
Technology Mapping Algorithms for Domino Logic

Min Zhao

Advanced Tools, Motorola Inc., Austin, Texas, 78729

and

Sachin S. Sapatnekar

Department of Electrical and Computer Engineering, University of Minnesota, 55455

In this paper, we present an efficient algorithm for technology mapping of domino logic to a
parameterized library. The algorithm is optimal for mapping trees consisting of 2-input AND/OR
nodes, and has a computation time that is polynomial in terms of constraint size. The mapping
method is then extended to DAG covering that permits the implicit duplication of logic nodes. Our
synthesis procedure maps the complementary logic cones independently when AND/OR logic is to
be implemented, and together using dual-monotonic gates in the case of XOR/XNOR logic. The
mapping procedure solves the output phase assignment problem as a preprocessing step. Based
on a key observation that the output phase assignment could reduce the implementation cost
due to the possible large cost difference between two polarities, a 0-1 integer linear programming
formulation was formed to minimize the implementation cost. Our experimental results show the
effectiveness of the proposed techniques.

Categories and Subject Descriptors: B.6.3 [LOGIC DESIGN]: Design Aids—Automatic synthe-
sis, Optimization; B.7.1 [INTEGRATED CIRCUITS]: Types and Design Styles—Advanced
technologies, Standard cells, VLSI; D.3.2 [PROGRAMMING LANGUAGES]: Language
Classifications—Specialized application languages

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Domino logic, Technology mapping, Synthesis, Phase assign-
ment, Parameterized library, Dual-monotonic gates, XOR/XNOR logic

1. INTRODUCTION

Domino logic is one of the most effective circuit configurations for implementing
high speed logic designs. Although they are inherently non-inverting, and have
the drawbacks of charge sharing and noise susceptibility, domino circuits offer the
advantages of faster transitions and glitch-free operation. In the past, this logic
family was applied only to the most timing critical paths, but the use of domino
logic is now becoming much more widespread as designers begin to appreciate its

This research was supported in part by ?
A preliminary version of part of this paper appeared in the Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 1998 and the Proceedings of the IEEE International
Symposium on Circuits and Systems, 2000.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, to redistribute to lists, or to use any component of this work in other works,
requires prior specific permission and/or a fee.
c© 2002 by the Association for Computing Machinery, Inc.

· 2

advantages. With this growing degree of utilization, there is now a strong need for
good design automation tools to support domino-based design.

A representative domino gate configuration is shown in Figure 1. It consists of an
NMOS pull-down network, two clock controlled transistors (labeled A and B) and
a static gate, usually an inverter, which is used to buffer between dynamic nodes.
When the clock input is low, the gate precharges, charging the dynamic node d to
logic 1. In the next half-cycle when the clock goes high, the domino gate evaluates,
i.e., the dynamic node either discharges or retains the precharged state, depending
on the values of the input signals.

The domino technology mapping problem is defined as: Given an optimized
Boolean network and a set of permissible domino logic gates, implement the nodes
in the network using those gates, such that the objective cost is minimized: this
cost here may be, for example, the area, delay or power.

Technology mapping based on a static CMOS standard cell library is a well es-
tablished problem originally addressed in [Keutzer 1987; Detjens et al. 1987; Touati
et al. 1990]. In addition, various matching technologies are summarized in [Micheli
1994; Benini and Micheli 1997], and new decomposition, matching, cost calcula-
tion and gate selection procedures are proposed in [Touati et al. 1990; Chaudhary
and Pedram 1995; Kukimoto et al. 1998; Jongeneel et al. 2000; Matsunaga 1998;
Lehman et al. 1997]. Compared with static logic, the use of domino gates presents
more choices to the designer. Moreover, their non-inverting property demands a
more complex synthesis flow than for static logic. Therefore, domino circuits have
conventionally been designed with a great deal of manual input from designers.
Although most existing technology static mapping techniques can be migrated to
domino logic easily, they may perform poorly if they fail to consider the special
features of domino logic. For example,

—The absence of a complementary PMOS pullup network, lower short circuit cur-
rents and small driven loads at the dynamic node all motivate the use of large
NMOS pull-down networks. In such a situation, it is difficult to implement the
flexible functionality of domino gates with fixed cell libraries since the number of
required cells is prohibitively large. Hence, a parameterized library is an appro-
priate option for domino gate mapping.

—DAG covering, which permits the overlap of two gates, is used in static logic
mainly to reduce delay. For domino logic, it is important to reduce both de-
lay and area. For circuits whose subject DAG composed of many small trees,
DAG covering is observed to improve the performance of the domino mapper
significantly over tree covering. Further details are furnished in Section 2.4.

—A number of configurations are available to domino logic that do not have exact
equivalents for static logic. For example: the inverter at the output of the domino
gate shown in Figure 1 can be replaced with other static gates [Williams 1996;
Thorp et al. 1998]; XOR logic can be implemented with dual-monotonic gates
[Williams 1996]; multiple output domino gates are used in high speed adder
design [Wang et al. 1994; Wang et al. 1997]. Mapping to these gate types can be
helpful to reduce the cost function.

—The non-inverting property of domino logic makes it important to reduce the logic
duplication required to preserve unateness. Therefore, output phase assignment

· 3

A

B

z

d O

clk

clk
o o

. n1

y

x

Tc,f Tc,r Tc,f + P

Fig. 1. A typical domino circuit

Fig. 1: sapatne1.tex

· 4

is performed as a preprocessing step before technology mapping to reduce the
duplication, and therefore the area/power cost.

Recently, several papers considering these special properties have appeared. In
[Prasad et al. 1997], a complex CMOS domino logic circuit synthesis flow for tech-
nology independent optimization and technology mapping of CMOS domino logic
circuits was addressed. The work in [Puri et al. 1996] considers the problem of
output phase assignment to minimize the duplication overhead required to make a
network unate so that it may be implemented in domino logic. Other related work
includes [Thorp et al. 1998; Zhao and Sapatnekar 1998; Puri 1998; Yee and Sechen
1997; Kim et al. 1999; Patra and Narayanan 1999].

The objective of this paper is to explore efficient technology mapping methods
for domino logic that exploit the special features of domino style gates. A new
approach for mapping circuits to a parameterized library is first proposed. Several
methods that make use of the special features of domino logic are then developed
and incorporated into the parameterized library mapper framework.

The paper is organized as follows. In Section 2, we present a novel parameterized
library matching technique and extend the method to directed acyclic graph (DAG)
covering. Section 3 suggests a technology mapping methodology that maps dual-rail
logic cones independently for AND/OR logic, and together for XOR/XNOR logic.
A method for incorporating the dual-monotonic domino gates into the framework
of parameterized library mapping is also described. In Section 4, the reasons why
output phase assignment influence the implementation cost are analyzed and the
output phase assignment problem is formulated into a 0-1 programming problem.
An existing linear programming package is applied to solve the problem as a prepro-
cessing phase before technology mapping. The results for the technology mapping
methods described in Sections 2 through 4 are presented in Section 5. Finally, we
summarize our findings and present some concluding remarks in Section 6.

2. PARAMETERIZED LIBRARY MAPPING ALGORITHM

2.1 Problem definition

The concept of a parameterized library was originally proposed in [Detjens et al.
1987; Berkelaar and Jess 1988] for static complex gate mapping. A parameterized
library is defined as a collection of gates that satisfy the constraints on the width
(maximal number of parallel chains) and height (maximal number of series chains)
of the pull-down or pull-up implementations of a gate. Such a target library for
mapping the input network provides a great deal of flexibility and potential cost
savings. Unlike a conventional library, the size of the parameterized library makes
it infeasible to create cell layouts for all cells in the library. Therefore, the layout
of cells in the library that are used in the mapped network is then produced by
on-the-fly cell generation [Burns and Feldman 1998].

The application of parameterized library and on-the-fly cell generation to domino
logic technology mapping was suggested in [Prasad et al. 1997], which further al-
luded to [Brayton et al. 1984; Ortiz and Lefebvre 1993]. This is particularly useful
in the context of domino circuits since domino gates typically consist of a large
NMOS pull-down logic network. The explanation for the use of large NMOS pull-
downs is threefold. Firstly, the number of series transistors to the supply or ground

· 5

node in reasonable cells must be restricted, and the number of series transistors in
the pulldown [pullup] network of a static CMOS gate is identical to the maximum
number of parallel chains in the pullup [pulldown] network. In domino gates, in
the absence of a PMOS counterpart, the number of parallel branches of the NMOS
network may be large. Secondly, the NMOS network typically drives a small load,
which permits the use of a slightly larger number of NMOS series transistors than
for a static CMOS gate. Thirdly, each domino gate includes the overhead of two
clock-controlled transistors, and therefore the less the number of domino gates, the
less is the load that must be driven by the clock tree.

With this increase in the maximum number of series transistors and parallel
chains in the NMOS network, the number of feasible gate functions in a library
increases dramatically [Detjens et al. 1987]. Hence, using a fixed library greatly
restricts the segment of the solution space that is searched during mapping, and
instead, a parameterized library is more appropriate for technology mapping of
domino logic.

In an environment that uses a parameterized library, we modify the definition of
the domino technology mapping problem as: Given an optimized Boolean network
and constraints on the width and height of the domino gates, implement the nodes
in the network with domino logic gates, such that the objective cost is minimized.

2.2 Previous work and motivation

Our work is primarily related to two previously published methods for technology
mapping to a parameterized library. The work in [Prasad et al. 1997] is a direct ex-
tension of the dynamic programming method used for static circuits that proceeds
in a tree-by-tree manner [Detjens et al. 1987]. Matches are found by enumerat-
ing all possible domino gates at each node of the DAG. The drawback of such an
approach is that at a particular node, under a given set of width and height con-
straints, the number of possible mapping schemes can be extremely large. Hence,
recursively enumerating all possible solutions to obtain the optimal solution can be
computationally expensive.

A second relevant piece of work is [Berkelaar and Jess 1988], where a top-down
heuristic mapping method for a parameterized library is provided. The Boolean
net is first decomposed into a multiple input AND/OR/NOT directed acyclic graph
(DAG) network. At each mapping step, [Berkelaar and Jess 1988] limits its view of
a certain expression to one level and maps as many nodes as possible at the current
level into a complex gate. If the number of inputs at a node is large enough to
exceed some specified size constraints, then a new gate is formed. Although the
method provides the optimal solution for one level, the solution is greedy and is
not guaranteed to be optimal over the entire network.

In this section, we will present a new parameterized library mapping algorithm
that is optimal for a decomposed network in the form of a tree structure with
two-input AND/OR nodes. The method has a computational complexity that is
polynomial in terms of constraint size. One of the novel features of this approach
is related to the way in which pattern matching is performed. In many cases (and
particularly for a parameterized library), the matching of a node can relate to the
matching of its children. To see this, consider the example shown in Figure 2, which
shows a two-input AND/OR network. Suppose that cells a and b are matching

· 6

patterns for nodes E and F , respectively, and that there is a containment relation
between cell a and b. To assert the existence of pattern b for node F, we need not
traverse all the way to the leaf nodes of cell b. Instead, as long as we know that (i)
cell a is a valid pattern of one child, (ii) cell c is a valid pattern of the other child,
(iii) the library has the containment property described above, and (iv) the type
of node F is AND, we can infer that cell b is a valid match for node F . This idea
is somewhat similar to the Hoffman-O’Donnell approach [Hoffman and O’Donnell
1982]that has been used in [Jongeneel et al. 2000]

Therefore, from all the valid patterns of children, the containment relationships
of the library, and the type of the current node, we can enumerate all of the possible
complex gates that match the current nodes. In our parameterized library mapping
method, we utilize this matching relation between parents and its children, combin-
ing the traditional bottom-up dynamic programming mapping approach with the
constraint size equations provided in [Berkelaar and Jess 1988]

2.3 The algorithm

Given an arbitrarily optimized network, it is first unated [Puri et al. 1996] since
domino circuits can only implement unate logic functions of the primary inputs.
It is then mapped into a two input AND-OR DAG network, after which the DAG
network is partitioned into two-input AND-OR trees. This is the starting point
of our parameterized library tree-covering algorithm. The algorithm follows the
traditional dynamic programming method [Cormen et al. 1990]. At each tree node,
each stored subsolution is optimal for its subtree under specified constraints.

2.3.1 Node data structure. At each node, we store the optimal subsolutions for
all possible [height,width] combinations from [1, 1] to [H,W]. Therefore, there are
a maximum of H ×W optimal subsolutions that can be possibly stored for every
node. Each optimal subsolution can be represented as {S, P,C, {Sl, Pl}, {Sr, Pr}}.
Here, S (1 ≤ S ≤ H) is the height constraint of the current node, P (1 ≤ P ≤ W)
is the width constraint of the current node and C is cost. Different combinations of
the child node constraints can lead to the same parent node constraint, and of all
these, {Sl, Pl}, {Sr, Pr} is the combination that provides the minimal cost under
the current constraints {S, P}.

Physically, {S, P} represents a segment of a domino pull-down whose maximum
height and width are S and P , respectively. The cost C is the accumulated cost of
its fanin cones including the cost of the current domino circuit segment.

2.3.2 Node constraint functions. Here, we use the AND and OR formulas pro-
vided in [Berkelaar and Jess 1988] and list them here for convenience. The com-
putation of the height and width of a subsolution at a parent node, formed by
combining subsolutions at child nodes. Due to the series-parallel structure of the
domino pull-down, we only need to consider two types of nodes: AND nodes and
OR nodes. We assume the height and the width, respectively, of the subject node
to be given by the pair {S, P}. The constraint on its left child is {Sl, Pl}, while
that on its right child is {Sr, Pr}. The following represent all operations at a parent
node:

(1) OR operation: S = max(Sl, Sr), P = Pl + Pr

· 7

[S, P, C] D cell a

E

F cell b

cell c

Fig. 2. Matching technique of parameterized library mapping

Fig. 2: sapatne1.tex

· 8

(2) AND operation: S = Sl + Sr, P = max(Pl, Pr)

(3) gate formation operation: S = 1, P = 1

A gate formation operation corresponds to a situation where the structure col-
lected so far (during the dynamic programming procedure) is converted to a domino
gate with an output at that node.

2.3.3 Node mapping algorithm

ALGORITHM: Node Mapping

1. for each valid [height,width] subsolution of the left child

2. for each valid [height,width] subsolution of the right child

3. {
4. {S, P} = NODE CONSTRAINT FUNCTIONS ({Sl, Pl}, {Sr, Pr}) ;

5. if {S, P} is within the constraints (H,W)

6. {
7. C = NODE COST FUNCTION (Cl, Cr)

8. if (C < C[S, P]min) then C[S, P]min = C.

9. if (C < Cmin) then Cmin = C.

10. }
11. }
12. C[1, 1] = GATE FORMATION (Cmin)

The {1, 1} subsolution of a node is obtained from the subsolution {S, P} of the
same node whose implementation cost is minimal. A subsolution {S, P} (S > 1 ‖
P > 1) at a parent node is obtained by combining optimal subsolutions at children
nodes. The solution C[1, 1] of the root of the decomposed tree is the optimal
subsolution of the subject AND-OR tree.

2.3.4 Node cost functions. By defining different NODE COST FUNCTION’s for Line
7 of the algorithm Node Mapping, various cost models, such as area, delay, power
and delay-area product can be applied to the parameterized library mapping algo-
rithm.

Area cost model. Unlike the library-based technology mapping where the areas
of cells are known beforehand, the cells of a parameterized-library are synthesized
by the cell generators on-the-fly. Therefore, it should be possible to obtain an
accurate area cost model by characterizing the cell generator and defining NODE

COST FUNCTION from the characterization results. Otherwise, various other area
cost models could be used, ranging from simple models that count the number of
transistors or the number of gates, to more complex models that consider penalty
factors for the clock routing cost, the extra shielding tracks, the precharge devices
and keepers. For simplicity, in our explanation below, we adopt the number of
transistors as the area cost. The NODE COST FUNCTION can then be defined as
follows for each operation:

(1) leaf operation: if is-leaf C = C + 1.

(2) OR/AND operation: C = leaf operation(Cl) + leaf operation(Cr)

(3) gate formation operation: C = Cmin + 4

· 9

In Case 1, the status of is-leaf corresponds to a primary input or a situation
where the pull-down structure accumulated so far was consolidated into a domino
gate and therefore a new domino pull-down structure will be started at this point.
In this situation, the input transistor of the next level of domino gates adds one
more transistor to the cost; otherwise, the node is an internal node of the domino
gate and no additional cost is required to be added.

In Case 2, Cl is the optimal subsolution for the left child under the constraint
{Sl, Pl} while Cr is the optimal subsolution for the right child under the constraint
{Sr, Pr}. The number of transistors at an OR/AND operation is found by simply
summing up the number in the subtrees, after taking the leaf operation into con-
sideration. If the left child or the right child is the leaf node for a new domino gate,
the area of this new domino gate segment will be included by conducting the leaf
operation at children. (Not that if the node is not a leaf, the leaf operation leaves
the cost unchanged.)

Finally, in Case 3, the gate formation operation involves the formation of a gate
from the accumulated domino NMOS circuit segment. The minimal cost subsolu-
tion, Cmin, from the set of subsolutions at that node is chosen. Above and beyond
this cost, which measures the number of transistors in the domino pull-down net-
work, we add the overhead of two clock control transistors and an inverter, corre-
sponding to four more transistors. Therefore, we have C = Cmin+4. We emphasize
that the gate formation operation corresponds to the effect of creating a gate at
the current node of the DAG, and the leaf operation considers its effect at the next
node in the DAG.

These functions can be illustrated as shown in Figure 3. The AND operator
places the transistors in series, and the corresponding {S, P} values and cost are
computed as shown. If, at this point, we were to decide to consolidate these into a
gate, then the corresponding situation would correspond to four extra transistors
as shown. The {S, P} value of the last transistor would then be set to {1,1}.

In the above example, we have illustrated how to form the NODE COST FUNCTION

for an area model that counts the number transistors. Other cost functions could
also be incorporated into these operations. For example, if a keeper is always added
to each domino gate and a domino gate is always “footed” (i.e., it has an NMOS
clock controlled transistor), then additional clock tree routing costs are incurred,
and the gate formation operation would have a cost of C = Cmin+4+Ckeeper+Cclk,
where Ckeeper and Cclk count the costs for the keeper transistors and the clock
routing overhead.

Suppose there is a precharge device at each internal node of a domino gate, the
AND operation should be defined as C = leaf operation(Cl)+ leaf operation(Cr)+
Cprecharge while OR operation is still same as before. The alteration to the cost for
the AND operation stems from the fact that each AND operation produces a new
internal node that is connected to VDD through a precharge transistor.

Delay model. As in the case of the area model, the delay model can be obtained
by characterizing the library generator. Otherwise, the delay of a domino circuit
may be measured using the number of levels of domino gates, or the Elmore delay
model, or a look-up table, or the MIS library delay model [Detjens et al. 1987;
Chaudhary and Pedram 1995]. Here, we will show how the pin-independent Elmore

· 10

leaf

leaf
PI

gate formation

PI

AND

Cl = 1 C = Cmin + 4
S = 1
P = 1S = Sl + Sr = 2

P = max(Pl , Pr) = 1
C = Cl + Cr = 2

Cr = 1

Sl = 1
Pl = 1
Cl = 0

Sr = 1
Pr = 1
Cr = 0

Fig. 3. An illustration of the area cost function

Fig. 3: sapatne1.tex

· 11

delay model is used. The delay models of library-based static mapping usually are
complicated by the load-dependent property of the delay model and the difference
between rising and falling delays. For simplicity, we assume here that the cells of
parameterized library consist of uniformly sized transistors and leave the task of
transistor sizing to a later step in the design flow of sizing optimization. Therefore,
once we know the fanout of current node, we know the capacitive load for the delay
model.

For a domino gate, the falling delay during the precharge stage will not be propa-
gated to the next level of gates, and as long as the falling delay of each domino gate
is smaller than its precharge duration, the timing constraint is satisfied. There-
fore, falling delay usually is not in a critical path and is not considered during the
technology mapping procedure, and only the rising delay of domino logic is con-
sidered in the delay model in our mapper. However, during the timing verification
and optimization procedure after synthesis, the falling delay of each gate must be
examined and reduced if the timing constraints are violated [Venkat et al. 1996; D.
V. Campenhout et al. 1996; Zhao and Sapatnekar 2000].

The Elmore delay model similar to that in [Fishburn and Dunlop 1985; Sapat-
nekar and Kang 1993] has been used in this work, given by

Ddomino = Rn · (1 + S) · (Cdp + k · T · Cdn + Cgn + Cgp) + Rp · (Cdp + Cdn + fanout · Cgn),(1)

where Rn, Rp are the driving resistances, Cgn, Cgp the gate capacitances, and
Cdn, Cdp the source/drain capacitances of the NMOS transistor and the PMOS
transistor, respectively, S, P is the maximum height and width of the NMOS pull-
down network, respectively and fanout is the number of the fanout of the current
node. T is the number of NMOS transistors in the NMOS pull-down network
and k(≤ 1) is a user-defined constant that reflects how the capacitance in the
intermediate nodes influences the gate delay.

The first term in Equation (1) represents the delay of the NMOS pull-down
network that drives the output inverter, where the clock-controlled transistor in
series with the S transistors contributes the (1 + S) factor. The second term
represents the delay of the inverter that is driving the fanout gate capacitance.
The driven capacitance here includes the source/drain capacitance of intermediate
nodes of the driving gate, and the gate capacitances of the driven gates. Like the
area model shown before, the delay model can be easily evaluated for the OR/AND
operation and gate formation operation.

The procedure of Algorithm Node mapping with area minimization objective is
illustrated in Figure 4. In this example, three-tuples are used to represent combi-
nations of {S, P,C}. All primary inputs are initialized with tuple {1, 1, 0}. The
tree is traversed from the leaf node upwards, and all subsolutions are enumerated
using dynamic programming, eliminating any solutions that are suboptimal. From
the dynamic programming viewpoint, the optimal solution under each constraint
{S, P} is a non-suboptimal substructure. The non-suboptimal subsolutions at a
node are listed and the problem is solved by recursive enumerations of its higher
level nodes.

For example, the AND operation on both ({2, 2, 3}, {2, 3, 5}) and on ({2, 1, 8}, {2, 3, 5})
produce {4, 3, C}. Only the tuple of this type with minimal cost and its correspond-

· 12

{1,2,2}

{2,2,3}
{2,1,8}

N1 N2

N3

N4

N5

{1,1,0}

{1,1,6}

{1,1,0}

{1,1,7}

....

{3,2,15}
{2,3,5}

{1,1,9}

{4,3,8}
{4,2,23}
{3,3,13}
{3,2,13}
{3,1,18}

{1,1,12}

{4,3,8,{2,2},{2,3}}

 AND

N6

{1,1,0}
PI PI

PI

OR

OR

 AND

{2,1,18}

Fig. 4. An example illustrating the parameterized library mapping procedure

2.3.5 An example. Fig. 4: sapatne1.tex

· 13

ing child tuples are stored at node N6. This corresponds to {4, 3, 8}, which is a
partial solution that may be used in the future. For the combination of S = P = 1,
we choose the minimum cost solution at that node and construct a gate correspond-
ing to that subsolution. For each child tuple that has a {1, 1, C} configuration, the
cost is incremented by 1 by the leaf operation. For example, {1, 1, 7} is combined
with {1, 1, 9} at node N6 to give the tuple {2, 1, 18}. Finally, at node N6, the min-
imal cost obtained from all combinations of its children is 8, and the subsolution
{1, 1, 12} is obtained using the formula C = Cmin + 4, corresponding to the gate
formation operation.

Further pruning can be carried out by recognizing that several of these tuples are
suboptimal. For instance, the tuple {3, 3, 13} is suboptimal to the tuple {3, 2, 13}
since it has the same cost but with a lower value for both S and P . Carrying this
argument further, it is easily verified that most of the tuples are suboptimal to
{1, 1, 12}, so that the only tuples that are eventually maintained are {4, 3, 8} and
{1, 1, 12}.

2.3.6 Complexity analysis. From the above procedure, we can see that the space
complexity of the algorithm is O(WHN) and the time complexity is O(W 2H2N).
where N is the number of tree nodes and W , H are the maximum allowable width
and height of the domino gate, respectively. At each node, the AND-OR cost
function will be executed at most W 2H2/2 times, but generally the number of
executions is much lower than this value.

2.4 DAG covering mapping

DAG covering uses a directed acyclic graph (DAG) as a subject graph for mapping
and allows the overlap of two mapped cells. In this section, we will describe how
to modify the parameterized library mapping technique proposed in the previous
subsection to DAG covering.

2.4.1 Motivations and previous work. DAG covering is known to reduce the de-
lay of the static circuits effectively [Kukimoto et al. 1998]. For domino logic, DAG
covering is especially important as its influence on delay reduction is more signifi-
cant. In addition, DAG covering may also help to reduce the area cost and reduce
the clock load. The area cost of a domino gate is K + 4 while that of a static gate
is 2K, where K is the number of literals. If the transistor count of a tree is less
than 4, then the area cost of the domino mapping will be larger than that of static
mapping, even without considering duplication cost for unating [Prasad et al. 1997]
In terms of delay, since the delay cost of a domino gate is the sum of the pull-down
network delay and the inverter delay, a small NMOS evaluation network will in-
troduce a large number of inverters in the path that could offset the advantage of
fast switching speed provided by domino logic. Since large multi-level circuits often
have a large number of multiple fanout nodes, the tree mapping based procedure
that breaks the subject DAG at multiple fanout points often generates very small
trees, leading to poor solutions in delay, area and loading on the clock tree. DAG
covering provides one important method to overcome this problem.

Previous work on DAG covering of library-based static mapping includes [Keutzer
1987; Detjens et al. 1987; Chaudhary and Pedram 1995; Kukimoto et al. 1998], of
which [Kukimoto et al. 1998] proposed a delay-optimal DAG covering algorithm

· 14

under load-independent delay model. In this section, we extend the parameterized
library matching technique into DAG covering by applying a similar idea as [Kuki-
moto et al. 1998]. In our case, we use heuristics to remove the load-dependent delay
assumption, and the additional delay and area cost caused by the overlapped logic
are incorporated into the delay and cost model during the correct cost estimation
step.

2.4.2 Algorithm outline. The conventional procedure of tree-by-tree mapping can
be described as follows:

ALGORITHM: Tree-by-tree mapping

1. Forward-traverse the network by topological order, at each node current
2. {
3. Node Mapping(current)
4. if (fanout(current) > 1)

5. Invalidate all the subsolutions except for [1, 1]
6. }
7. Backward-traverse the network in topological order; at each node current
8. {
9. Assign best gate(current)
10. }

In the above procedure, all subsolutions except for [1, 1] are removed at the
fanout node. DAG covering algorithm differs from tree-by-tree mapping in two
respects. Firstly, instead of invalidating all subsolutions except for [1, 1] on Line
6 of Algorithm Tree-by-tree mapping, we insert a step that correctly estimates the
cost of each subsolution. In other words, all subsolutions of current node are kept
and their cost estimates are adjusted to include the additional duplication cost from
the overlaps between cells. Secondly, due to the possible existence of contradictions
from multiple fanout nodes, Assign best gates on Line 9 becomes more complex for
DAG mapping.

2.4.3 Correct cost estimation. During the DAG mapping procedure, all of the
subsolutions are maintained at the fanout node. An additional cost in both delay
and area will be added to the cost of the subsolutions, as shown in Figure 5.

The shaded area would be duplicated fanout times, and therefore the additional
area cost is (fanout − 1) · dupcost, where dupcost represents the duplication cost.
At the inputs of the duplication region, the number of the fanouts will increase and
therefore the additional delay cost of the gate in the previous level is Rp · (fanout−
1) · Cgn. As in [Chaudhary and Pedram 1995], we divide the area contribution of
each node by the fanout count of the node.

2.4.4 Assign best gate. The successors of a node determine its candidate solutions
during the backward traversal. For a node that is connected to multiple fanouts, the
solutions that are optimal for each fanout tree may be inconsistent, i.e., there may
be a contradiction between these subsolutions, with different mapping solutions
being optimal for different outputs, as well as between the delay-area points if the
delay-area points if the delay-area tradeoff curve [Chaudhary and Pedram 1995] is

· 15

X [2,1] (area, delay)

I1 I2

Fig. 5. Correct cost estimation

Fig. 5: sapatne1.tex

· 16

used. In the case of area optimization, we choose the subsolution with the minimal
height and width out of all candidates to minimize the area cost of duplication. If
delay optimization is the objective, then we choose the solution that satisfies the
delay requirement.

3. DUAL-MONOTONIC GATE MAPPING

3.1 Dual-monotonic logic

A dual-monotonic gate is a merged gate that generates both negative and positive
polarities of a logic signal [Williams 1996]. A typical dual-monotonic two-input
XOR gate is shown in Figure 6. The logic used to implement a ·b and ā ·b share the
same transistor, D. Due to the complementary relations between a and ā, a sneak
path between O1 and O2 can be prevented. Moreover, a dual-monotonic gate is
not limited to be just an XOR gate. More flexible configuration of dual-monotonic
gates can be formed by replacing b and b̄ with another XOR gate or the other logic.

While dual-monotonic implementations of XOR logic use a smaller number of
transistors than duplicated gates, this is not true for all logic functions. Indeed,
implementations of most common dual-monotonic gates do not share as many tran-
sistors as the XOR gate.

3.2 Previous work and motivation

A domino gate implementation of an input network often requires the synthesis of
both positive and negative signals at many nodes due to the unateness requirements;
this is known as dual-rail logic. A logic function and its complement can be built
as two separate gates or as one merged gate (a dual-monotonic gate).

If we examine several papers on domino logic synthesis that have appeared
[Prasad et al. 1997; Thorp et al. 1998; Zhao and Sapatnekar 1998], we see that
all of them follow the basic synthesis methodology proposed in [Prasad et al. 1997]
in which dual-rail logic cones are independently mapped. This approach has the
advantage of maintaining the mapping flexibility of each polarity. However, the
presence of an XOR function and its reconvergence property will decompose the
input network into very small mapping trees, which causes a large area and de-
lay cost for tree-by-tree technology mapping. On the other hand, dual-monotonic
XOR is a widely-used configuration in manually designed domino networks; its ap-
plication to synthesis of domino logic can effectively solve the above problem. In
contrast, a three-input XOR dual-monotonic gate has to be implemented with four
individual domino gates if the tree mapping method is used. Therefore, we propose
a mapping method that can make use of the advantages of both cases by mapping
dual-rail AND/OR logic independently with standard domino gates, and mapping
XOR/XNOR logic with merged dual-monotonic gates.

3.3 Dual-monotonic mapping algorithm

After the unating stage where the inverters are removed, a signal and its comple-
ment become two separate signals and the complementary relationships between
the signals are lost. Hence, the existing mapping techniques cannot be applied
directly.

· 17

GD

O1= O2= a XOR b

a

b

a

b

aa

a NXOR b

clk clk

clk clk

Fig. 6. An example of a dual-monotonic gate

Fig. 6: sapatne1.tex

· 18

One method to enable the mapping of dual-monotonic gates is to add a spe-
cial type edge between complementary signals, named the inverting edge. In this
case, the graphs representing subject networks or cells consist of the normal edges
and the inverting edges, and dual-monotonic gates can be mapped by checking the
isomorphism of these graphs. However, these inverting edges will significantly in-
crease the complexity of the subject and cell graphs, and how to effectively map the
flexible configurations of dual-monotonic gates becomes a difficult issue to solve.

Here, a heuristic method that collapses XOR/XNOR logic before the unating
stage is used. The method consists of the following steps:

Step 1. Recognize the XOR/XNOR logic inside the DAG using a graph isomor-
phism based method. If both the positive and the negative polarity of XOR/XNOR
logic are required, the XOR/XNOR logic networks are collapsed into one XOR/XNOR
node to be implemented as a dual monotonic gate.

Step 2. Unate the DAG network and generate a network composed of AND/OR/XOR/XNOR
nodes.

Step 3. Perform the technology mapping on the AND/OR/XOR/ XNOR subject
network, mapping AND/OR nodes to the standard domino gates and XOR/XNOR
nodes and its surrounding nodes to various dual-monotonic gates.

The last step of the dual-monotonic mapping algorithm is technology mapping
on an AND/OR/XOR/XNOR network. During technology mapping, all possible
matchings are enumerated at each network node. While the traditional mapping
patterns can be applied to AND/OR nodes, the matching patterns available to
XOR/XNOR nodes need to be considered. One single XOR/XNOR node can
be mapped to an XOR dual-monotonic gate. Moreover, the flexible configura-
tions of dual-monotonic gates enable the exploration of more matching patterns at
XOR/XNOR nodes. The mapped gates could be gates other than XOR/XNOR
gates as long as sneak paths are prevented: in Figure 6, this is achieved since a
and ā are logic complements. A more complex example is the matching pattern of
Figure 7(a), which corresponds to a three input XOR gate as Figure 7(b).

Another example is the matching pattern of Figure 8(a), which corresponds to
the dual-monotonic gate as Figure 8(b). It is obtained by replacing the transistors
D and G in Figure 2 by NMOS subnetworks.

In this work, we incorporate the above issues in the parameterized mapper de-
scribed earlier in this paper, but any other mapper may easily be adapted for this
purpose with this heuristic method.

4. OUTPUT PHASE ASSIGNMENT USING 0-1 ILP

4.1 Previous work and motivation

The polarity assignments at the output of a domino circuit significantly influence
the implementation cost. The output phase assignment problem is defined as fol-
lows: Given a combinational logic network and all primary inputs in the true and
complemented form, choose an optimal phase (i.e., polarity) assignment for the
primary outputs so as to implementation cost was minimized.

The output phase assignment problem was first addressed and solved in [Puri
et al. 1996]. Domino logic is inherently non-inverting and removal of the intermedi-

· 19

-
- b

bc
c

a

a

(b)(a)

XOR/XNOR

XOR/XNOR
a aa a

-

NODES
OTHER

cc

b

cc

b

clk clk

clk clk

Fig. 7. Matching pattern 1: (a) the subject graph (b) its mapping to a three input XOR gate

Fig. 7: sapatne1.tex

· 20

hgf

hg

f

e

(b)(a)

a

AND

XOR/XNOR

OR
NODES
OTHER

-a

aa aa

e

clk clk

clk clk

Fig. 8. Matching pattern 2: (a) the subject graph showing arbitrary AND/OR/XOR logic (b)
its mapping to a dual monotonic gate

Fig. 8: sapatne1.tex

· 21

ate inverters requires logic duplication for generating both the negative and positive
signal phases, which results in significant area overhead. In [Puri et al. 1996], it
was found that this duplication area overhead can be substantially reduced by se-
lecting an optimal output phase assignment. In [Puri et al. 1996], given an input
network, the network is divided into the region that must be duplicated and region
whose duplication cost can be minimized by output phase assignment, referred to
as the optimizable logic region. The fanout nets in the optimizable logic region are
called candidate nets. The problem of finding optimal output phase assignment to
minimize the duplication of optimized logic region was formulated as 2SAT unate
covering problem and solved by using binary decision diagrams.

In this paper, we consider the output phase assignment as a preprocessing step
before technology mapping of domino logic. Our solution to the output phase
assignment problem improves upon [Puri et al. 1996] in the following aspects.

—In our mapper, the duplication cost reduction problem is formulated into a 0-1
integer programming problem and a standard linear programming package can
be used to solve the problem.

—We make a new observation that the output phase assignment accomplishes the
objective of reducing implementation cost through another important factor: the
cost difference between the implementations of positive and negative polarity.
This polarity cost difference problem is also formulated into an 0-1 integer pro-
gramming formulation. Combining this with the linear constraints for duplication
reduction, the optimization problem of output phase assignment to minimize the
implementation cost is solved.

The cost difference between the implementations of positive and negative polarity
is caused from the fact that the logic evaluator of a domino gate composed of only
NMOS. Suppose W and H are the constraints on the width (maximal number of
parallel chains) and height (maximal number of series chains) of the NMOS pull-
down network of domino gate, respectively. Due to the absence of a complementary
PMOS network in domino gate, domino gates usually have large W with limited
H, which can lead to the cost difference between implementations of positive and
negative polarity. For example, given the constraints that H = 2 and W = 4, the
logic network of Fig 9(a) will be mapped to three domino gates while its complement
in Fig 9(b) requires only one domino gate. Moreover, the area overhead in addition
to the NMOS logic evaluator for each domino gate is large. In the above example,
the implementation cost of the logic network in Fig 9(a) is 18 transistors while its
complement requires only 7 transistors. The area and delay cost of the latter is
better than that of the former.

The unated DAG network consist of two parts: the part for which both polari-
ties must be implemented, called the duplicated part, and the part for which only
one polarity need be implemented. On the one hand, the phase assignment of the
output nodes decides which segment of DAG network is to be duplicated; on the
other hand, the output phase assignment decides which polarity is to be imple-
mented for the non-duplicated part. Both factors have an important influence on
the implementation cost. A given polarity assignment for the set of output nodes
can influence these two factors in opposite ways in terms of on cost reduction, so
that it is important to find the optimal solution that considers both factors simul-

· 22

(a)

a dcb

e

AND

AND AND

a’ b’ c’ d’

(b)

e’

OR OR

OR

Fig. 9. The cost difference of (a) positive and (b) negative polarity

Fig. 9: sapatne1.tex

· 23

taneously. In the following discussion, a 0-1 programming formulation is provided
for this purpose.

4.2 Algorithm outline

In our domino synthesis flow, output phase assignment optimization is a prepro-
cessing step before technology mapping and is performed before unating the input
network. After output phase assignment optimization, the inverters are added to
the output nodes whose phases are assigned to be negative and then pushed towards
the inputs network during the unating procedure. The output phase assignment
optimization algorithm can be outlined as follows:

(1) Decompose the network into a disjoint set of trees and obtain a fast area cost
estimation of each polarity of each tree. This can be obtained by counting the
number of nodes in the tree or performing a fast tree-by-tree mapping on the
network. The area cost of a tree is assigned to the root node of the tree, u, as
the weight C(u).

(2) Find the optimizable logic region using the method of [Puri et al. 1996]; build
a DAG from the multiple fanout nodes of the optimizable logic region.

(3) Write out the 0-1 integer linear programming formulation for duplication cost
minimization described in Sections 4.3 and for polarity cost difference described
in 4.4, and then solve the combined formulation.

4.3 0-1 ILP for duplication cost minimization

This section describes the 0-1 formulation to minimize the duplication cost. Given
an input network, a DAG G(V,E) can be built as follows. Each vertex v ∈ V
corresponds to a multiple fanout or a primary output node in the optimizable logic
region of input network. If vertex u is a literal node of a tree rooted at vertex v in
the original input network, there is a corresponding edge eu,v ∈ E in DAG.

In the DAG, several constants are assigned to an edge or a node from the original
input network. These include:

. O(u, v), which represents the inversion polarity between vertex u and vertex
v. If there is an even number of inverters from vertex u to vertex v in the input
network, O(u, v) is 0; otherwise, O(u, v) is 1.

. C(u), which represents the area cost of the tree whose root is at vertex u in
the input network.

. k(u), a constant whose value is twice the number of fanout of vertex u.

The {0, 1} integer variables that will be included in the 0-1 programming formu-
lation include:

. r(u) = 1 if there is an inverter moving from the inputs of node u towards the
outputs of node u; else 0.

. x(u, v) = 1 if there is an inverter on the edge eu,v after the output phase
assignment; else 0.

. y(u, v) is a dummy variable that transforms a condition statement into a linear
constraint.

. q(u) = 1 if the fan-in tree of node i needs to be duplicated; else 0.

· 24

The weight of an edge eu,v after output phase assignment, denoted by w(u, v) is
given by

w(u, v) = O(u, v) + r(u)− r(v) (2)

Since O(u, v), r(u), r(v) ∈ {0, 1}, w(u, v) takes a value in the set {−1, 0, 1, 2}. If
w(u, v) = 0 or 2, it represents the absence of an inverter between node u and node
v. If w(u, v) = −1 or 1, then there is one inverter between node u and node v.
Therefore, this may be captured by the condition

x(u, v) =

{

0 w(u, v) ∈ {0, 2}
1 w(u, v) ∈ {−1, 1}

(3)

The above condition may be rewritten as a linear equation.

w(u, v) + x(u, v) = 2× y(u, v) (4)

where y(u, v) ∈ {0, 1} is a dummy variable introduced to transform a condition
statement into a linear constraint.

Combining the equations (2) and (4), we have

2× y(u, v)− x(u, v) = O(u, v) + r(u)− r(v) (5)

If there is an inverter at any position in the fanout cone of a node u, the node
will have to be duplicated to ensure the unateness property for domino logic. This
condition can be given by the linear constraint

q(u)× k(u)−
∑

i∈dir−succ(u)

(x(u, i) + q(i)) ≥ 0 (6)

It can be illustrated as Figure 10. Here, i ∈ dir − succ(u) implies that there is
an edge from node u to node i in the DAG G(V,E) defined in Section 4.3. The
constant k(i) was defined earlier and can easily be verified to always be larger than
∑

i∈dir−suc(u)(u)(x(u, i)+ q(i)). This constraint implies that if any of its successors
needs to be duplicated, or if there is one inverter at the output edges of node u,
node u will have to be duplicated as q(u) is forced to be 1; otherwise the objective
function will force q(u) to 0.

Therefore, the output phase assignment problem can be formulated as the 0-1
integer linear programming problem:

minimize
∑

u∈V C(u)× q(u)

subject to

2× y(u, v)− x(u, v) = O(u, v) + r(u)− r(v) ∀eu,v ∈ E

q(u)× k(u)−
∑

i∈dir−succ(u)(x(u, i) + q(i)) ≥ 0 ∀u ∈ V

q(u), r(u) ∈ {0, 1} ∀u ∈ V

y(u, v), x(u, v) ∈ {0, 1} ∀eu,v ∈ E

4.4 0-1 ILP for polarity cost difference

This section describes the 0-1 formulation to minimize the implementation cost by
considering the cost difference between positive and negative polarity implementa-

· 25

x(u,i1)
q(i1)

q(i2)
x(u,i2)

q(i(k-1))

q(i(k))

x(u,i(k))

x(u,i(k-1))

q(u)

Fig. 10. 0-1 programming constraints

Fig. 10: sapatne1.tex

· 26

tions. In addition to the notation defined in Section 4.3, the symbols that will be
used include the following:

Z(u) is a constant that represents the cost difference between optimal implemen-
tation of each of the two polarities. If the implementation cost of positive[negative]
polarity of the node u is p(u)[n(u)], then the value of Z(u) = p(u)− n(u).

We introduce t(u) as a variable that helps to maximize r(u). Its value can be
expressed as follows:

t(u) =

{

0 q(u) = 1
r(u) q(u) = 0

(7)

Similarly, we also define a variable s(u)to minimize r(u) as

s(u) =

{

0 q(u) = 1
1− r(u) q(u) = 0

(8)

There are three possibilities for each node after output phase assignment. A node
will either be duplicated, implemented in positive polarity, or in negative polarity.
In the case of no duplication at node u, if Z(u) > 0, it costs less to implement
the node with negative polarity; if Z(u) < 0, it is better to implement the node u
with positive polarity. Hence, using the previous definitions of q(u) and r(u), the
problem can be expressed as

if q(u) = 0 and Z(u) > 0,maximize r(u);

if q(u) = 0 and Z(u) < 0,minimize r(u).

The first statement can be expressed by linear equations

minimize −Z(u)× t(u)

subject to t(u) ≤ 1− q(u)

t(u) ≤ r(u)

q(u), r(u), t(u) ∈ {0, 1}, if Z(u) > 0,

When q(u) = 1, t(u) is forced to 0. Hence, there is no limit on r(u) and the
duplication cost is given by C(u) × q(u). When q(u) = 0, r(u) is forced to be
as large as possible since the negative value of −Z(u). When polarity preferences
of two nodes conflict with each other, Z(i) is the weight that decides which node
should win. Similarly, the second statement can be captured by

minimize Z(u)× s(u)

subject to s(u) ≤ 1− q(u)

s(u) ≤ 1− r(u)

q(u), r(u), s(u) ∈ {0, 1}, if Z(u) < 0

4.5 0-1 ILP for minimal implementation cost

Combining with the linear constraints of Section 4.3 and Section 4.4, the 0-1 ILP
formulation of the output phase assignment problem for cost minimization can be
rewritten as

· 27

minimize
∑

u∈V

C(u)× q(u)−
∑

Z(u)>0

Z(u)× t(u) +
∑

Z(u)<0

Z(u)× s(u)

subject to

2× y(u, v)− x(u, v) = O(u, v) + r(u)− r(v) ∀eu,v ∈ E

q(u)× k(u)−
∑

i∈dir−succ(u)

(x(u, i) + q(i)) ≥ 0 ∀u ∈ V

t(u) ≤ 1− q(u), t(u) ≤ r(u) ∀Z(u) > 0

s(u) ≤ 1− q(u), s(u) ≤ 1− r(u) ∀Z(u) < 0

q(u), r(u), t(u), s(u) ∈ {0, 1} ∀u ∈ V

y(u, v), x(u, v) ∈ {0, 1} ∀eu,v ∈ E

5. EXPERIMENTAL RESULTS

Our technology mapping package has been implemented using C++. The param-
eterized library mapping procedure of Section 2 constitutes the basic frame of the
mapper, and the other methods are incorporated. The experiments were executed
on the LGSynth91 multi-level combinational circuit sets.

All of the input circuits are first optimized with script.rugged of SIS. The input
circuits for technology mapping of domino logic are unate equivalents of the bench-
mark circuits. They are obtained from the benchmark descriptions by first being
optimized, then pushing the inverters as close to the inputs as possible, and finally
duplicating the fanin cones of the inverters. Except for the results in Table IV and
Table V, all of our results were obtained under the constraints of W = H = 4.

Our technology mapping procedure provide mapping with objective of
(1) area(delay) minimization,
(2) area minimization under the delay constraint.
The delay model described in Section 2.3.4 is applied for the delay estimation
and area is estimated as the transistor count. Here, the transistor count is just
coarse measurement of the area. The other factors that impact the area such as
transistor type(PMOS or NMOS), the source/drain sharing, the clock routing cost,
and additional noise reduction configurations are ignored.

In this section, our experimental results show the comparison of our work with
previous works, the effectiveness of various enhancement methods discussed in Sec-
tions 2 through 4, as well as a comparison of domino implementations with CMOS
static logic.

5.1 Effectiveness of the parameterized library algorithm

5.1.1 Tree-by-tree mapping compared with [Berkelaar and Jess 1988]. Table 5.1.1
shows the effectiveness of our algorithm by comparing our results with those of
[Berkelaar and Jess 1988]. Column 2-3, 4-6 shows the results of the delay-minimization
objective, area-minimization objective with our tree-by-tree parameterized library
mapping algorithm, respectively. For each set of results, delay, the number of

· 28

Table I. Effectiveness of the parameterized library mapping algorithm

Circuits Our delay-minimization Our area-minimization [23]
Delay #T/#G #T/#G Delay CPU #T/#G Delay CPU

b9 0.19 296/40 261/33 0.21 0.1 291/39 0.21 0.1
c8 0.25 307/38 282/633 0.27 0.1 347/46 0.27 0.1

count 0.56 357/46 357/46 0.58 0.1 362/47 0.58 0.1
i6 0.62 763/76 763/76 0.62 0.1 768/77 0.62 0.1

C880 0.83 1168/139 1163/136 0.90 0.1 1288/161 0.90 0.1
C1355 0.44 1844/232 1824/228 0.46 0.1 1844/232 0.46 0.1
C1908 0.75 2003/269 1978/264 0.80 0.1 2063/281 0.80 0.1
C2670 0.65 2047/225 1992/214 0.76 0.1 2477/311 0.76 0.1
C3540 1.03 4587/550 4527/538 1.07 0.2 5102/653 1.07 0.2
C6288 3.12 14172/1897 13702/1803 3.12 0.9 13767/1816 3.12 0.8
C7552 1.04 7989/965 7924/952 1.08 0.6 8784/1124 1.08 0.5
t481 0.61 1752/228 1697/217 0.72 0.1 1897/257 0.72 0.1
rot 0.50 1807/224 1777/218 0.53 0.1 1997/262 0.53 0.1
dalu 0.91 2375/276 2360/273 0.95 0.1 2755/352 0.95 0.1
k2 0.69 2914/417 2884/411 0.69 0.1 2864/407 0.69 0.1
des 1.83 10505/1249 9945/1137 1.83 0.8 11465/1441 1.83 0.8

transistor and number of gates are reported. In Column 6, the CPU time of our
area-minimization mapping is listed. In Column 7-9, The results of the algorithm
from [Berkelaar and Jess 1988] provided by our implementation are shown in terms
of area, delay and CPU time. Here, the same delay model as Section 2.3.4 are used
for [Berkelaar and Jess 1988] algorithm.

From Table 5.1.1, we can see that our method functions at approximately the
same speed as the method in [Berkelaar and Jess 1988], but we show better results
in terms of both area and delay. This is because that [Berkelaar and Jess 1988] is
a greedy method, while our method considers all of the valid patterns and picks
up the best. Moreover, the objective of [Berkelaar and Jess 1988] is to merge as
many nodes as possible into gates, and no objective model can be incorporated very
easily into the algorithm. Our algorithm provides the flexibility of incorporating
various cost models, where significant differences in the solution are shown when
the optimization objective is changed. The results in Table 5.1.1 are obtained using
the tree-by-tree mapping method. As stated earlier, we find that the tree covering
method can partition the DAG into small fanout-free regions, and the search space
for the problem is very restricted. With the use of DAG mapping, which allows a
larger search space, we expect further improvement of our results over [Berkelaar
and Jess 1988]. However, since [Berkelaar and Jess 1988] do not present their results
on DAG mapping, such a comparison is not easily possible.

One significant exception is the benchmark circuit k2, where our solution is worse
than [Berkelaar and Jess 1988]. This can be attributed to the fact that it contains
many multiple-input AND(OR) nodes whose fan-ins are larger than the constraint
size W (H) in the original network. Although our parameterized library algorithm
is optimal for a 2-input network, the procedure of decomposition of the AND(OR)
tree into a 2-input AND(OR) tree is not optimal, which can be illustrated on an
example network in Figure 11.

· 29

*

c d e

f g

a b

+

+

+

+

+

+

7 input

Fig. 11. The influence of decompose to the parameterized library mapping

Fig. 11: sapatne1.tex

· 30

Given the specification of a maximum of 4 parallel branches, our parameterized
library procedure would require 3 gates for the given decomposition, while [Berke-
laar and Jess 1988] can bind the network with two gates since it works on the
multiple-input network directly. To overcome this problem, we would suggest that
the multiple-input gate be decomposed in accordance with the constraints, i.e., first
decompose the multiple-input AND(OR) node into OR nodes with a maximum of
H inputs and AND nodes with a maximum of W inputs, and then decompose the
W(H) input nodes into two-input nodes. With this decomposition method, the
result of result of k2 can be improved to “2829/16.” However, this decomposition
method is only effective to a circuits having a large number of n-input OR(AND)
nodes, where n >> W or n >> L. We observe that this situation is not common
for LGSynth91 benchmarks and has very little effect on the other benchmarks.

The main advantage of our algorithm is its fast speed while it gives the optimal
solution for tree-by-tree mapping as the other library-base methods. The com-
putation time of other domino mappers that directly match all the patterns by
enumeration, such as [Prasad et al. 1997], is not available. However, from the CPU
time of a static mapper, SIS, which will be shown at Table VI, and the complexity
analysis in Section 2.3.6, we believe that the computation time required by our
domino mapper should be much smaller.

Table II. DAG covering mapping
Circuits DAG delay-minimization DAG area-minimization CPU

Delay #T/#G ∆ Delay #T/#G Delay ∆ Area. (s)

b9 0.15 255/29 11.8% 243/27 0.18 6.9% 0.1
c8 0.17 298/35 26.1% 274/31 0.21 2.8% 0.1

count 0.36 327/37 35.7% 321/36 0.36 10.1% 0.1
i6 0.60 1065/109 3.2% 763/76 0.62 0.0% 0.1

C880 0.71 1139/124 12.4% 1127/123 0.74 3.1% 0.3
C1355 0.38 1768/152 11.6 % 1576/124 0.41 13.6% 0.4
C1908 0.57 1912/201 24.0 % 1693/166 0.66 14.4% 0.7
C2670 0.51 1993/191 12.1% 1912/179 0.69 4.0% 0.6
C3540 0.77 4374/466 21.4% 4209/441 0.95 7.0% 3.5
C6288 2.17 11935/1050 25.9 % 11578/974 2.86 15.5% 20.5
C7552 0.86 7503/761 13.1% 7373/741 1.05 6.9% 5.2
t481 0.46 1694/201 13.2% 1611/188 0.62 5.1% 0.3
rot 0.42 1746/199 12.5% 1673/186 0.52 5.9% 0.3
dalu 0.74 2286/239 14.9% 2239/233 0.90 5.1% 1.1
k2 0.50 2688/324 23.1 % 2548/302 0.65 11.7% 0.4
des 1.75 10261/1092 3.3% 9493/981 1.79 4.5 % 3.5

5.1.2 DAG mapping. Table II demonstrates the effectiveness of DAG mapping
described in Section 2.4. Column 2-4, 5-7 contain the results obtained by DAG
mapping with delay minimization objective and area minimization objective, re-
spectively. For each objective, the number of transistors, the number of gates,
and delay are reported. Column 4 shows the delay reduction compared to the ba-
sic tree-by-tree mapping with the same delay minimization objective. Column 7
shows the area reduction compared to the tree-by-tree mapping with the same area

· 31

minimization objective. From the results, we can see that DAG mapping is very
effective in reducing the delay, as well as reducing the area.

5.2 Dual-monotonic gate mapping

Table III. Dual-monotonic mapping
Circuits Dual-mono delay-minimization Dual-mono area-minimization #XOR

Delay #T/#G ∆ Delay #T/#G Delay ∆ Area

b9 0.15 255/29 0.0 % 243/27 0.18 0.0 % 0
c8 0.17 291/35 0.0 % 274/31 0.21 0.0 % 0

count 0.36 327/37 0.0 % 321/36 0.36 0.0 % 0
i6 0.60 1065/109 0.0 % 763/76 0.62 0.0 % 0

C880 0.71 1063/114 0.0 % 1051/113 0.74 6.7 % 16
C1355 0.33 1628/142 13.2 % 1336/116 0.36 15.2 % 72
C1908 0.47 1727/168 17.5 % 1459/135 0.63 13.8 % 50
C2670 0.51 1885/180 0.0 % 1804/168 0.69 5.7 % 40
C3540 0.72 4368/452 7.8 % 4105/420 0.89 2.5 % 38
C6288 1.63 12323/1250 24.9 % 10942/1187 2.01 2.5 % 419
C7552 0.82 6822/632 4.7 % 6763/625 0.94 8.3 % 213
t481 0.46 1694/201 0.0 % 1611/188 0.62 -0.5 % 0
rot 0.41 1749/199 2.4 % 1681/187 0.52 0.0 % 1
dalu 0.73 2293/240 1.4 % 2239/232 0.86 0.0 % 3
k2 0.50 2688/324 0.0 % 2548/302 0.65 0.0 % 0
des 1.75 10159/1092 0.0 % 9392/930 1.79 1.0 % 51

Table III shows the results of dual-monotonic gate mapping. Columns 2-4 con-
tain the results of the delay minimization objective, and Columns 5-7 show the
results of the area minimization objective. Both results were obtained using the
dual-monotonic mapping algorithm of Section 3. For each result, both delay and
area including the transistor count and gate count are reported. Columns 4 and
7 show the delay reduction compared to the corresponding delay results of the
DAG mapping algorithms shown in Columns 2 and 5 of Table II, respectively.
Compared with the basic tree-by-tree mapping results shown in Table 11, our dual-
monotonic gate mapping results show even larger improvements. We observe that
in circuits “t481”, our dual-monotonic gate mapping result is a little worse than
the corresponding DAG mapping results. This is because of our heuristic approach
of collapsing an XOR gate into an XOR node at an early stage, so that an XOR
node is always mapped to a dual-monotonic gate during the mapping procedure.
A consequence of mapping each XOR node to a merged dual-monotonic gate is
that it prevents each polarity of an XOR node from forming an even larger gate
with their individual parents. Overall, from the results, we can see that the dual-
monotonic gate mapping procedure is quite effective in the circuits with significant
XOR substructures.

5.3 Effectiveness of 0-1 output phase assignment

Table IV shows the efficacy of our 0-1 programming output phase assignment opti-
mization algorithms. Here, we use the linear program solver lp solve 2.3 [Berkelaar
1998] to solve the 0-1 integer linear programming formulations. To demonstrate

· 32

Table IV. Output phase assignment using a 0-1 ILP: W=8, H=2
Circuits #po Orig Dup-minimize Cost-minimize Reduction

#Tran #Tran CPU(s) #Tran CPU(s) %

b9 21 391 389 0.1 311 0.1 20.5%
c8 18 407 364 0.1 330 0.1 18.9%
i6 67 1298 1281 0.1 766 0.1 41.0%

C880 26 1453 1453 0.1 1443 0.1 0.7%
C1355 32 2064 2064 0.1 2064 0.1 0.0%
C1908 25 2268 2268 0.1 2208 0.1 2.6%
C2670 140 2647 2624 0.1 2414 0.1 8.8%
C3540 22 5612 5612 0.1 5552 0.1 1.7%
C6288 32 14257 14257 0.1 14252 0.1 0.0%
C7552 108 9069 9069 0.1 8904 0.1 1.8%
rot 107 2332 2296 0.1 2196 0.1 5.8%
dalu 16 3020 2752 0.4 2745 0.7 9.1%
k2 45 3974 - - - - -
des 245 13130 13130 0.1 11710 0.2 10.8%

apex7 37 833 791 0.1 736 0.1 11.6%
frg1 3 362 362 0.1 362 0.1 0.o%
x1 35 861 927 0.1 850 0.3 1.3%
x3 99 2381 2360 0.1 2100 0.1 11.8%

the influence of cost difference between two polarities to total implementation cost,
the domino gates were restricted to W = 8 and H = 2.

In Table IV, Column 2 contains the number of primary outputs in the circuits.
Column 3 lists the results in the absence of the output phase assignment step.
The results obtained by the application of the 0-1 formulations of Sections 4.3
and 4.5 are shown in Columns 4 and 6, respectively and the corresponding CPU
times for the linear solver are shown in Columns 5 and 7. Column 8 shows the
area reduction due to the output phase assignment optimization considering both
duplication minimization and polarity cost difference. Because the output phase
assignment has minor influence on the number of levels of the Boolean network,
only area costs are listed in Table IV.

The execution time of output phase assignment optimization consists of two
parts: cost estimation and linear program solution. Here, we perform the simple
tree-by-tree mapping procedure to obtain the cost estimation of each polarity of
each tree in the DAG network. The actual running time for this step is much lower
than Column 3 of Table 1 since a large part of the CPU time there is spent on
parsing, data structure building and unating. The CPU time required by the linear
solver is listed in Table IV. We can see that all of the benchmarks can solved in
under a second with no or minor simplification of the 0-1 ILP. An exception is the
0-1 programming problem for Circuit k2, which does not yield a result in reasonable
time. The increase in the size of the linear program causes a minor increase in CPU
time in column 7 as compared to column 5.

It was observed that in some circuits such as dalu, the cost reduction by output
phase assignment arises mainly from the duplication cost reduction, while in some
circuits such as i6 and b9, the implementation cost difference between two polarities
becomes the most significant consideration for output phase assignment. Interest-
ingly, we see that in some cases, the two objectives of output phase assignment can

· 33

be contradictory to each other. In Circuit x1, the optimization for duplication cost
minimization causes a cost increase due to the increased cost of implementing the
reversed polarity and increases the total implementation cost.

Table V. W=8, H=2 vs. W=6, H=3
Circuits W=6, H=3 W=8, H=2

No-ass Dup-m Cost-m Reduction Reduction

b9 291 284 249 14.4% 20.5 %
c8 322 314 280 13.0% 18.9 %
i6 958 951 761 20.6% 41.0 %

C880 1153 1153 1153 0.0% 0.7 %
C1355 1834 1834 1834 0.0% 0.0 %
C1908 2038 2038 2023 0.7% 2.6 %
C2670 2177 2149 2094 3.8% 8.8 %
C3540 4587 4587 4562 0.6% 1.7 %
C6288 13707 13707 13707 0.0% 0.0 %
C7552 8069 8069 8039 0.4% 1.8 %
rot 1867 1846 1796 3.8% 5.8 %
dalu 2500 2365 2365 5.4% 9.1 %
k2 3174 - - - -
des 10685 10685 10115 5.3% 10.8 %

apex7 668 646 636 4.8% 11.6 %
frg1 287 287 287 0% 0.0 %
x1 691 722 685 0.9% 1.3 %
x3 1906 1905 1795 5.8% 11.8 %

From Table IV, we can see output phase assignment optimization considering the
cost difference between two polarities plays an important role in the cost reduction
in case of W = 8 and H = 2. However, the less the difference between W and
H, the less is the cost difference between the two polarities and the lower is the
cost reduction benefit from the output phase assignment for the polarity difference
factor. In Table V, the output phase assignment results under the constraint of
W = 6 and H = 3 are shown in Column 2-5. Compared with the cost reduction
under the constraint of W = 8 and H = 2 in Column 6, we can see that the ratio
of cost reduction reduced, as expected. Here, Column 6 of Table V is same as the
Column 8 of Table IV.

5.4 Comparison with technology mapping of static logic

Table VI shows a comparison our DAG domino mapper with technology mapping
to a static CMOS library using SIS. For fairness, the experiments here compare the
use of W = H = 4 for the domino implementation with the adapted static library
44-3.genlib, which includes all static gates with up to four series transistors and
four parallel chains. The objective for both mappers was delay minimization.

Note that to obtain the homogeneous comparison between SIS delay evaluation
and domino logic delay evaluation, the library 44− 3.genlib used here was adapted
to apply the same delay and area model as our domino mapper. In the adapted
library 44− 3.genlib, the cell areas of library 44− 3.genlib were replaced with the
transistor count and the same Elmore delay model as Formula 1 in Section 2.3.4 are
used for the static rising and falling delay of the static cells. These Elmore delay

· 34

Table VI. A comparison of our domino mapping algorithm with SIS
Circuits Our domino mapper SIS (44-3.genlib) Dup-ratio

Delay #Tran #PMOS Delay #Tran time(s) %

b9 0.15 255 58 0.35 392 11.5 10%
c8 0.17 291 70 0.39 374 12.6 24%

count 0.36 327 74 0.86 420 12.5 22%
i6 0.60 1065 218 0.98 1118 50.3 13%

C880 0.71 1063 248 1.57 1290 40.9 47%
C1355 0.33 1628 304 0.75 1662 36.8 77%
C1908 0.47 1727 402 1.15 1666 39.9 74%
C2670 0.51 1885 382 0.97 2298 70.7 58%
C3540 0.72 4368 932 1.66 3644 133.7 92%
C6288 1.63 12323 2100 4.06 11200 228.0 97%
C7552 0.82 6822 1522 3.37 7362 178.6 79%
t481 0.46 1694 402 0.80 2204 82.9 6%
rot 0.41 1749 398 0.91 2044 57.0 33%
dalu 0.73 2293 478 1.70 2854 99.4 43%
k2 0.50 2688 648 0.90 3420 97.0 2%
des 1.75 10159 2184 7.38 10642 178.6 49%

formulas are then fitted into the SIS delay model to obtain the rise-block-delay,
rise-fanout-delay, fall-block-delay, fall-fanout-delay of each cell. In the static delay
model, the size of each PMOS transistor are assumed to be twice the size of NMOS
transistor.

The entries in the 2-4 column show the results of our DAG domino mapper in
terms of delay, the number of transistors and the number of PMOS transistors.
Columns 5-7 list the delay, the number of transistors and CPU time of the SIS
static mapper. In the last column, we report the ratio of nodes that must be
duplicated in comparison with the number of nodes in the unated circuits.

Empirically, it has been observed that domino logic runs 1.5−2× faster than static
CMOS logic [Harris and Horowitz 1997] at about the same area as static CMOS
logic, and comparisons of static and domino logic implementations are available in
[Harris and Horowitz 1997; Yee and Sechen 1997; Prasad et al. 1997; Thorp et al.
1998]. From our results listed above, we can see that the mapped domino circuits,
especially through the DAG domino mapper, has much better delay performance
than its static counterpart. The area cost of the domino circuits is smaller than or
close to that of the corresponding static circuit for the small and intermediate sized
benchmarks. In large circuits, with the increase of the depth of the circuit, the
number of nodes that need to be duplicated becomes larger. Therefore, the area
cost of domino logic is larger than that of the corresponding static implementation.
In the situation where the amount of duplication is larger, the static implementation
has the advantage in terms of area cost.

In Table VI, the transistor count and the PMOS count are listed for both static
and domino logic (half of the transistors of static circuits are PMOS transistors). It
must be noted that these are just coarse measurements of the area cost. There are
other factors that need to be considered for the more accurate area cost compar-
isons. Firstly, compared with static circuits, domino logic uses a very small fraction
of PMOS transistors, which are typically sized to be larger than NMOS transistors.

· 35

Secondly, the flexible clock scheme of domino logic usually splits the large combi-
national circuit into smaller circuits associated with different phases, which may
reduce the duplication cost [Zhao and Sapatnekar 2000]. However, there are also
several disadvantages in terms of area for domino implementation. Usually a keeper
and the precharge devices have to be added to each domino gate. In addition, there
are larger overheads for clock routing, and the low noise margins of domino logic
may require additional layout area due to extra shielding tracks and wider spacing.

6. CONCLUSIONS

In this paper, we have mainly explored technology mapping techniques for domino
logic. Based on principles of dynamic programming, an efficient parameterized li-
brary mapping algorithm is presented. Several other technology mapping methods
considering various features of domino logic, such as DAG mapping, dual-monotonic
mapping and output phase assignment, are proposed and incorporated in the map-
per.

Our mapper can be applied to objective of delay minimization, area minimiza-
tion, as well as area minimization mapping under timing constraints. The results
of our work have been shown to provide a smaller area/delay than the previous
work and have low CPU time. The comparisons of the enhancement methods with
basic method indicate the effectiveness of several methods proposed in this paper.
Compared to static CMOS mapping, domino logic synthesis results have better
delay performance. The area overhead for domino circuits is close to or better than
the cost of a static implementation, depending on the duplication ratio.

References

Benini, L. and Micheli, G. D. 1997. A survey of boolean matching techniques for library
binding. ACM Transactions on Design Automation of Electronic Systems 2, 3 (July), 193–
226.

Berkelaar, M. R. C. M. 1998. LP SOLVE 2.3 Users’ Manual (1998).

Berkelaar, M. R. C. M. and Jess, J. A. G. 1988. Technology mapping for standard-cell
generators. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (1988). 470–473.

Brayton, R. K., Chen, C. L., McMullen, C. T., Otten, R. H. J. M., and Yamour, Y. J.

1984. Automated implementation of switching functions as dynamic CMOS circuits. In
Proceedings of the IEEE Custom Integrated Circuits Conference (1984). 346–350.

Burns, J. L. and Feldman, J. A. 1998. C5M- a control-logic layout synthesis system for
high-performance microprocessors. IEEE Transactions on Computer-Aided Design 17, 1
(Jan.), 14–23.

Chaudhary, K. and Pedram, M. 1995. Computing the area versus delay trade-off curves in
technology mapping. IEEE Transactions on Computer-Aided Design 14, 12 (Dec.), 1480–
1489.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms.
McGraw-Hill, New York.

D. V. Campenhout, Mudge, T., and K.Sakallah. 1996. Modeling domino logic for static
timing analysis. Technical Report CSE-TR-295-96, The University of Michigan.

Detjens, E., Gannot, G., Rudell, R., Sangiovanni-Vincentelli, A., and Wang, A. 1987.
Technology mapping in MIS. In Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design (1987). 116–119.

Fishburn, J. P. and Dunlop, A. E. 1985. TILOS: A posynomial programming approach to
transistor sizing. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (1985). 326–328.

· 36

Harris, D. and Horowitz, M. A. 1997. Skew-tolerant domino circuits. IEEE Journal of
Solid-State Circuits 32, 11 (Nov.), 1702–1711.

Hoffman, C. M. and O’Donnell, M. J. 1982. Pattern matching in trees. Journal of the
Association for Computing Machinery 29, 1 (Jan.), 68–95.

Jongeneel, D., Otten, R., Watanabe, Y., and Brayton, R. K. 2000. Area and search
space control for technology mapping. In Proceedings of the ACM/IEEE Design Automa-
tion Conference (2000). 86–91.

Keutzer, K. 1987. DAGON: technology mapping and local optimization. In Proceedings
of the ACM/IEEE Design Automation Conference (1987). 341–347.

Kim, K.-W., C.L.Liu, and Kang, S.-M. 1999. Implication graph based domino logic syn-
thesis. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (1999). 111–114.

Kukimoto, Y., Brayton, R. K., and Sawkar, P. 1998. Delay-optimal technology map-
ping by DAG covering. In Proceedings of the ACM/IEEE Design Automation Conference
(1998). 348–351.

Lehman, E., Watanabe, Y., Grodstein, J., and Harkness, H. 1997. Logic decomposition
during technology mapping. Journal of the Association for Computing Machinery 16, 8
(Aug.), 813–834.

Matsunaga, Y. 1998. On accelerating pattern matching for technology mapping. In Pro-
ceedings of the IEEE/ACM International Conference on Computer-Aided Design (1998).
118–123.

Micheli, G. D. 1994. Synthesis and optimization of digital circuits. McGraw-Hill, Inc.,
New York, NY.

Ortiz, R. R. and Lefebvre, M. C. 1993. Technology mapping for NORA dynamic logic
circuits. In Proceedings of the European Design Automation Conference (1993). 310–314.

Patra, P. and Narayanan, U. 1999. Automated phase assignment for the synthesis of low
power domino circuits. In Proceedings of the ACM/IEEE Design Automation Conference
(1999). 379–384.

Prasad, M. R., Kirkpatrick, D., and Brayton, R. K. 1997. Domino logic synthesis
and technology mapping. In Workshop Notes, International Workshop on Logic Synthesis
(1997).

Puri, R. 1998. Design issues in mixed static-domino circuit implementations. In Proceedings
of the IEEE International Conference on Computer Design (1998). 270–275.

Puri, R., Bjorksten, A., and Rosser, T. E. 1996. Logic optimization by output phase
assignment in dynamic logic synthesis. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (1996). 2–8.

Sapatnekar, S. S. and Kang, S. M. 1993. Design automation for timing-driven layout
synthesis. Boston, MA: Kluwer Academic Publishers.

Thorp, T., Yee, G., and Sechen, C. 1998. Domino logic synthesis using complex static
gates. In Proceedings of the IEEE/ACM International Conference on Computer-Aided De-
sign (1998). 242–247.

Touati, H. J., Moon, C. W., Brayton, R. K., and Wang, A. 1990. Performance-oriented
technology mapping. In MIT Conference on Advanced Research in VLSI (1990). 79–97.

Venkat, K., Chen, L., Lin, I., Mistry, P., and Madhani, P. 1996. Timing verification
of dynamic circuits. IEEE Journal of Solid-State Circuits 31, 3 (Mar.), 452–455.

Wang, J., Wang, Z. D., Jullien, G. A., and Miller, W. C. 1994. Area-time analysis of
carry lookahead adders using enhanced multiple output domino logic. In Proceedings of the
IEEE International Symposium on Circuits and Systems (1994). 59–62.

Wang, Z., Jullien, G. A., Miller, W. C., Wang, J., and Bizzan, S. S. 1997. Fast adders
using enhanced multiple-output domino logic. IEEE Journal of Solid-State Circuits 32, 2
(Feb.), 206–213.

Williams, T. 1996. Dynamic logic: Clocked and asynchronous. Tutorial notes at the Inter-
national Solid State Circuits Conference.

Yee, G. and Sechen, C. 1997. Dynamic logic synthesis. In Proceedings of the IEEE Custom
Integrated Circuits Conference (1997). 345–348.

· 37

Zhao, M. and Sapatnekar, S. S. 1998. Technology mapping for domino logic. In Pro-
ceedings of the IEEE/ACM International Conference on Computer-Aided Design (1998).
248–251.

Zhao, M. and Sapatnekar, S. S. 2000. Timing-driven partitioning and timing optimiza-
tion of mixed static-domino implementations. Journal of the Association for Computing
Machinery 19, 11 (Nov.), 1322–1336.

