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1 Introduction

Multi-Chip Modules (MCM's) provide a medium for integration of several bare dies on a

multi-layer substrate. MCM technology has gained popularity in recent years with the

promise of orders of magnitude reduction in inter-chip delay and power dissipation over

single chip packaging [2]. By virtue of a faster interconnect MCM's aim at alleviating, to

a large extent, the bottleneck o�ered by conventional packaging. However the interconnec-

tion medium of a typical MCM substrate is characterized by a signi�cant inductance and

routing distances of several centimeters. Accurate analysis of MCM interconnect requires

the use of lossy transmission line models. In comparison, the on-chip interconnect design

has been traditionally been performed by modeling lines as lumped resistance-capacitance

(RC) networks. The need for new methods which take into account the requirements of the

MCM scenario while being comparable in e�ciency to traditional IC design techniques is of

prime importance. This paper addresses the problem of designing the clocking network for

an MCM.

The design of the clock distribution network of an MCM is critical from the point of view of

achieving desired system speed along with reliable operation. The clock distribution network

on a MCM substrate can be considered to be a tree of lossy transmission-lines delivering

the clock signal to the various dies placed on the substrate, with bu�ers inserted into the
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network to maintain performance constraints. The interconnect typically shows considerable

inductive e�ects, and it is not enough to model its behavior using Elmore time constants, as

has been done for IC's (for example, in [17]). Therefore, the problem of constructing a clock

tree for MCM has three primary considerations:

a) that the lines are either critically damped, or the overshoot is acceptably constrained.

b) that the clock skew is minimized.

c) that constraints on the slew rate of the clocking waveform are met at each clock pin.

The design of zero-skew clock-trees for IC's using an Elmore delay equalization algorithm

was proposed by Tsay in [17]. This algorithm hierarchically merges zero-skew subtrees by

selecting a tapping point on the line interconnecting the two trees such that the delay to

the leaf nodes of the trees is equal. Subsequent re�nements such as [3, 5, 6, 8, 9, 13], have

attempted to improve the results by adding criteria for selecting the zero-skew subtrees to be

merged in each step, using wire width optimization, �nding planar routings, etc. However, all

of these have restricted themselves to the IC environment, and have not considered inductive

e�ects. In this paper, we generalize the zero-skew design methodology in [17] to a higher

order approximation of the voltage waveform, so as to facilitate the design of zero-skew

clock-trees for an MCM scenario, while meeting the above mentioned objectives for clock-

tree design for MCM. We also use a completely distributed model for the interconnect here,

rather than a cascade of lumped sections, as has been done previously, and we �nd that this

gives more accurate estimates of delay values. Further re�nements to this work, such as those

in references [3, 5, 6, 8, 9, 13], are possible under the same framework but are not addressed

here.

Some related research in [18] presents a method for the design of interconnect exhibiting

transmission line behavior using the S-parameter model. The method involves the selection

of appropriate widths for various branches of the given network such that the delay to the

various sinks is minimized and the waveforms exhibit a speci�ed damped behavior. This wire-

sizing strategy involves minimization of the maximum delay and the damping ratio error of

all the sinks nodes as a nonlinear programming problem. The approach presented in [18]

was aimed at the design of general signal networks and did not encompass the objective of

clock-tree design, where the minimization of clock-skew requires that the delays to all sinks
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be exactly equal. The design of a clock-tree under lossy-transmission model was considered

in [20]. This involves a strategy for minimizing the clock-skew by wire-sizing using a modi�ed

Gauss-Marquardt's least-square estimation technique. General RLC and transmission-lines

were modeled as a part of this method, but it did not address the problem of ensuring a

speci�c damping condition for the RLC lines of the clock-tree.

This paper uses a second-order distributed parameter transmission-line model [15] to

construct a zero-skew tree. The computational expense of the approach presented here is

very low. In comparison to the methods mentioned in the previous paragraph, the work

presented in this paper aims at minimizing both the skew as well as ensuring an appropriate

damping for clock trees. It is important to control ringing in the clocking network because

this could lead to undesirable cross-talk, and because high overshoots/undershoots could

also cause devices to switch incorrectly. However, we consider the possibility of allowing a

small overshoot of controlled magnitude, as this can ensure an improved signal slew rate

[1, 10, 19]. The speci�c contributions of this work are the use of a higher-order moment

matching to reduce the skew, the design of the clock-tree with controlled damping criterion

to ensure signal integrity while improving the timing performance, and a strategy for the

use of bu�ered clock-trees in the MCM scenario. Our method has the advantage of low

computation while being able to meet the design objectives. The accuracy of the models

used has been validated by SPICE simulations of the clocking networks obtained from the

algorithm.

A brief introduction to the second-order distributed model and its use to design zero-skew

trees is presented in Section 2 and Section 3 respectively. Section 4 presents the concept of

extending the �rst order delay moment matching to higher order moments. A method for

damping clock trees is presented in Section 5, and involves the selection of a suitable series-

termination. The procedure of selecting a suitable termination resistance to control the

damping of the waveforms at the sinks of the clock-tree is also presented here. Next, the

construction of bu�ered clock-trees is considered with the goal of meeting delay requirements

and satisfying the damping criterion in Section 6. Section 7 provides an overview of the

method and the results of the procedure on typical MCM examples are presented in Section 8.
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2 Evaluation of Interconnect Response

The concept of asymptotic waveform evaluation (AWE) [12] has been used widely in recent

years to simulate and design the interconnect. AWE involves approximation of the exact-

transfer function of a circuit by a lower order transfer function. This process consists of two

steps:

a) moment computation to the represent the original transfer-function as a Maclaurin series.

b) moment matching the series to a lower order transfer-function by Pad�e approximation.

2.1 Approximation of Transfer Function

A reduced order model of the interconnect is obtained here to evaluate the response of the

RLC lines that compose the clock-tree by an AWE technique called reciprocal expansion

(REX) [15]. The computational e�ciency of a distributed-parameter formulation of REX is

utilized to model the RLC lines. The response at the output of any leaf-node with respect

to the root of a subtree in the following sections, is approximated by a transfer function of

the form

H(s) =
Vleaf (s)

Vroot(s)
=

1

1 + b1s+ b2s2 + b3s3 + � � �+ bnsn
(1)

REX di�ers from conventional AWE in respect that, it matches the inverse of the transfer

function, i.e., 1
H(s) to the Maclaurin series. This proves useful in the computation of admit-

tance as described below. It is also advantageous due to the fact that for a transfer function

of the type (1) the Pad�e approximation step reduces to taking the reciprocal of the Maclau-

rin series.1 REX is a good choice for the kind of higher order approximation we use for the

purpose of clock tree construction.

2.2 Distributed Parameter REX

A second-order approximation to the transfer-function of RLC lines, presented in [15], is used

in the design of clock-tree in the following sections. The conductance to ground is assumed to

be zero. It should be pointed out that the frequency of operation of contemporary MCMs is

1It should also be pointed out that while Equation 1 is a [0=n] Pad�e approximant, it is possible to perform
moment-matching to obtain a [m=n] Pad�e approximant using REX.
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Figure 1: Distributed-parameter transmission Line Model

well below the resonance frequency of the RLC lines for current technology parameters. Hence

the second order approximation used here is accurate for the design in the frequency range

that is of interest. A brief description of this procedure is presented here for completeness.

Let the per unit resistance, capacitance, inductance parameters be represented as �; �; 


respectively. Consider a line of length l, terminated in an admittance at the far end (x = 0).

The admittance and the transfer function Vx=l(s)
Vx=0(s)

, at the near end (x = l) are to be determined.

This is illustrated in Figure 1.

2.2.1 Admittance Computation

Considering an in�nitesimal section dx of the line at position x, the admittance at (x + dx)

is as follows:

Y (x+ dx) =
Y (x) + s�dx

1 + dx(�+ s
)(Y (x) + s�dx)
(2)

Assuming that Y (x) is known to be the following polynomial in s (Y0(x) = 0, because

conductance to ground is assumed to be zero),

Y (x) = Y1(x)s+ Y2(x)s
2 (3)

The admittance at (x + dx) is

Y (x+ dx) = Y1(x+ dx)s+ Y2(x+ dx)s2 (4)

The second-order approximation to the admittance at (x + dx) is given by expanding

Equation (2) as a Maclaurin series,

Y (x+ dx) = (Y1(x) + �dx)s+ (Y2(x)� �dx(Y1(x) + �dx)2)s2 (5)
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Comparing (4) and (5) gives the following di�erential equations,

dY1(x)

dx
= � (6)

dY2(x)

dx
= ��(Y1(x))

2 (7)

Solving Equation (6) yields

Y1(x) = Y1(0) + �x (8)

Substituting this equation in Equation (7) and integrating we have

Y2(x) = Y2(0) � �x(
(�x)2

3
+ �xY1(0) + (Y1(0))

2) (9)

Hence given Y (0) at the end of a line of length l, the second order approximation of the

looking-in admittance Y (l) can be determined from equations (8) and (9).

2.2.2 Coe�cient Computation

Given a second order approximation to the voltage at x = 0 and Vout is the voltage at the

leaf node of interest,

V (0) = (1 + b1(0)s+ b2(0)s
2) Vout (10)

We need to �nd the voltage at x = l

V (l) = (1 + b1(l)s+ b2(l)s
2) Vout (11)

If second order approximation to the voltage at x is known, the voltage at (x + dx) is given

as

V (x+ dx) = V (x)(1 + dx(�+ s
)((Y1(x) + �dx)s+ Y2(x)s
2)) (12)

dV (x)

dx
= (1 + b1(x)s+ b2(x)s

2)(�Y1(x)s+ (�Y2(x) + 
Y1(x))s
2) (13)

= �Y1(x)s+ (�Y1(x)b1(x) + �Y2(x) + 
Y1(x))s
2 (14)

db1(x)

dx
= �Y1(x) = �Y1(0) + ��x (15)

db2(x)

dx
= �Y1(x)b1(x) + �Y2(x) + 
Y1(x) (16)
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Solving (15) we get,

b1(x) = b1(0) +
��x2

2
+ �Y1(0)x (17)

Substituting Equations (8), (9), and (17) in (16) and integrating we get

b2(x) = b2(0)+x(�(Y2(0)+Y1(0)b1(0))+
Y1(0))+
x2

2
(��b1(0)+
�)+

x3

6
�2�Y1(0)+

x4

24
�2�2

(18)

Hence the given voltage V (0), the second-order approximation to V (l) can be computed using

the Equations (17) and (18).

3 Zero-Skew Clock Tree Construction for RLC Lines

The process used here to construct a zero-skew clock tree involves a bottom-up recursive

process, as in [17]. The input consists of a description of the location and loading capacitance

of each clock pin. We begin by assigning each clock pin to a separate subtree; initially, each

subtree consists of just one node corresponding to the clock pin, and this node is considered

to be the root of the subtree. At each step, we merge two subtrees. The merging process

requires the determination of a point on the line interconnecting the trees such that the delay

to all the leaf nodes is the same; this point is taken to be the root of the merged subtrees,

and the process continues recursively. We describe one step of the recursive process here,

involving the determination of a zero-skew merging point for two subtrees. The procedure

comprises of three steps:

� Admittance Computation at the root of a subtree

� Voltage Computation at the root of a subtree

� Merging of a pair of subtrees

In general, consider the merging of two zero-skew subtrees. Let Y L(0) and Y R(0) be the

polynomials describing the looking-in admittance of what will be referred to as \left" and

\right" subtrees in the following sections.

Y L(0) = Y L
1 (0)s+ Y L

2 (0)s
2 (19)
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Figure 2: Zero-skew merging under distributed parameter transmission line model

Y R(0) = Y R
1 (0)s+ Y R

2 (0)s2 (20)

Let the voltage at the root of left (x = 0) and right (�x = 0) subtrees (see Figure 2) be

described by polynomials of the form

V L(0) = bL0 (0) + bL1 (0)s+ bL2 (0)s
2 (21)

V R(0) = bR0 (0) + bR1 (0)s+ bR2 (0)s
2 (22)

Let �; �; 
 be the per unit resistance, capacitance and inductance of the wire respectively.

The process of zero-skew merging involves determination of a ratio r which divides the the

line connecting the subtrees such that the the length of the line from the tapping-point to

the root of right subtree is

l1 = r � l (23)

and the length of the line to the root of left subtree is

l2 = (1� r) � l (24)

The merging is depicted in Figure 2. The positions �x = 0 and x = 0, shown in this �gure

represents the far ends of the lines with lengths l1 and l2 respectively. Consider the wire

interconnecting the right and left subtrees to consist of two distributed RLC lines, i.e., from

�x = 0 to �x = l1 and x = 0 to x = l2. Since the admittance and voltage at the far end of

the lines are known from equations (19), (20) and (21), (22) respectively, the voltage at the

merging point, i.e.,

V R(l1) = bR0 (l1) + bR1 (l1)s+ bR2 (l1)s
2 (25)

8



V L(l2) = bL0 (l2) + bL1 (l2)s+ bL2 (l2)s
2 (26)

can be determined using the distributed-parameter REX. The �rst and second-order coef-

�cients of the voltages at the other end of the lines is given by using equations (17) and

(18).

We will �rst consider the case where the �rst order moments (of 1
H(s)) is matched; the

generalized case is considered in the next section

bR1 (l1)� bL1 (l2) = 0 (27)

i.e.,

(bR1 (0) � bL1 (0)) +
��

2
(l21 � l22) + �(l1Y

R
1 (0)� l2Y

L
1 (0)) = 0 (28)

substituting equations (24) and (23) and solving for r,

r =
��
2 l2 + �lY L

1 (0) + (bL1 (0)� bR1 (0))

��l2 + �l(Y L
1 (0) + Y R

1 (0))
(29)

The admittance of the left and right branches of the tree formed by this merging can be

calculated by using equations (8) and (9). The looking-in admittance of the new tree formed

after the merge is the sum of the admittance of the left and right branches of the tree. The

voltage at the root of this tree is given by averaging the coe�cients corresponding to the left

and right subtrees. Hence starting from the leaf nodes (clock pins), at the end of each stage

of merging a set of subtrees with their second-order admittance and voltage estimates are

available for the next stage of the merging process.

4 Selection of Merging Point based on Higher Order Moments

In the previous section the selection of a merging point was based on matching the �rst order

moments. If a tapping point could be selected matching the higher moments up to some

order n, the waveforms at the leaf nodes would be identical to a higher degree of accuracy.

This in principle should minimize the skew. Consider the waveforms at the root of the left

and right subtrees which are to be merged.

V R = mR
0 +mR

1 s+mR
2 s

2 + � � �+mR
o s

n (30)
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V L = mL
0 +mL

1 s+mL
2 s

2 + � � �+mL
o s

n (31)

The moments in the equation below are represented in terms of r.

f = w0(m
R
0 �mL

0 )
2 + w1(m

R
1 �mL

1 )
2 + w2(m

R
2 �mL

2 )
2 + � � �+ wn(m

R
n �mL

n)
2 (32)

Minimum skew requires that the above function be minimized. The value of r which minimizes

f is given by

df

dr
= 0 (33)

The solution for r is computationally inexpensive. For example in case of matching moments

up to the second-order, Equation (32) is a sixth order polynomial and Equation (33) is a �fth

order polynomial. Hence determining r for minimum skew involves �nding the roots of a low

order polynomial. It is to be noted that the moments display a large shift of order between

one moment and the next. In the case of a typical interconnect network, one moment could

be 109 larger than the next. Weights w0 � � � wn are introduced so that the contribution from

each moment is re
ected equally or in a desired proportion in the objective function.

For typical parameter values (from [7]) it was found that the �rst-order moments dominate

the delay characteristics of the waveform in the �nal subtree. Increasing the weight of the

higher order moments with the intention of matching higher order moments resulted in the

�rst order moments to di�er slightly. This, however, manifests itself as a noticeable skew.

Therefore, we prefer to use the �rst order moment for matching purposes.

An explanation for this can be found in the fact that our procedure suitably damps the

�nal subtree using a terminating resistance, so that the response is close to monotone. For

a monotone response, it is known that the �rst-order moments dominate the response, and

hence matching these moments contributes to ensuring near-zero skews. However, this does

not mean that our computations of the second-order moments has no purpose; we use this

information in ensuring that the network is suitably damped.

5 Damping Of Zero-Skew Trees

Due to non-negligible inductance, the routing constructed on the MCM substrate results

in under-damped behavior. The zero skew trees are damped appropriately here by series-
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Figure 3: Damping of a zero-skew tree

termination at the source end. The clock tree construction as described in the previous

section provides a second-order approximation of the waveform at all the sink nodes. This

second-order estimate is used to calculate the value of the series-termination for this tree

of transmission lines. The series termination could implemented either by sizing the clock

driver for a speci�c output resistance or by including a resistance in series with the driver.

This process is illustrated in Figure 3.

Consider a driver with output resistance Rb driving a tree whose root node is labeled

as u. The downstream admittance at u is Y (u) and the voltage is V (u). The second-

order polynomials corresponding to these quantities computed as a part of the zero-skew-tree

construction are given by (conductance to ground is assumed zero)

Y (u) = Y1(u)s+ Y2(u)s
2 (34)

V (u) = 1 + b1(u)s+ b2(u)s
2 (35)

Let the voltage at the input of the driver (node labeled v) be

V (v) = 1 + b1(v)s+ b2(v)s
2 (36)

V (v) = (1 + Y (u)Rb)V (u) (37)

Substituting equations (34) and (35) in (37),

V (v) =
1

H(s)
= (1 + (Y1(u)s+ Y2(u)s

2)Rb)(1 + b1(u)s+ b2(u)s
2) (38)

= (1 + (RbY1(u) + b1(u))s+ (b2(u) +RbY2(u) + b1(u)Y1(u)Rb)s
2) (39)

The characteristic equation of a second-order system is given by [11],

� = s2 + 2�!ns+ !2
n = 0 (40)

11



where � is the damping factor. Comparing equations (39) and (40)

2�!n =
RbY1(u) + b1(u)

(b2(u) +RbY2(u) + b1(u)Y1(u)Rb)
(41)

and

!2
n =

1

(b2(u) +RbY2(u) + b1(u)Y1(u)Rb)
(42)

Substituting Equation (42) in (41)

2�

!n
= RbY1(u) + b1(u) (43)

Squaring on both sides of the above equation and substituting Equation (42).

4�2(b2(u) +RbY2(u) + b1(u)Y1(u)Rb) = (RbY1(u) + b1(u))
2 (44)

Let

� = (4�2(Y2(u) + b1(u)Y1(u))� 2b1(u)Y1(u)) (45)

Solving for Rb,

Rb =
� �
p
�2 � 4Y1(u)2(b1(u)2 � 4�2b2(u))

2Y1(u)2
(46)

The value of Rb for critical damping is obtained by setting � = 1 in the equation above.

Similarly an under-damped condition can be obtained with 0 < � < 1, the maximum over-

shoot corresponding to this is given in [11] as

Vpeak = 1 + exp
(�� �p

1��2
)

(47)

or,

� =
ln(Vpeak � 1)

�
q
1 + (ln(Vpeak � 1)=�)2

(48)

Substituting the value for � in Equation (46), the clock-tree can be designed for any acceptable

overshoot. In general, under-damped condition implies a lower driver resistance which, in

turn can, be interpreted as either the fact that longer lines can be driven, or that wires of

lower widths can be used to increase the packing density. It can been seen that the delay

td, de�ned as the time to reach 50% amplitude, is not a�ected signi�cantly by �. However

the rise-time tr, de�ned as the time taken for the signal to rise from 10% to 90% of the

�nal amplitude, is strongly dependent on the damping ratio, as illustrated in the section on
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results. This parameter (tr) has a signi�cant impact on the circuit timing as these voltage

levels determine the switching of CMOS devices. It has been illustrated in [1] that choosing

� = 1p
2
results in a substantial decrease in tr while the overshoot is minimal (4%). Hence the

choice of driver using this method can improve the rise time characteristics of the tree while

maintaining an acceptable waveform at the clock-tree sink nodes.

6 Insertion of Bu�er Stages

The phase delay of large clock-trees can be signi�cant and may limit the system clock-speed.

In order to reduce the phase delay, bu�er stages are introduced as part of the clock-tree

construction. Bu�ers also perform the role of regenerating the signals, by supplying the

current necessary to drive the sub-trees. In addition to achieving these advantages, we

consider sizing of bu�ers to hierarchically damp the clock-tree. It should be pointed out

that in the MCM scenario the bu�ers can be fabricated only on the dies placed on the

substrate. We assume the availability of two bu�ers per die and include the detour to a

bu�er as part of our delay computation.

A linear model for a bu�er (as shown in Figure 4) is assumed. The computation of bu�er

resistance is as shown in the previous section. The appropriately sized bu�ers are introduced

at all nodes at a particular level of the clock-tree (as shown in Figure 5). Even though a level

by level insertion scheme may not be globally optimal, it is known to work well for full binary

trees [21] (zero-skew merging will always result in full binary trees). Further techniques such

as shown in [3] can be adopted to reduce imbalance in subtrees being merged. Hence a level
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Figure 6: Bu�er load equalization

by level bu�er-insertion solution will not be far from optimality in reality. The e�ect of level

at which bu�ers are inserted is presented in Section 8.

At any stage of the clock-tree construction of the zero skew tree construction, there are

a set of n subtrees which are zero-skew-merged to construct n
2 trees. A di�erence in the

input admittance of two sub-trees is expected as part of the merging process. This di�erence

in the admittance of the subtrees implies a unequal loading of the bu�ers. This will lead

to skew due to the non-linearity of the bu�ers. We attempt to minimize the e�ects of this

by ensuring that the admittance seen by all bu�ers at a stage is the same thereby ensuring

similar switching behavior for all bu�ers. The concept presented below is similar to bu�er

relocation [4] or delay equalization [13].

Consider the case of inserting bu�ers at a level i of the tree. Let the original admittance

of the tree be Y (uK) (as shown in Figure 6).

Y (uK) = Y1(uK)s+ Y2(uK)s
2 (49)
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Consider a target admittance Y (uT ), taken to be the admittance of the subtree at the ith

level with the largest delay.

Y (uT ) = Y1(uT )s+ Y2(uT )s
2 (50)

Where Y1(uT ); Y2(uT ) are the maximum of the �rst and second-order coe�cients of the

admittance polynomial among all the sub-trees at a speci�c level of the clock-tree. The

admittance of all the sub-trees are equalized to Y (uT ) by introducing a wire of appropriate

length and width between the root of the tree and the bu�er. A lumped model for this wire

segment is assumed here, since the lengths of the wire-segments involved are small and the

computation is simpli�ed as a result. The dimensions of a wire segment is calculated as

follows,

We require,

Y (uT ) =
1

Rw + 1=(Y (uK) + Cws)
(51)

Where Rw and Cw are the resistance and capacitance of the wire segment to be added to a

tree rooted at node k. Substituting equations (50) and (49) in (51) and matching the powers

of s we get

Cw = Y1(uT )� Y1(uK) (52)

and

Rw =
Y2(uT )� Y2(uK)

(Y1(uK) + Cwk)Y1(uT )
(53)

The length l and width w of the wire segment is

l =

s
RwCw

��
(54)

w =

s
�Cw

�Rw

(55)

This procedure was experimentally seen to be very e�ective when the subtree admittances

were very di�erent from Y (uT ), and was not applied when the admittance value was close to

Y (uT ).
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7 Summary of the Algorithm

The following pseudo-code summarizes the procedure for clock-tree synthesis.

MCM_Clock-Tree() {

/* Initialization */

Level_number = 0;

Number_of_subtrees = Number_of_pins;

/* Assume a unit voltage source */

/* Input admittance equals the capacitance at each pin */

While (Number_of_subtrees >= 1)

{

Zero-Skew Merge();

Compute_Admittance();

Compute_Voltage();

If (Delay > Delay_constraint)

{

Equalize_Load();

Insert_Buffers();

}

Level_number ++;

Number_of_subtrees = Number_of_subtrees/2;

}

Series_Termination();

}

The routine Zero-Skew Merge �nds a tapping point which minimizes the skew for two given

sub-trees. The routinesCompute Admittance, Compute Voltage calculate the input-admittance

and the voltage at the root of the new sub-tree formed as a result of the Zero-Skew Merge

procedure. To meet delay speci�cations for the clock-tree, bu�ers are inserted at the root of

sub-trees at appropriate levels by the Insert Bu�ers routine. This routine calculates the size

of the bu�er for the speci�ed damping criterion. The Equalize Load routine calculates the
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appropriate length and width of the wire feeding the root of a sub-tree so that the load of

the bu�ers inserted at a level are nearly equal. The recursive application of these routines on

a set of pins results in the desired zero-skew clock-tree. The termination at the root of the

tree is calculated by the Series Termination routine. In the case where the number of pins

is not a power of two, this procedure is applied recursively.

8 Experimental Results

The procedure described above was tested on a set of examples which portray a typical MCM

routing scenario. A substrate with area 10 cm x 10 cm was assumed. The distribution of the

clock pins and the loading capacitances at each pin was generated randomly. The number of

clock pins varies from 8 to 128 in the examples MCM-1 through MCM-5. The examples were

tested by constructing the clock-trees using MCM-L process parameters obtained from [7]

(� = 0:24
=cm; � = 7:2nH=cm; 
 = 0:76pF=cm). The quarter wavelength for a line with

these parameters is about 2 meters, and therefore our assumption about electrically short

lines is a valid one.

A constant width of 10 �m and a Manhattan geometry is assumed for the routing. The

clock-trees constructed, were studied with SPICE to verify the accuracy of the routing proce-

dure. The wires were represented by multiple RLC segments to model the distributed nature

of the lines. Some of the SPICE simulations are presented in the �gures in following section.

8.1 Clock Tree Construction

The characteristic parameters of the clock-trees constructed using our approach are presented

in Table 1, Table 2, corresponding to termination conditions � = 1:0, � = 1p
2
, respectively.

These clock-trees have a driver at the root and no additional bu�ers inserted. The Figures 7,

8 show the undamped waveforms at speci�c clock pins in the case of a large (low resistance)

driver. Figures 9, 11 show the critically damped waveforms for the three examples. The

overshoot controlled case (� = 1p
2
) is shown in Figures 10, 12 for MCM-1, MCM-5 respec-

tively. The study of the e�ect of damping on the waveforms is presented in the next section.

The reduction in the driver resistance (Rb) and the corresponding improvement in rise-time
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(tr; 10% Vdd to 90% Vdd) are as tabulated. The clock-skews were measured at the 50% point

of the step response from the SPICE simulation of the waveforms at the sinks of the trees.

The examples exhibit a low skew values (as measured with SPICE) under both critically

damped and under-damped conditions. The maximum observed skew is less than 1% of a

clock-period of 10nS (100 MHz).

8.2 Damping of Clock Trees

The damping of the clock-tree was performed with series termination at the source end. The

e�ect of a range of damping conditions (� = 0.5 to 1.0) was studied. Figure 13 shows the

step response at a particular sink node of MCM-2 for the range of �. Table 3 summarizes the

study of the variation of rise-time (tr), delay (td, 50% Vdd), peak overshoot (Vpeak), driver

resistance Rb) with the damping factor (�). The variation of these parameters are depicted

in Figure 14. The �gure also shows the strong dependence of tr on � as compared to td. A

signi�cant improvement in delay and rise-time is observed under under-damped conditions.
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Figure 7: Undamped waveforms
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Figure 8: Undamped waveforms
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Table 1: Termination with critical damping
Example � = 1:0

Name Sinks Rb(
) td(nS) tr(nS) % Skew

MCM-1 8 4.326 0.9156 1.028 0.0128

MCM-2 16 4.042 1.402 1.832 0.0627

MCM-3 32 3.283 1.296 1.674 0.0052

MCM-4 64 1.647 1.902 2.842 0.3218

MCM-5 128 1.390 2.419 3.874 0.1624

Table 2: Termination with overshoot of 4%
Example � = 1p

2

Name Sinks Rb(
) td(nS) tr(nS) % Skew

MCM-1 8 3.022 0.823 0.817 0.0261

MCM-2 16 2.816 1.273 1.202 0.1048

MCM-3 32 2.281 1.176 1.169 0.2559

MCM-4 64 1.145 1.693 1.767 0.3684

MCM-5 128 0.965 2.125 2.449 0.1898

Table 3: Termination of MCM-2 under di�erent damping conditions
� Delay td(nS) Rise� time tr (nS) Rb (
) Vpeak (Volts)

0.5 1.193 0.950 2.001 1.153

0.6 1.233 1.033 2.408 1.090

0.7 1.273 1.202 2.816 1.042

0.8 1.311 1.401 3.225 1.014

0.9 1.358 1.612 3.633 1.009

1.0 1.402 1.832 4.042 1.000
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Figure 9: Critically damped waveforms
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Figure 10: Over-shoot controlled waveforms
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Figure 11: Critically damped waveforms
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Figure 12: Over-shoot controlled waveforms
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Figure 13: Response with � = 0.5 to 1.0
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Figure 14: Variation of td, tr, Vpeak with �

8.3 Bu�er Insertion

The e�ect of improvement in delay and slew rate was studied by inserting bu�ers as described

in Section 6. The e�ect of level at which the bu�ers are inserted is shown in Figure 15 for the

example MCM-3. The sharpest slew rate is observed for the level closest to the leaf nodes

and as the level of insertion is moved toward the root the slew rate and delay become worse.

There is a trade o� between the delay characteristics and the number of bu�ers required. For

example lowest level in this case requires 16 bu�ers where as the highest level requires only
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two. A choice of one or more bu�er levels for a tree could be made depending on the timing

constraints and criterion such as bu�er availability.
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Figure 15: Rise-time with bu�er stages

8.4 Pentium
TM based MCM - Study of an \industrial" example
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Figure 16: Layout of MCM-Pentium
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Figure 17: Clock tree of MCM-Pentium

The design of the clock-distribution for a MCM with a PentiumTM Central processing

unit (CPU) and a 512K byte secondary cache was presented in [14]. The MCM consists of

a PentiumTM CPU chip, a cache controller chip (CC), and 18 static RAM (SRAM) chips.

The module has dimensions of 7.52 cm x 3.68 cm. The general placement of the dies is as
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shown in Figure 16. Assumptions about the exact pin locations and loading capacitances

have been made since these data were not available in [14]. The module has a supply voltage

rated at 3.3 V. The clock distribution network speci�cations are as speci�ed in [14]. Figure

17 symbolically illustrates the process of clock-tree construction for this example, however it

should be noted that this not the �nal physical routing.
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Figure 18: Critically damped waveforms
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Figure 19: Overshoot controlled waveforms

Table 4: Summary of MCM-Pentium under di�erent damping conditions
� Skew (pS) Propagation Delay(nS) Rise� time tr (nS) Rb (
) Vpeak (Volts)

1.0 44.444 0.6829 1.071 20.984 3.333

0.6 30.031 0.4302 0.9259 12.560 3.452

Table 5: Execution times
Example MCM-1 MCM-2 MCM-3 MCM-4 MCM-5 MCM-Pentium

Time (Sec) 0.105 0.171 0.199 0.386 0.378 0.183

The SPICE simulations are shown in Figures 18, and 19 for critical, under-damped condi-

tions respectively. These �gures depict the clock-signal at the output of the clock-tree driver,

and the waveforms at the clock-pins of various dies of the MCM. It may be noted at this

resolution the skew at the clock-pins is indistinguishable for both cases. The details of these

characteristics are shown in Table 4. The skew is the maximum di�erence in delay to clock

pins of the 20 dies. The parameters skew, propagation delay, transition time, were measured

as per their de�nitions described in section 8.1. The simulations show that the speci�cations
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are met with su�cient margin. It may be pointed out that the design of the clock-tree has

been dealt in [14] by a procedure involving repeated SPICE simulation and analysis.

The execution times for the construction of clock-trees of examples studied here are

tabulated in Table 5.

9 Conclusion

This work considers the design of clock-tree for MCM environment. A distributed-parameter

AWE-based technique was used to estimate the response of clock lines for the construction

of zero-skew trees. A second-order approximation was found to provide su�cient accuracy

for selecting a series-termination for the clock-tree. The series termination could be selected

so that the responses at all sinks were critically damped. An alternative to using critical

damping, the idea of designing the clock-tree with controlled overshoot with the aim of

improving slew rates, was also investigated. The procedure also incorporates the introduction

of bu�ered clock trees to meet constraints on the slew rate of the clock. The algorithms

presented here are computationally very e�cient, and the experimental results exhibit low

values of skew for clock-trees constructed and the damping of sink waveforms was achieved

as desired.
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