, leads to significant inacguia the circuit delay PDF. Due to the fact that the sendigsi of

the non-Gaussiah,. terms outweigh the sensitivities of the Gaussi@nterms, the correlated non-Gaussian parameters have

a dominating effect on the circuit delay distribution, dagsit to significantly aberrate from a normal distribution.

Benchmark CPU Time (sec)

Name | # Cells | # Grids | SST Agauss [8] | SSTA MC
s27 13 4 0.0 11 6.0
s1196 | 547 16 1.2 8.3 634.2
s5378 | 2958 64 17.1 41.6 | 3214.4
9234 | 5825 64 20.3 137.9 | 4756.6
s13207| 8260 256 108.6 303.6 | 8532.1
$15850| 10369 256 110.8 410.8 | 9587.8
s35932| 17793 256 315.2 761.4 | 10156.5
$38584| 20705 256 3224 910.6 | 18903.3
s38417| 23815 256 377.3 1235.6| 22398.5
TABLE V

A RUNTIME COMPARISON THE PROPOSESSTAWITH GAUSSIAN SSTAAND MONTE CARLO SIMULATION

Table V compares the runtime performance of our proposed3Jorithm with that of a Gaussian SSTA procedure [8],
and the Monte Carlo simulations. As expected, our SSTA mhaeeis considerably faster than the Monte Carlo simulation
but has a higher runtime cost as compared to a Gaussian S$,TAUES to the additional feature of handling non-Gaussian
variables. On an average our procedur83s faster than Monte Carlo method, but ab8wut slower than the Gaussian SSTA
algorithm. Our approach can handle a large number of cdectland independent non-Gaussian parameters. The number of
grids chosen for each benchmark circuit, shown in the thiddran of Table V, is equal to the number of correlated Gaussia
and non-Gaussian variables. The number of independenGamissian variables is the same as the number of cells in a
circuit. For instance, the SSTA procedure for the circuBZ(17 processes 256 correlated Gaussian variables, 256ated
non-Gaussian variables, and 8260 independent non-Gaussiables in about 5 mins of online runtime. Thus, our pduce
scales well with the number of non-Gaussian parametersramténe reported in Table V does not include the time spent fo
the preprocessing steps of Sections VI and VII, which areerhiout only once for a process and a given discretization. F
the largest benchmark s38417, the preprocessing time takgenerate the ICA matrid, and to compute the moments of
the independent components is 3.5 hours.

In Figures 8 and 9, the PDF and CDF plots for the benchmarkiitérc13207 and s38417 are provided. As seen in the
figures, the PDF and the CDF as predicted by the proposed S&¥®\x& matches well with the Monte Carlo PDF and CDF.
The dashed curves in Figures 8 and 9, represent the case mhep parameters are incorrectly modeled as Gaussian variables
with the sameu, andoy, as the original non-Gaussian parameters. The plots in tigsees show that in the presence of

correlated non-Gaussian parameters, the real circuiy diéddribution deviates significantly from the one obtaitgdassuming
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Fig. 9. A comparison of the results of SSTA and Monte Carlodiocuit s38417.

normality for parameters. The distribution functions eréd by SSTA approach are able to match, within reasonaiyl s
errors, the real distribution functions.
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XIIl. CONCLUSION

In this paper, we present a novel and an efficient statisficaihg analysis algorithm that incorporates correlatechpeeters,
both Gaussian and non-Gaussian. Our approach is based oe\RRRtion by matching the moments of the delay variables.

We use the independent component analysis technique inQ& 8amework to handle correlations between the non-Ganss
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parameters. A time complexity analysis of our proceduravshibiat it is linear in the number of grids and the number oégat
in the circuit. Hence, our scheme provides a scalable solut the problem of performing SSTA in the presence of a large
number of correlated non-Gaussian parameters. Experaiesults validate our hypothesis that performing a GansSiISTA,

in the presence of dominating non-Gaussian parametersriaitiea, could result in significant inaccuracies in estiimg the
PDF and CDF of the circuit delay. Our proposed SSTA proce@uable to match the real PDF and CDF of the delay much
more closely, and produces the delay distributions witls@aably small errors compared to the Monte Carlo distringi

and is much faster than the Monte Carlo analysis.

REFERENCES

[1] A. Devgan and C. Kashyap. Block-based Static Timing Asial with Uncertainty. IrProceedings of IEEE/ACM International Conference on Catepu
Aided Designpages 607-614, 2003.
[2] M. Orshansky and A. Bandyopadhyay. Fast Statistical iigrnAnalysis Handling Arbitrary Delay Correlations. Froceedings of ACM/IEEE Design
Automation Conferencgages 337-342, 2004.
[38] X. Li, J. Le, M. Celik, and L. Pileggi. Defining Statisticé&Sensitivity for Timing Optimization of Logic Circuits wit Large-Scale Process and
Environmental Variations. IfProceedings of IEEE/ACM International Conference on Campiided Designpages 844-852, 2005.
[4] Y. Zhan, A. J. Strojwas, M. Sharma, and D. Newmark. Stiati Critical Path Analysis Considering Correlations. Pmoceedings of IEEE/ACM
International Conference on Computer Aided Desigages 699-704, 2005.
[5] J. Xiong, V. Zolotov, N. Venkateswaran, and C. Viswesiair Criticality computation in Parameterized Statidtitaning. In Proceedings of ACM/IEEE
Design Automation Conferencpages 63-68, 2006.
[6] T. Kirkpatrick and N. Clark. PERT as an Aid to Logic DesigiBM Journal of Research and Developmeh6(2):135-141, June 1966.
[7] C. Amin, N. Menezes, K. Killpack, F. Dartu, U. Choudhuty, Hakim, and Y. I. Ismail. Statistical Static Timing Analgs How simple can we get?
In Proceedings of ACM/IEEE Design Automation Conferemzges 652—-657, 2005.
[8] H. Chang and S. S. Sapatnekar. Statistical Tming Anslydnsidering Spatial Correlations Using a Single PER&-likaversal. InProceedings of
IEEE/ACM International Conference on Computer Aided Desjgages 621-625, 2003.
[9] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walkend S. Narayan. First-Order Incremental Block-Basedisfitatl Timing Analysis. In
Proceedings of ACM/IEEE Design Automation Conferemages 331-336, 2004.
[10] J. Le, X. Li, and L. T. Pileggi. STAC: Statistical Timingnalysis with Corrleation. IProceedings of ACM/IEEE Design Automation Conferepeges
343-348, 2004.
[11] Y. Zhan, A. J. Strojwas, X. Li, and L. T. Pillegi. Corréilan-Aware Statistical Timing Analysis with Non-GaussiBelay Distributions. InProceedings
of ACM/IEEE Design Automation Conferengeges 77—-82, 2005.
[12] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C. C.-P. Chenrréation-Preserved Non-Gaussian Statistical Timingl#sis with Quadratic Timing
Model. InProceedings of ACM/IEEE Design Automation Conferemages 83-88, 2005.
[13] C. E. Clark. The Greatest of a Finite Set of Random VaembOperations Researct9:145-162, March-April 1961.
[14] H. Damerdji, A. Dasdan, and S. Kolay. On the AssumptibMNormality in Statistical Static Timing Analysis. IRroceedings of TAUpages 2—7, 2005.
[15] H. Chang, V. Zoltov, S. Narayan, and C. VisweswariatraReeterized Block-Based Statistical Timing Analysis witbn-Gaussian Parameters, Nonlinear
Delay Functions. IrProceedings of ACM/IEEE Design Automation Conferemages 71-76, 2005.
[16] V. Khandelwal and A. Srivastava. A General Framewonk&ocurate Statistical Timing Analysis Considering Coat&ns. InProceedings of ACM/IEEE
Design Automation Conferencpages 89-94, 2005.
[17] J. Singh and S. Sapatnekar. Statistical Timing Analysth Correlated Non-Gaussian Parameters using Indepe@#enponent Analysis. IRroceedings
of ACM/IEEE Design Automation Conferengemges 155-160, 2006.
[18] T. Bell. An ICA page — papers, code, demos, links. Augldaathtt p: // www. cnl . sal k. edu/tony/ica. htnm .

26



[19]

[20]
[21]

[22]

(23]
[24]
[25]
[26]
[27]
(28]

[29]

[30]

A. Hyvarinen and E. Oja. Independent Component Analysis: A Tutoniait p: / / www. ci s. hut . fi/aapo/ papers/ | JCNN99t ut ori al web/,
1999.

A. Hyvarinen and E. Oja. Independent Component Analysis:Algorithand ApplicationsNeural Networks13:411-430, 2000.

R. Manduchi and J. Portilla. Independent Componentlysis of Textures. IrProceedings of IEEE Conference on Computer Visimiume 2, pages
1054-1060, 1999.

X. Li, J. Le, P. Gopalakrishnan, and L. Pileggi. AsymtdProbability Extraction for non-Normal Distributiond Gircuit Performance. IfProceedings

of IEEE/ACM International Conference on Computer Aidedifgspages 2-9, 2004.

Simulating Dependent Random Variables Using Copukagilable atht t p: / / www. mat hwor ks. coni product s/ stati stics/.

Matlab Reference Manual. Available lat t p: / / www. mat hwor ks. com access/ hel pdesk/ hel p/t echdoc/ mat| ab. shtmi .

Mathematica Reference Guide. Availablenat p: / / docunment s. wol f ram com v5/ TheMat hemat i caBook/ Mat hemat i caRef er enceCui de/ i ndex. hi
M. H. Degroot and M. J. SchervistProbability and Statistics Addison Wesley, Boston, MA, 2002.

A. Hyvarinen. Fast ICA. Available abtt p: //ww. ci s. hut.fi/projects/icalfastical,2005.

J. Himberg and A. Hyirinen. Icasso:Software for Investigating the Reliabiliti/ ICA Estimates by Clustering and Visualization. Proceedings of
IEEE Workshop on Neural Networks for Signal Processipages 259-268, 2003.

H. Chang and S. S. Sapatnekar. Statistical Timing AsialZonsidering Spatial Correlation&EE Transactions on Computer-Aided Design of Integrated
Circuits and System®4:1467-1482, September 2005.

S. Nassif. Delay Variability: Sources, Impact and TaenIn Proceedings of IEEE International Solid State Circuit Gaehce pages 368-369, 2000.

27



