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Abstract—Due to recent advances in microfluidics technology,
digital microfluidic biochips and their associated CAD prob-
lems have gained much attention, most of which has been
devoted to direct-addressing biochips. In this paper, we solve
the droplet routing problem under the more scalable cross-
referencing biochip paradigm, which uses row/column addressing
scheme to activate electrodes. We propose the first droplet
routing algorithm that directly solves the problem of routing
in cross-referencing biochips. The main challenge of this type of
biochip is the electrode interference that prevents simultaneous
movement of multiple droplets. We first present a basic integer
linear programming (ILP) formulation to optimally solve the
droplet routing problem. Due to its complexity, we also propose
a progressive ILP scheme to determine the locations of droplets at
each time step. Simulation results demonstrate the efficiency and
effectiveness of our progressive ILP scheme on a set of practical
bioassays.

Index Terms—Cross-referencing biochips, routing, integer lin-
ear programming, progressive

I. INTRODUCTION

Recently, there have been many significant advances in
microfluidic technologies [2]. Microfluidic biochips show nu-
merous advantages over conventional assay methods, includ-
ing portability, sample/reagent volume reduction, and faster
analysis, and offer a platform for developing clinical and di-
agnostic applications, such as infant health-care and point-of-
care disease diagnostics. Other promising applications include
environmental toxin monitoring and automated and parallel
drug discovery, and this breadth of applicability implies that
microfluidic biochips are increasingly used in laboratory pro-
cedures in molecular biology.

First-generation biochips are based on manipulating con-
tinuous liquid flows using external pressure sources (e.g.,
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micropumps) and microchannels. Although they have been
successfully applied to many biological applications, their lack
of reconfigurability makes them unsuitable for large-scale and
scalable systems. Second-generation biochips are based on
digitalizing continuous liquid flow into discrete liquid parti-
cles, called droplets [3]. Each droplet can be independently
controlled by the electrohydrodynamic forces generated by
electrodes. In this way, droplets movement can be controlled
by a system clock. Due to this parallel with digital electronic
systems, second-generation biochips are referred to as “digital
microfluidic biochips.”

Typically, a digital microfluidic biochip has a 2D microflu-
idic array, which consists of a set of electrodes. Droplets
are routed through this array, and various fundamental oper-
ations, such as droplet merging, droplet splitting, and droplet
transportation, are performed on them during this process. In
the simplest and most common droplet control scheme, each
electrode is directly addressed and controlled by a dedicated
control pin, which allows each electrode to be individually
activated. In this paper, we refer to these types of digital
microfluidic biochips as direct-addressing biochips. While this
architecture provides a high flexibility for droplet movement,
it suffers from the major drawback that the number of control
pins rapidly increases as the system complexity (i.e., the size
of the array) increases. The large number of control pins
affects product cost and the control wire routing problems
complicates the design process, and therefore, this architecture
is only applicable to small-scale biochips (fewer than 10 × 10
electrodes) [4].

To overcome these limitations, recently a new digital mi-
crofluidic biochip architecture has been proposed [5]. This
architecture uses a row/column addressing scheme, where
all electrodes in one row (or column) are connected to a
single control pin. Therefore, the number of control pins
is greatly reduced: this number is now proportional to the
perimeter of the chip rather than the area of the chip. We refer
to this type of biochip architecture as the cross-referencing
biochip architecture. However, this also introduces a new set
of limitations. Since an electrode can potentially control the
movement of all droplets in a row/column at the same time,
this incurs higher droplet movement complexity than that
for direct-addressing biochips. Moreover, the manipulation of
more than two droplets causes electrode interference among
droplets, which prevents multiple droplets from moving at the
same time. This limitation is a critical challenge to designing
a low-cost cross-referencing biochip for high-performance
applications, such as large-scale protein analysis.
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In this paper, we tackle the problem of droplet routing in
cross-referencing biochips. The main challenge of this routing
problem is to ensure the correctness of droplet movement;
the fluidic property which avoids unexpected mixing among
droplets must be satisfied, and electrode interference patterns
that prevent multiple droplets from moving at the same time
must be avoided. The goal of droplet routing is to minimize
the maximum droplet transportation time, and has several
motivations. First, this minimization is critical to real-time
applications, such as monitoring environmental toxins. Second,
the minimized droplet transportation time leads to shorter time
that a sample spent on a biochip, which is desirable to maintain
the bioassay execution integrity.

A. Related Work

Droplet routing is a critical step in biochip design au-
tomation. Previous routing approaches mainly focus on direct-
addressing biochips [6]–[10]. Recently, the problem of manip-
ulating droplets on a cross-referencing biochip has attracted
some attention, but to our knowledge, all existing methods
begin with a direct-addressing routing result, and transform it
to a cross-referencing routing result, cycle-by-cycle. Griffith et
al. [8] proposed a graph coloring based method that is applied
to each successive cycle of the direct-addressing solution. Each
node in an undirected graph represents a droplet, and two
nodes are connected by an edge if these two droplets cannot
move at the same time. Therefore, the minimum time to move
all droplets is equivalent to the minimum number of colors
required to color this undirected graph. Xu et al. [11] proposed
a clique partitioning based method that is also sequentially
applied to the direct-addressing solution. Each clique is a set
of droplets whose destination cells, i.e., the cell to which
the droplets are supposed to move, are in the same row or
column. The number of cliques is the maximum time to
move all droplets. Since clique partitioning is NP-hard, they
proposed an efficient heuristic approach to solve this problem.
However, droplets with different destination cells can move
at the same time. Therefore, their algorithm may potentially
increase droplet transportation time. Any algorithm that uses
the direct-addressing solution as a starting point is limited by
that solution, and to the best of our knowledge, there is no
existing routing algorithm that is directly targeted to cross-
referencing biochips.

B. Our Contribution

In this paper, we propose an integer linear programming
(ILP) based droplet routing algorithm for cross-referencing
biochips. We derive the basic ILP formulation to simulta-
neously perform droplet routing and assign voltages to the
cross-referencing electrodes, while minimizing the maximum
droplet transportation time. Moreover, we also model multi-
pin nets in our ILP formulation for practical bioassays, where
multiple droplets are merged during their transportation. To
overcome the computational cost of the ILP, we also propose
a progressive ILP routing scheme, which is used to find the
minimum-cost droplet locations at each time step using an
ILP. Unlike the progressive ILP scheme proposed in [12],
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Fig. 1. Top view of a cross-referencing biochip.

which divides the original problem spatially, our algorithm
divides the original routing problem temporally. In this way,
the original problem is reduced to a manageable size, and
we can practically apply an ILP-based method to find a good
solution within reasonable CPU time. The major contributions
of this paper include the following:

• We propose the first routing algorithm that directly solves
the routing problem in cross-referencing biochips. In con-
trast with previous works that start with an initial direct-
addressing routing solution, our algorithm has higher
flexibility and can obtain better solutions for droplet
routing on cross-referencing biochips.

• To tackle the complexity of the basic ILP formulation, we
propose the progressive ILP routing scheme. This scheme
iteratively determines the locations of droplets at each
time step by ILP formulation, and therefore, can obtain
a high-quality solution within reasonable CPU times.

• Unlike previous works that only move a subset of droplets
at each time (for example, the algorithm proposed in [11]
only moves droplets whose destination cells are in the
same row/column), our algorithm maximizes the number
of droplets that can simultaneously move at the same
time, even if the destination cells are not in the same
row/column. Therefore, our algorithm can obtain a rout-
ing solution with lower droplet transportation time. This
minimization is especially important for cross-referencing
biochips due to the electrode interference problem.

Simulation results demonstrate the efficiency of our progres-
sive routing scheme compared with the basic ILP formulation.
The basic ILP formulation requires more than five days while
the progressive ILP routing scheme requires no more than
about 15 seconds for one bioassay. Simulation results also
demonstrate the effectiveness of our algorithm compared with
previous work. For example, for the protein assay, our algo-
rithm obtains 59.61% smaller maximum droplet transportation
time than the network-based method proposed in [10], plus the
clique partitioning based algorithm proposed in [11].

The remainder of this paper is organized as follows. Sec-
tion II details routing on cross-referencing biochips and for-
mulates the droplet routing problem. Next, Section III presents
the basic ILP formulation for droplet routing problem the
complexity analysis. Section IV details the progressive-ILP
routing scheme, while Section V shows the simulation results.
Finally, concluding remarks are provided in Section VI.
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Fig. 2. Illustration of electrode interference. Unselected rows/columns are
left floating.

II. ROUTING ON CROSS-REFERENCING BIOCHIPS

In this section, we first show the architecture of cross-
referencing biochips. Next, we detail the unique electrode
interference that could result in incorrect droplet movement,
and the fluidic constraints that avoid this and guarantee correct
droplet movement. Finally, we present the problem formula-
tion of the droplet routing problem.

A. Cross-Referencing Biochips

Figure 1 shows the top view of a cross-referencing biochip.
A droplet is sandwiched between two plates. A set of elec-
trodes spans a full row in the X-dimension and a full column
in the Y -dimension, and is assigned either a driving or
reference voltage. Two sets of electrodes are orthogonally
placed, one set each on the top and bottom plates as shown
in Figure 1, and each electrode can be set to either a high
or a low voltage level. A grid point is “addressed” if there is
a potential difference between the upper and lower electrode,
i.e., one is high while the other is low. This causes a droplet
at a neighboring grid point to move into this location.

The advantage of cross-referencing biochips is that we
require only Ŵ + Ĥ control wires for droplet movement,
instead of the Ŵ Ĥ control wires required for direct-addressed
biochips, where Ŵ (Ĥ) is the width (height) of a biochip,
measured in terms of the number of electrodes in each
dimension. Therefore, these biochips incur reduced package
and fabrication costs.

B. Electrode Constraint

The improvement in packaging and fabrication costs, de-
scribed above, comes at the cost of reduced flexibility for
droplet movement, as compared to direct-addressing biochips.
When moving multiple droplets simultaneously, we must set
potential levels on multiple rows/columns as driving elec-
trodes. However, since each set of electrodes in the X (Y )
direction spans the entire row (column), setting electrode
voltage values to move a set of droplets could imply that
some droplets may be inadvertently and incorrectly moved.
We illustrate this idea in Figure 2, where our goal is to move
three droplets at the same time, to neighboring locations. The
picture shows the set of voltage assignments to the electrodes
to achieve this goal: these destinations of the droplets are
selected by activating the corresponding rows and columns,
by setting one of the lines to high and the other to low.
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Fig. 3. Illustration of the modeling of the electrode constraint.

However, due to the grid structure, several other locations
are also accidentally activated. If either of these is adjacent
to a droplet, it will cause an unwanted effect. For example,
in this scheme, droplet 2 is now attracted to the locations
just above and just below it, and is likely to split into
two. This scenario is referred to as electrode interference,
and it must be avoided during droplet transportation. The
restriction that avoids electrode interference is referred to as
an electrode constraint. Note that not every extra activated cell
causes incorrect droplet movement: for example, the top-right
activated cell has no effect on droplet movement since it has
no neighboring droplets. Only the extra activated cells that are
around a droplet and its destination cell may cause incorrect
droplet movement.

The electrode constraint imposes serious restrictions on
the movement of multiple droplets. When more than two
droplets are moved, we may have to stall some droplets to
satisfy the electrode constraint, which will result in longer
droplet transportation times. For example, in Figure 2, we
can stall droplet 3 and move the other two, and this will
avoid electrode interference. The manner in which electrode
constraints are handled is a critical routing consideration in
cross-referencing biochips, and is important in minimizing the
droplet transportation time.

We now show how the electrode constraint can be modeled.
Suppose that a droplet d moves from cell (x, y) to cell (x +
1, y) at time t+1, as shown in Figure 3. Then the cell (x, y) as
well as the ten cells that surround (x, y)∪(x+1, y), as shown
in Figure 3, must be deactivated. Otherwise, d is attracted by
two electro-hydrodynamic forces, so d may move incorrectly
or be split into two smaller droplets. Note that in the case that
d stays at its original location, cell (x, y) does not necessarily
have to be activated and all the neighboring cells of (x, y)
must be deactivated, as demonstrated in [13].

C. Fluidic Constraint

Besides the electrode constraint, we also must satisfy the
static and dynamic fluidic constraints for correct droplet
movement [9], [10]. The static fluidic constraint states that
the minimum spacing between two droplets must be one cell
while the dynamic fluidic constraint is related to two moving
droplets. To satisfy the dynamic fluidic constraint, if a droplet
d moves to cell (x, y) at time t+1, then there must be no other
droplet d′ which can move from one of the eight neighboring
cells of (x, y) to another cell at time t + 1.
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Fig. 4. Illustration of the dynamic fluidic constraint.

Figure 4 illustrates the dynamic fluidic constraint. Here,
cell (x, y) must be activated for droplet d, since a droplet
moves to a cell only if that cell is activated. However,
the electrode constraint dictates that cell (x, y) cannot be
activated; otherwise, droplet d′ can move incorrectly. In other
words, enforcing the electrode constraint for all drops ensures
that the dynamic fluidic constraint is automatically satisfied
(however, it is easy to show that the reverse is not true). As a
result, our electrode constraints subsume the dynamic fluidic
constraints, and we do not have to explicitly specify the latter.

D. Problem Formulation
In this paper, we focus on droplet transportation problem.

As stated in [9], [10], the droplet transportation problem can
be represented in a 3D space, where the third dimension
corresponds to time. At each time step, the problem reduces to
working with the droplet movement problem in a 2D plane. We
focus the problem formulation on one 2D plane, noting that
similar constraints may be added for every other 2D plane.
When routing droplets on one 2D plane, we consider the
modules (and the surrounding segregation cells) that are active
as obstacles. Besides, for practical bioassays, we must be able
to handle 3-pin nets to represent the fact that two droplets may
have to be merged during their transportation for efficient mix
operations [9], [14]. Therefore, the droplet routing problem
for each 2D plane can be formulated as follows:

Input: A netlist of m nets N = {n1, n2, . . . , nm}, where
each net ni is a 2-pin net (one droplet) or a 3-pin net (two
droplets), and the locations of pins and obstacles.

Objective: Route all droplets from their source pins to their
target pins while minimizing the maximum time to route all
droplets.

Constraint: Both fluidic and electrode constraints must be
satisfied.

III. ILP FORMULATION FOR DROPLET ROUTING

In this section, we present the basic ILP formulation for
one 2D plane. We show how the ILP optimizes droplet routing
and scheduling and voltage assignment on the electrodes, with
the consideration of 3-pin nets, and then we analyze the
computational complexity of the formulation and propose a
practical approach for problem size reduction.

A. Basic ILP Formulation
Based on the modeling of electrode constraint shown in

Figure 3, the electrode constraint can be modeled by the
following three rules:

TABLE I
NOTATIONS USED IN THE ILP FORMULATION.

Ŵ /Ĥ biochip width/height
T maximum droplet transportation time
N ′ set of 3-pin nets
D set of droplets
di

j j-th droplet of net ni; j = {1, 2}
(si,j

x , si,j
y ) location of the source of di

j

(t̂ix, t̂iy) location of the sink of net ni

(xi,j
t , yi,j

t ) location of droplet di
j at time t

C set of available cells
(cells that can be used for routing)

E(x, y) set of cell (x, y) and its four adjacent cells
E′(x, y) set of cell (x, y)’s four adjacent cells
Ê(x, y) set of available neighboring cells of (x, y)

E′x(x, y)/E′y(x, y) set of available cells adjacent to (x, y)
with the same x- (y-) coordinate

D̂(x, y) set of available diagonal cells of (x, y)
Tl actual maximum droplet transportation time

pi
j(x, y, t) a 0-1 variable to represent that droplet di

j
is located at (x, y) at time t

Lc
x(t) a 0-1 variable represents that column x

is set to voltage low at time t
Hc

x(t) a 0-1 variable represents that column x
is set to voltage high at time t

Lr
y(t) a 0-1 variable represents that row y

is set to voltage low at time t
Hr

y(t) a 0-1 variable represents that row y
is set to voltage high at time t

ax,y
t a 0-1 variable represents that (x, y)

is activated at time t
mi

t a 0-1 variable represents that di
0 and di

1
are merged at time t

1) If a droplet is at cell (x, y) at time t, then the four
diagonally adjacent cells cannot be activated at time t+
1.

2) If a droplet moves to cell (x′, y′) at time t+1, then the
eight neighboring cells of (x′, y′) cannot be activated at
t + 1.

3) If a droplet is at cell (x, y) at time t, at most one cell
can be activated among cells (x, y) and its four adjacent
cells.

Note that both rule #1 and #2 state that the cells diagonally
adjacent to cell (x, y) cannot be activated at time t + 1. This
redundancy reduces the size of the basic ILP formulation;
otherwise, extra variables are required to represent the moving
direction of each variable pi

j(x, y, t) and extra constraints to
determine the values of these extra variables.

In the following sections, we introduce the objective func-
tion and constraints of the basic ILP formulation. The no-
tations used in the proposed ILP formulation are shown in
Table I.

1) Objective Function: The goal is to minimize the latest
time a droplet reaches its sink. Therefore, the objective func-
tion is defined by the following equation:

Minimize : Tl. (1)

2) Constraints: There are totally eight constraints in the
basic ILP formulation.
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1) Objective function computation: If a droplet reaches its
sink at time t+1, then the time when it reaches its sink
can be computed as t + 1 times the difference of the
two variables pi

j(t̂
i
x, t̂iy, t+1) and pi

j(t̂
i
x, t̂iy, t). Therefore,

the objective function can be computed by the following
constraint:

(t + 1)(pi
j(t̂

i
x, t̂i

y, t + 1)− pi
j(t̂

i
x, t̂i

y, t)) ≤ Tl,

∀di
j ∈ D, 0 ≤ t < T. (2)

2) Source and sink requirements: We assume that at time
zero, all droplets are at their source locations. All
droplets must reach their sinks. Once a droplet reaches
its sink, it remains there. Therefore, the above require-
ments can be represented by the following constraints:

pi
j(s

i,j
x , si,j

y , 0) = 1, ∀di
j ∈ D (3)

T−1∑
t=0

pi
j(t̂

i
x, t̂i

y, t) ≥ 1, ∀di
j ∈ D (4)

pi
j(t̂

i
x, t̂i

y, t)− pi
j(t̂

i
x, t̂i

y, t + 1) ≤ 0,∀di
j ∈ D, 0 ≤ t < T. (5)

3) Exclusivity constraint: The exclusivity constraint states
that at each time step, a droplet only has one location
and can be represented by the following constraint:

∑

(x,y)

pi
j(x, y, t) = 1, (x, y) ∈ C, ∀di

j ∈ D, 0 ≤ t < T. (6)

4) Static fluidic constraint: To satisfy the static fluidic
constraint, the minimum spacing between two droplets
must be one cell. In other words, there are no other
droplets in the 3 × 3 region centered by a droplet. The
static fluidic constraint can be modeled by the following
constraint:

pi
j(x, y, t) + pi′

j′(x
′, y′, t) ≤ 1, ∀di

j , d
i′
j′ ∈ D,

(x, y) ∈ C, (x′, y′) ∈ Ê(x, y), 0 ≤ t < T. (7)

5) Voltage assignment and cell activation: Each
row/column can be assigned one voltage (high or
low), or left floating, at any time. A cell is activated
if and only if it is in the intersection of a row with
high (low) voltage and a column with low (high)
voltage. Therefore, this constraint can be modeled by
the following constraints:

Lc
x(t) + Hc

x(t) ≤ 1, 0 ≤ x < Ŵ , 0 ≤ t < T (8)

Lr
y(t) + Hr

y (t) ≤ 1, 0 ≤ y < Ĥ, 0 ≤ t < T (9)
(Lc

x(t) and Hr
y (t)) or (Hc

x(t) and Lr
y(t)) ↔ ax,y

t ,

∀(x, y) ∈ C, 0 ≤ t < T. (10)

We use the following five equations and two additional
variables to linearize constraint (10):

Lc
x(t) + Hr

y (t)− 2bx,y
1 (t) ≥ 0,∀(x, y) ∈ C, 0 ≤ t < T (11)

Lc
x(t) + Hr

y (y)− bx,y
1 (t) ≤ 1,∀(x, y) ∈ C, 0 ≤ t < T (12)

Hc
x(t) + Lr

y(t)− 2bx,y
2 (t) ≥ 0,∀(x, y) ∈ C, 0 ≤ t < T (13)

Hc
x(t) + Lr

y(y)− bx,y
2 (t) ≤ 1,∀(x, y) ∈ C, 0 ≤ t < T (14)

ax,y
t − bx,y

1 (t)− bx,y
2 (t) = 0,∀(x, y) ∈ C, 0 ≤ t < T, (15)

where bx,y
1 (t) and bx,y

2 (t) are two binary variables.
bx,y
1 (t) = 1 (bx,y

2 (t) = 1) means that cell (x, y) is
activated and column x is assigned to low (high) voltage
and row y is assigned to low (high) voltage. Note that
bx,y
1 (t) and bx,y

2 (t) cannot be one at the same time, since
a row/column can be assigned to only one voltage at a
time.

6) Droplet movement constraint: A droplet can only move
to an adjacent cell, which must be activated before the
movement occurs. On the other hand, if a droplet is
to stay at its original location, the corresponding cell
may or may not be activated. Therefore, the droplet
movement constraint can be represented by the follow-
ing constraints:

∑

(x′,y′)∈E(x,y)

pi
j(x

′, y′, t + 1)− pi
j(x, y, t) ≥ 0, ∀di

j ∈ D,

(x, y) ∈ C, 0 ≤ t < T − 1 (16)

pi
j(x, y, t + 1) +

∑

(x′,y′)∈E′(x,y)

pi
j(x

′, y′, t)− ax,y
t+1 ≤ 1,

∀di
j ∈ D, (x, y) ∈ C, 0 ≤ t < T − 1. (17)

Note that activating a cell does not imply that a droplet
will move to this cell, as can be seen in the case of
the top-right extra activated cell in Figure 2. Therefore,
constraint (17) does not state an “if-and-only-if” relation
between cell activation and droplet movement.

7) Electrode constraint: The three rules explained earlier
can be represented as the following constraints, where
constraint (18) represents rule #1, constraint (19) repre-
sents rule #2, and constraint (20) represents rule #3.

pi
j(x, y, t) + ax′,y′

t+1 ≤ 1, ∀di
j ∈ D, (x, y) ∈ C,

(x′, y′) ∈ D̂(x, y), 0 ≤ t < T − 1 (18)

9pi
j(x, y, t) +

∑

(x′,y′)∈Ê(x,y)

ax′,y′
t ≤ 9,

∀di
j ∈ D, (x, y) ∈ C, 0 ≤ t < T (19)

6pi
j(x, y, t) +

∑

(x′,y′)∈E(x,y)

ax′,y′
t+1 ≤ 7,

∀di
j ∈ D, (x, y) ∈ C, 0 ≤ t < T − 1, (20)

8) 3-pin nets: We use the following three constraints to
handle the 3-pin nets:
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∑

(x,y)

(pi
0(x, y, t)− pi

1(x, y, t)) = 0 ↔ mi
t = 1,

∀ni ∈ N ′, (x, y) ∈ C, 1 ≤ t < T (21)
T−1∑
t=1

mi
t ≥ 1,∀ni ∈ N ′ (22)

T−2∑
t=1

(t + 1)(mi
t+1 −mi

t − pi
0(t̂

i
x, t̂i

y, t + 1)+

pi
0(t̂

i
x, t̂i

y, t)) ≤ −1,∀ni ∈ N ′ (23)

Constraint (21) is used to determine whether two
droplets are merged; i.e., in the same physical location.
Constraint (22) is used to guarantee that two droplets
must be merged during their transportation by restricting
that their physical location must be the same for at
leat one time step. Constraint (23) states that these two
droplets must be merged before reaching their sink.
We use the following five equations and two additional
variables to linearize constraint (21):

∑

(x,y)

(pi
0(x, y, t)− pi

1(x, y, t))− (Ŵ Ĥ)× m̂i
1(t)

≥ 1− (Ŵ Ĥ), ∀ni ∈ N ′, (x, y) ∈ C, 1 ≤ t < T (24)∑

(x,y)

(pi
0(x, y, t)− pi

1(x, y, t))− (Ŵ Ĥ)× m̂i
1(t)

≤ 0, ∀ni ∈ N ′, (x, y) ∈ C, 1 ≤ t < T (25)∑

(x,y)

(pi
0(x, y, t)− pi

1(x, y, t)) + (Ŵ Ĥ)× m̂i
2(t)

≥ (Ŵ Ĥ)− 1, ∀ni ∈ N ′, (x, y) ∈ C, 1 ≤ t < T (26)∑

(x,y)

(pi
0(x, y, t)− pi

1(x, y, t)) + (Ŵ Ĥ)× m̂i
2(t)

≤ 0, ∀ni ∈ N ′, (x, y) ∈ C, 1 ≤ t < T (27)

mi
t + m̂i

1(t) + m̂i
2(t) = 1, (28)

where m̂i
1(t) and m̂i

2(t) are two binary variables. m̂i
1(t)

is one if
∑

(x,y) (pi
0(x, y, t)− pi

1(x, y, t)) is greater
than or equal to zero. Similarly, m̂i

2(t) is one if∑
(x,y) (pi

0(x, y, t)− pi
1(x, y, t)) is less than or equal to

zero. Therefore, these two variables cannot be one at
the same time. Note that once these two droplets are
merged, they will always move together by the droplet
movement constraint. Therefore, these two droplets are
not split once they are merged.

B. Complexity Analysis

It is easy to verify that the number of variables that represent
the droplet location dominates the total number of variables.
The number of variables that represent the locations of droplets
at each time is O(|D|Ŵ ĤT ), and therefore this is the order
of the total number of variables in the basic ILP formulation.

It can be verified that the fluidic constraint (7) introduces
the maximum number of constraints, since it models the
relationship between every pair of droplets. This amounts to
a total of O(|D|2Ŵ ĤT ) constraints, and this is the order of
the number of constraints in the basic ILP formulation.

Based on the above discussion, we present the following
observation: Given a set of nets N of one 2D plane, a
biochip of the width (height) Ŵ (Ĥ), and the maximum
droplet transportation time T , the number of variables and
constraints of the basic ILP formulation for one 2D plane are
O(|D|Ŵ ĤT ) and O(|D|2Ŵ ĤT ), respectively.

C. Implementational Issues

We now present techniques for practically reducing the
number of variables/constraints, without affecting the optimal-
ity of the basic ILP formulation. We use the concept of the
idle interval presented in [10] to reduce unnecessary variables.
The idle interval Ii

j(x, y) = [Tm(x, y, di
j), T

M (x, y, di
j)]

represents all possible times a droplet di
j will be at cell

(x, y) with a time limitation on the latest time when di
j must

reach its sink. Here, Tm(x, y, di
j) represents the earliest time

when di
j reaches (x, y) from its source and TM (x, y, di

j)
represents the latest time when di

j can stay at (x, y) without
violating the time limitation. If T is the time limitation, we
can eliminate variables pi

j(x, y, t) if t < Tm(x, y, di
j) or

t > TM (x, y, di
j), since di

j cannot reach (stay at) cell (x, y)
earlier than Tm(x, y, di

j) (later than TM (x, y, di
j)).

With this approach, we can also eliminate unnecessary
constraints. For example, for every variable pi

j(x, y, t), if all
variables pi′

j′(x
′, y′, t), (x′, y′) ∈ Ê(x, y) are eliminated, then

we can eliminate the static fluidic constraint associated with
pi

j(x, y, t). Note that if all variables pi
j(x

′, y′, t+1), (x′, y′) ∈
E(x, y) are eliminated, then we add one extra constraint
pi

j(x, y, t) = 0 in the basic ILP formulation. Otherwise, we
may obtain an infeasible solution with pi

j(x, y, t) = 1 and
pi

j(x
′, y′, t + 1) = 1, but (x′, y′) /∈ E(x, y), since the droplet

movement constraint is eliminated for pi
j(x, y, t).

IV. PROGRESSIVE-ILP ROUTING SCHEME

Although the basic ILP formulation presented in the pre-
vious section can solve the droplet transportation problem, it
may incur high run times. Hence, it may be hard to directly
apply the basic ILP formulation to practical bioassays. In this
section, we present a progressive-ILP routing scheme to solve
the droplet transportation problem. The main idea is to divide
the original problem into a set of subproblems corresponding
to each time step. The goal of each subproblem is to find min-
cost locations of the droplets at next time step by ILP. In the
following subsections, we first overview the progressive-ILP
routing scheme, and then present the ILP formulation. Next,
we present approaches for handling 3-pin nets and determining
the droplet movement cost. Finally, we present a complexity
analysis and some implementation details.

A. Progressive Routing Algorithm Overview

Figure 5 shows the overview of the progressive routing
scheme. The essential intuition is that this scheme finds the
optimal movement of droplets progressively, one time step at a
time. We first set Tl as the maximum Manhattan distance of all
droplets from their sources and sinks. Until all droplets reach
their sinks, we first calculate the droplet movement cost, and



PING-HUNG YUH ET AL.: A PROGRESSIVE-ILP BASED ROUTING ALGORITHM FOR THE SYNTHESIS OF CROSS-REFERENCING BIOCHIPS 7

Algorithm: Progressive-ILP routing
Let Tl be the maximum Manhattan distance of
all droplets from their sources to sinks;
begin
1 while not all droplets reach their sinks
2 Compute droplet movement cost();
3 Construct ILP();
4 Solve ILP();
5 Update droplet position();
6 if it is not possible to route all droplets within Tl

7 Tl += α× maximum Manhattan distance;
8 Set Tl as the maximum droplet transportation time;
end

Fig. 5. Overview of progressive-ILP method.

Droplet

Fig. 6. Illustration of the locality of droplet movement and electrode
constraint when locations of droplets are known.

then we construct the progressive-ILP formulation and solve
it by an ILP solver. Finally, if it is found that some droplets
cannot be routed within time Tl, then Tl is increased by α
times the maximum Manhattan distance, where α is a user-
specified constant and is set to be 0.2.

B. Progressive-ILP Formulation

The key idea of the progressive-ILP method is to reduce
the problem to a manageable size by solving a series of
subproblems. The problem size can be further reduced by
observing that the electrode and static fluidic constraints and
droplet movement have only local effects when the locations
of the droplets are known. Figure 6 shows a biochip with
two droplets, where the arrows represent possible directions in
which the droplets can move. Since the movement of a droplet
di

j can only be affected by its neighboring cells and their
adjacent cells, the progressive-ILP does have not to consider
the effects of activated cells outside the 5× 5 region around a
droplet. To satisfy the static fluidic constraint, we observe that
after a droplet moves, two droplets are adjacent to each other
only if a cell with more than one droplets nearby is activated.
Therefore, we do not activate this cell in the progressive-ILP
formulation. Finally, each droplet di

j can either move to one
of its four adjacent cells, or stay at its original location. That
is, the possible position of a droplet can be represented as a
“cross” shown in Figure 6.

Therefore, variables ax,y
t+1 are required to represent the cell

(xi,j
t , yi,j

t ) and its four adjacent cells. Other cells either must
be deactivated (within the 5 × 5 region) or have no effect
on droplet movement (outside the 5× 5 region). In this way,
unnecessary variables can be eliminated. We now present the
progressive-ILP formulation in the following sections. The
notations used in the progressive-ILP formulation are also
listed in Table I.

1) Objective Function: The goal of the progressive-ILP for-
mulation is to find the min-cost droplet movement. Therefore,
the objective function can be represented as the following
equation:

Minimize
∑

di
j∈D

∑
(x,y)∈E(x

i,ji
t ,y

i,j
t )

wi
j(x, y)pi

j(x, y, t + 1),(29)

where wi
j(x, y) is the cost when a droplet di

j moves to cell
(x, y).

2) Constraints: There are five constraints in the
progressive-ILP formulation.

1) Droplet movement constraint: A droplet can move to
one of its four adjacent cells if and only if this cell is
activated. Therefore, this constraint can be expressed by
the following constraint:

pi
j(x, y, t + 1) ↔ ax,y

t+1, ∀di
j ∈ D, ∀(x, y) ∈ E′(xi,j

t , yi,j
t ). (30)

The above constraint can be easily linearized by the
following two equations:

pi
j(x, y, t + 1) ≤ ax,y

t+1,∀di
j ∈ D, ∀(x, y) ∈ E′(xi,j

t , yi,j
t ) (31)

ax,y
t+1 ≤ pi

j(x, y, t + 1),∀di
j ∈ D, ∀(x, y) ∈ E′(xi,j

t , yi,j
t ). (32)

Note that since only the four adjacent cells are associated
with cell activation variables, the cell activation and
the droplet movement must be modeled as a “if-and-
only-if” relation, unlike the “if” relation in the basic
ILP formulation. Moreover, a cell stays at its original
location if and only if all its four adjacent cells are
deactivated. Therefore, we use the following constraints
to represent this situation:

pi
j(x

i,j
t , yi,j

t , t + 1) +
∑

(x,y)∈E′(xi,j
t ,y

i,j
t )

ax,y
t+1 ≥ 1,∀di

j ∈ D (33)

4pi
j(x

i,j
t , yi,j

t , t + 1) +
∑

(x,y)∈E′(xi,j
t ,y

i,j
t )

ax,y
t+1 ≤ 4,∀di

j ∈ D. (34)

2) Electrode constraint: Rule #1, which states that the
diagonal cells cannot be activated, can be represented
as:

Lc
x(t + 1) + Hr

y (t + 1) ≤ 1, ∀(x, y) ∈ D̂(xi,j
t , yi,j

t ) (35)

Hc
x(t + 1) + Lr

y(t + 1) ≤ 1, ∀(x, y) ∈ D̂(xi,j
t , yi,j

t ). (36)
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The following two constraints, similar to constraint (19),
are used for rule #2:

if pi
j(x, y, t + 1) = 1 → Lc

x′(t + 1) + Hr
y′(t + 1) ≤ 1

or Hc
x′(t + 1) + Lr

y′(t + 1) ≤ 1

∀di
j ∈ D, ∀(x, y) ∈ E′

x(xi,j
t , yi,j

t ), ∀(x′, y′) ∈ E′
y(x, y) (37)

if pi
j(x, y, t + 1) = 1 → Lc

x′(t + 1) + Hr
y′(t + 1) ≤ 1

or Hc
x′(t + 1) + Lr

y′(t + 1) ≤ 1

∀di
j ∈ D, ∀(x, y) ∈ E′

y(xi,j
t , yi,j

t ), ∀(x′, y′) ∈ E′
x(x, y). (38)

As shown in Figure 3, if di
j moves to cell (x+1, y), then

cells (x+2, y), (x+2, y−1), and (x+2, y+1) cannot be
activated. A similar condition holds for cell (x − 1, y).
Constraint (37) is used to represent these two cases, and
constraint (38) is used to represent the case when di

j

moves to cell (xi,j
t , yi,j

t + 1) or (xi,j
t , yi,j

t − 1). We use
the following two equations to linearize constraint (37):

pi
j(x, y, t + 1) + Lc

x′(t + 1) + Hr
y′(t + 1) ≤ 2,

∀di
j ∈ D, ∀(x, y) ∈ E′

x(xi,j
t , yi,j

t ), ∀(x′, y′) ∈ E′
y(x, y) (39)

pi
j(x, y, t + 1) + Hc

x′(t + 1) + Lr
y′(t + 1) ≤ 2,

∀di
j ∈ D, ∀(x, y) ∈ E′

x(xi,j
t , yi,j

t ), ∀(x′, y′) ∈ E′
y(x, y). (40)

Similarly, the same method can be used to linearize
constraint (38). Finally, for rule #3, we impose the
following constraint:

∑

(x′,y′)∈E(x
i,j
t ,y

i,j
t )

ax′,y′
t+1 ≤ 1,∀di

j ∈ D. (41)

3) Static fluidic constraint: Since the locations of the
droplets are known, we model the static fluidic constraint
in a simpler way. The fluidic constraint is violated only
if a cell with more than one droplet nearby is activated.
Therefore, instead of using constraint (7), we represent
the fluidic constraint as follows:

if more than one droplet is around cell (x, y)

ax,y
t+1 = 0, ∀(x, y) ∈ E′(xi,j

t , yi,j
t ),∀di

j ∈ D. (42)

4) Sink requirement: Once a droplet reaches its sink, it must
stay there. The sink requirement can be modeled by the
following constraint:

pi
j(x

i,j
t , yi,j

t , t)− pi
j(x

i,j
t+1, y

i,j
t+1, t + 1) ≤ 0, ∀di

j ∈ D, (43)

which means that if di
j reaches its sink at time t, then

it must stay there at time t + 1.
5) Voltage assignment and cell activation: This constraint

is the same as that in the basic ILP formulation.

c
1

c
2

t̂

i

j
d

k

q
d

Obstacle

Fig. 7. Droplet movement cost computation illustration. c1 and c2 are two
possible destinations of a droplet. Black regions are obstacles.

C. Droplet Movement Cost

A key issue in the progressive-ILP routing scheme is the
determination of the droplet movement cost. Since the goal
is to minimize the maximum droplet transportation time, the
objective is to move a droplet toward its sink at each time step.
Furthermore, congestion must be avoided among droplets;
otherwise, either a detour occurs or some droplets stall for
a period of time, to satisfy both the fluidic and electrode
constraints. Therefore, the droplet transportation time is poten-
tially increased. In this subsection, we detail how to determine
the droplet movement cost.

The droplet movement cost wi
j(x, y) when a droplet di

j

moves to cell (x, y) consists of routing and congestion costs
and is defined as follows:

wi
j(x, y) = β ri

j(x, y, t̂ix, t̂iy) + γ gi
j(x, y, t̂ix, t̂iy), (44)

where ri
j(x, y, t̂ix, t̂iy) is the routing cost and gi

j(x, y, t̂ix, t̂iy) is
the congestion cost. β and γ are user-specified constants. In
our implementation, we empirically set β = 15 and γ = 0.1.
Figure 7 illustrates the droplet movement cost computation.
Routing cost is the distance from cell (x, y) to the sink of di

j

and is defined as follows:

ri
j(x, y, t̂ix, t̂iy) =

dr(x, y, t̂ix, t̂iy)

Ŵ Ĥ
, (45)

where dr(x, y, t̂ix, t̂jy) is the real routing distance from cell
(x, y) to cell (t̂ix, t̂jy). We use the A∗-search algorithm to
determine this routing distance while considering all other
droplets except di

j as a 3 × 3 obstacle due to static fluidic
constraint. The routing cost of a cell (x, y) is the actual
distance between the source and (x, y) and the half perimeter
of the bounding box defined by (x, y) and the target pin. The
use of the A∗-search permits us to can obtain an accurate
estimation of the routing distance. For example, in Figure 7,
the dotted line represents the routing path obtained by the
A∗-search algorithm. Since the 3 × 3 region centered by the
droplet dk

q is considered as an obstacle, the minimum distance
between cell c2 and the sink for di

j is 9.
Note that one special case for routing cost computation is

that another droplet di′
j′ is temporarily located at the neigh-

boring cells of the sink of di
j . Therefore, it is not possible to

reach the sink of di
j due to di′

j′ being modeled a 3×3 obstacle.
In this case, we use the minimum of the real distance from
the sink to a cell plus the Manhattan distance from this cell
to the sink as dr(x, y, t̂ix, t̂jy). In this way, we can accurately
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estimate the routing cost if the sink of di
j is temporarily not

reachable.
The goal of the congestion cost component is to reduce

the probability of the violations of the electrode and flu-
idic constraints. In this paper, we also use the idle interval
Ii
j(x, y) = [Tm(x, y, di

j), T
M (x, y, di

j)] for congestion const
computation. If Tl is set to be the time limitation, the con-
gestion cost of a cell can be measured as the length of the
idle interval of di

j on cell (x, y) over the summation of the
length of the idle intervals of other droplets on cell (x, y).
Instead of using the source location of a droplet, as in [10],
we use the possible destination cell (x, y) to compute the idle
interval. The values of Tm(x, y, di

j) and TM (x, y, di
j) for a

subproblem at time t can be computed by the following two
equations:

Tm(x, y, di
j) = t + dm(x, y, t̂xt , t̂yt ) (46)

TM (x, y, di
j) = Tl − dm(x, y, t̂xt , t̂yt ), (47)

where dm(x, y, x′, y′) is the Manhattan distance between cells
(x, y) and (x′, y′). The congestion information is updated at
every time step for the latest congestion information.

To obtain more accurate congestion information, it is not
sufficient to only consider the congestion information of the
possible destination cell (x, y). In this paper, we consider
the congestion information of all cells within the bounding
box defined by cell (x, y) and its sink. Note that we use the
real bounding box computed by the A∗-search algorithm. For
example, as shown in Figure 7, when computing the conges-
tion cost of cell c1, we consider all cells within the dashed
region, which represents the real bounding box. Therefore,
the congestion cost gi

j(x, y, t̂ix, t̂iy) when droplet di
j moves to

cell (x, y) is defined by the following equation:

gi
j(x, y, t̂ix, t̂iy) =

∑

(x′,y′)∈bi
j(x,y)

|Ii
j(x

′, y′)|∑
di′

j′∈D |Ii′
j′(x, y)| , (48)

where bi
j(x, y) is the bounding box obtained by the A∗-search

algorithm and |Ii
j(x, y)| is the length of the idle interval

defined as the difference of its two end points plus one.
Note that if Tm(di

j) > TM (di
j) then |Ii

j(x, y)| is zero. If
the congestion cost is large, it is likely that the electrode and
fluidic constraints will be violated if di

j moves to cell (x, y).
Therefore, the proposed routing algorithm will not tend to
move a droplet to cell (x, y).

D. Handling 3-pin Nets
For a 3-pin net ni, the two droplets must be mixed during

their transportation. To guarantee that these two droplets are
mixed, first, these two droplets route toward each other.
After merged, we consider them as one droplet and route
them toward their sink. Therefore, for droplet movement cost
computation, the sink of di

0 (di
1) is the location of di

1 (di
0)

before merged.

E. Complexity Analysis
For each droplet, five variables are used to represent its

position at next time step and five variables are used to cap-
ture cell activation. The number of variables for row/column

TABLE II
STATISTICS OF THE ROUTING BENCHMARKS.

Circuit Chip dimension #2D planes #Tnets
Diagnostics 1 16× 16 11 28
Diagnostics 2 14× 14 15 35

Protein 1 21× 21 64 181
Protein 2 13× 13 78 178

voltage assignment is O(Ŵ Ĥ). Therefore, the total number of
variables for the progressive-ILP formulation is O(|D|+Ŵ Ĥ).

There are total O(Ŵ Ĥ) constraints for row/column voltage
assignment. It is easy to see that the number of other con-
straints is proportional to the number of droplets. Therefore,
the number of constraint in the progressive-ILP formulation is
O(|D|+ Ŵ Ĥ).

Based on the above analysis, we have the following obser-
vation: Given a set of droplets D and a biochip of the width
(height) Ŵ (Ĥ), the number of variables and constraints of
the progressive-ILP formulation for one problem instance (one
time step) are O(|D|+Ŵ Ĥ) and O(|D|+Ŵ Ĥ), respectively.

F. Implementational Issues

We now present several implementation details associated
with obtaining a fast and reasonable solution to this problem.
To further reduce the problem size, we add a restriction that a
droplet can only move toward its sink, except in the following
two cases. First, if a droplet cannot move toward its sink due
to obstacles, we allow the droplet to move in all possible
directions. Second, if the cell with minimum droplet movement
cost is not toward the sink, we allow di

j to move to this cell.
The knowledge that di

j will definitely not move to some
cells can be used to further reduce the number of vari-
ables/constraints. For example, if di

j will not move to cell
(xi,j

t − 1, yi,j
t ), then we can eliminate the variables pi

j(x
i,j
t −

1, yi,j
t , t + 1) and a

xi,j
t −1,yi,j

t
t . We can also eliminate the elec-

trode constraint for these cells. Finally, the voltage assignment
and cell activation constraint is replaced by the following two
constraints to ensure that this cell is not activated.

Lc
xi,j

t −1
(t + 1) + Hr

yi,j
t

(t + 1) ≤ 1 (49)

Hc
xi,j

t −1
(t + 1) + Lr

yi,j
t

(t + 1) ≤ 1. (50)

V. SIMULATION RESULTS

Our progressive ILP algorithm was implemented in the
C++ language, and GLPK [15] is used as our ILP solver.
For purposes of comparison, we have also implemented the
clique partitioning based [11] and the graph coloring based [8]
algorithms. All of the above algorithms and ILP formulations
are executed on a 1.2 GHz SUN Blade-2000 machine with
8GB memory. We evaluated our routing algorithm on the
two practical bioassays: the in-vitro diagnostics [9] and the
colorimetric protein assay [16]. Table II shows the statistics
of each benchmark [10]: column 2 shows the chip dimension,
column 3 lists the total number of 2D planes, and column 4
lists the total number of nets of all 2D planes.
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TABLE III
COMPARISON BETWEEN BASIC ILP AND PROGRESSIVE-ILP

FORMULATIONS.

Circuit max. #vari. max. #const. CPU time
Basic Prog. Basic Prog. Basic Prog.
ILP ILP ILP ILP ILP ILP

Diagnostics 1 24889 138 176580 388 >120h 2.55s
Diagnostics 2 18061 134 126983 398 >120h 2.53s

Protein 1 49561 134 350645 357 >120h 15.36s
Protein 2 22238 132 252989 385 >120h 6.70s

We performed two experiments to verify the efficiency and
effectiveness of the progressive-ILP algorithm. In the first
experiment, we compared the basic ILP with the reduction
method presented in Section III-C and progressive-ILP al-
gorithms. We generated both the basic and progressive-ILP
formulations for each 2D plane. The simulation results are
listed in Table III. Columns 2 and 3 (Columns 4 and 5)
list the maximum number of variables (constraints) of all
problem instances. For the basic ILP, the problem instance
is one 2D plane, and for the progressive-ILP, the problem
instance is one time step. The results show that the basic
ILP requires at least five days to solve all 2D planes of one
benchmark, which is not feasible for this problem; in contrast,
the proposed progressive-ILP algorithm requires at most 15.36
sec due to the significantly smaller problem size. For example,
as shown in Table III, for the protein 1 benchmark, the
progressive-ILP routing scheme can reduce the number of
variables (constraints) by 99.72% (99.89%) for the largest
problem instance. This result demonstrates the efficiency of
the progressive-ILP formulation.

The proposed progressive-ILP formulation can obtain a
near-optimal solution with much less CPU time compared with
the basic ILP formulation. For example, for one 2D plane of
the protein 1 benchmark with four droplets, the progressive-
ILP formulation obtains a solution of 21 cycles in 0.40 sec
while the basic ILP formulation obtains a 20-cycle solution in
19632 sec. Since it is not feasible to solve the basic ILP for
practical bioassays, it is not possible to compare the solution
quality of these two algorithms directly. Nevertheless, it is
observed that the difference in the solution quality for the two
algorithms is at most 3 cycles for 41 2D planes completed by
the basic ILP formulation, and the average solution difference
is only 1.68%. The result indicates that the progressive-ILP
algorithm is close to the optimal solution.

In the second experiment, we verified the quality of the pro-
posed progressive-ILP routing scheme. Since previous works
require a direct-addressing routing solution, for a fair compar-
ison, we first generated the direct-addressing routing solution
using the network-flow based algorithm [10] and applied
the previous approaches to obtain the final routing solution.
Moreover, we modified the network-flow based algorithm to
minimize the droplet transportation time. Table IV shows the
simulation result. We report the maximum and average Tl

of all 2D planes and the CPU time to route all 2D planes.
The CPU times for [10] + [11] and [10] + [8] are the total
CPU times to obtain the cross-referencing routing solution. As
shown in this table, the progressive-ILP routing algorithm can

obstacle

High

voltage

Low

voltage

Fig. 8. The result of the diagnostics 1 benchmark.

obtain much smaller droplet transportation times (in cycles)
than the previous approaches, under reasonable CPU times.
For example, compared with the [10] + [11] approach, the
progressive-ILP algorithm can obtain up to 45.83% smaller
maximum droplet transportation time of all 2D planes (48
cycles vs. 26 cycles) with longer CPU time (0.26 sec vs. 15.36
sec) for the protein 1 benchmark. Compared with the [10] +
[8] approach, the progressive-ILP algorithm can obtain up to
59.61% smaller maximum droplet transportation time of all 2D
planes (52 cycles vs. 22 cycles) with longer CPU time (0.06
sec. vs. 2.53 sec.) for the diagnostics 2 benchmark. This result
demonstrates that the proposed algorithm is very effective
for droplet routing on cross-referencing biochips. Figure 8
shows the routing result of one 2D plane of the diagnostics 1
benchmark at cycle 8.

There are two reasons why the progressive-ILP based rout-
ing algorithm can obtain an improved solution compared with
previous works. The first is that our algorithms directly target
droplet routing on cross-referencing biochips without going
through the intermediate step of finding a solution that is
optimal for direct-addressing routing. Therefore, this method
has more flexibility than previous works in exploring the
solution space. The second is that the proposed algorithm
maximizes the number of droplet movements at each cycle
by using the real routing distance as part of droplet move-
ment cost. To minimize cost, droplets tend to move to their
sinks at each cycle. Moreover, our algorithm incorporates a
probability-based congestion cost to avoid droplets to move
to congested regions, and therefore avoids additional detours
or stalls that increase droplet transportation time. In contrast,
both [11] and [8] requires a direct-addressing routing solution,
and they are less flexible than our algorithm. Moreover,
the technique proposed in [11] iteratively moves a set of
droplets whose destination cells are in the same row/column.
However, droplets whose destination cells are not in the same
row/column can still move at the same time as long as they
do not violate electrode constraint. Therefore, their algorithm
may lose the optimality of minimizing droplet transportation
time.

Another difference is that the graph coloring based algo-
rithm [8] assumes that four cells are activated when two
droplets move at the same time. However, by properly assign-
ing high/low voltages to each row/column, only two instead of
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TABLE IV
COMPARISON BETWEEN OUR APPROACH AND TWO METHODS BASED ON MAPPING DIRECT-ADDRESSING SOLUTIONS

Circuit [10] + [11] [10] + [8] Progressive-ILP
Max/avg CPU Max/avg CPU Max/avg CPU

Tl time Tl time Tl time
(cycle) (sec.) (cycle) (sec.) (cycle) (sec.)

Diagnostics 1 40 / 16.72 0.05 47 / 20.18 0.06 24 / 13.09 2.55
Diagnostics 2 35 / 13.46 0.05 52 / 16.80 0.06 22 / 11.00 2.53

Protein 1 48 / 19.32 0.26 55 / 24.40 0.30 26 / 16.15 15.36
Protein 2 36 / 11.00 0.20 53 / 14.33 0.21 26 / 10.23 6.70

four cells activate. For example, as shown in Figure 2, the two
extra cells can be eliminated by assigning high voltage to the
row containing droplet 3 and low voltage to the column where
two extra activated cells are originally at. In other words, the
algorithm in [8] does not exploit the ability of a biochip to
assign voltages to each row/column to maximize the number
of droplets movement at the same time.

VI. CONCLUSION

In this paper, we have proposed the first droplet routing
algorithm that operates directly on cross-referencing biochips
without a direct-addressing routing solution. We have also
presented the basic ILP formulation to minimize the droplet
transportation time and the progressive ILP routing scheme
to iteratively determine the minimum-cost positions of the
droplets at each time step. Simulation results have shown the
efficiency and effectiveness of our algorithm.

The target biochip can be viewed as a passive-matrix
addressing biochip, since we must activate a row/column to
activate a cell. There are other types of biochips that use
active-matrix addressing [17]. Each electrode has its unique
addressing; therefore, we can uniquely activate an electrode
without introducing the electrode interference problem. How-
ever, the hardware and package costs may increase due to the
extra control circuitry. We are currently trying to apply our
droplet routing algorithm to these types of biochips.

REFERENCES

[1] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “A progressive-ILP based
routing algorithm for cross-referencing biochips,” in Design Automation
Conference, July 2008, pp. 284–289.

[2] E. Verpoorte and N. F. D. Rooij, “Microfluidics meets MEMS,” Pro-
ceedings of the IEEE, vol. 1, no. 6, pp. 930–953, June 2003.

[3] F. Su, K. Chakrabarty, and R. B. Fair, “Microfluidic-based biochips:
Technology issues, implementation platforms, and design-automation
challenges,” IEEE Transaction on Computer-Aided Design of Integrated
Circuits and systems, vol. 25, no. 4, pp. 211–223, 2006.

[4] T. Xu and K. Chakrabarty, “Droplet-trace-based array partitioning and a
pin assignment algorithm for the automated design of digital microfluidic
biochips,” in International Conference on Hardware-Software Codesign
and System Synthesis, Oct. 2007, pp. 112–117.

[5] S.-K. Fan, C. Hashi, and C.-J. Kim, “Manipulation of multiple droplets
on N x M grid by cross-reference EWOD driving scheme and pressure-
contact packaging,” in International Conference on Micro Electro Me-
chanical Systems, January 2003, pp. 694–697.
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