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1 Introduction

Distributed Memory Multicomputers such as the IBM SP-1, the Intel Paragon and the Thinking

Machines CM-5 o�er signi�cant advantages over shared memory multiprocessors in terms of cost

and scalability. Unfortunately, to extract all that computational power from these machines, users

have to write e�cient software for them, which is an extremely laborious process. Numerous

research e�orts have proposed language extensions to FORTRAN in order to ease programming

multicomputers; the most prominent one has been the HPF language standardization [1]. A

number of compilers for HPF have been proposed; these include the FORTRAN-D compiler from

Rice University [2], the SUIF compiler from Stanford [3], the PTRAN II compiler from IBM [4],

the SUPERB compiler from the University of Vienna [5], and, the FORTRAN-90D/HPF compiler

from Syracuse University [6].

The PARADIGM compiler project at Illinois is aimed at devising a parallelizing compiler for

distributed memory multicomputers that will accept FORTRAN 77 or HPF programs as input.

The fully implemented PARADIGM compiler will:

� Annotate FORTRAN 77 programs with HPF data distribution directives [7, 8].

� Partition computations and generate communication for HPF programs [9, 10, 11].

� Exploit functional and data parallelism in HPF programs [12, 13, 14, 15].

� Provide runtime support for irregular computations [16].

There has been a lot of interest in simultaneous exploitation of data and functional parallelism.

Research e�orts in the area include the Fx compiler from CMU [17], the FORTRAN-M compiler

from Argonne National Lab [18], the work by Chapman et. al. in [19], the work by Cheung and

Reeves in [20], the work by Girkar and Polychronopoulos in [21], and, the work by Ramaswamy

and Banerjee in [22]. All these e�orts recognize the bene�ts of using both types of parallelism

together to achieve better performance for certain applications. In this paper, we have discussed the

framework to be used in the PARADIGM compiler for exploiting functional and data parallelism

together.

For our discussion, we de�ne Functional Parallelism to be any parallelism existent among the

various routines of a given program and Data Parallelism to be parallelism within a routine that

is obtained by distributing data among all processors involved and having them each perform

computation using the owner computes rule [2]. Matrix Add, Matrix Multiply and 2D FFT are a

few examples of what we mean by routines. To re-emphasize, the de�nitions of functional and data

parallelism above may not correspond to some of the other popular connotations of these terms.
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1.1 Macro Data
ow Graphs

In order to expose the parallelism available in any given program, we use a representation called

the Macro Data
ow Graph (MDG). This representation has been used before by researchers such

as Sarkar in [23] and Prasanna and Agarwal in [24]. For our work, the MDG representation for a

program is de�ned to be a weighted directed acyclic graph whose nodes correspond to routines of

the program and edges correspond to precedence constraints among these routines. There are two

distinguished nodes in the MDG called START and STOP. START precedes all other nodes and

STOP succeeds all other nodes.

The weights of the nodes and edges are based on the concepts of Processing and Data Transfer

costs. The time required for the execution of a routine is called its processing cost. Processing costs

will depend on the number of processors used to execute the routine and include all computation

and communication costs incurred. On distributed memory machines these costs will be dependent

on the kind of data distribution used. Each routine may need a particular distribution for each

of its arrays to achieve the best performance. Since precedence constraints mean that an array

being read by a routine is being written into by its predecessor, we may need to redistribute the

array after the execution of the predecessor routine. The time needed for this data redistribution

between the execution of a pair of routines is referred to as the data transfer cost for that pair.

Data transfer costs are made up of three components : a sending cost for processors at the sending

routine, a network cost, and, a receiving cost for processors at the receiving routine. All these cost

components are functions of the number of processors used for the sending and receiving routines.

We consider the weight of a node in the MDG to be composed of:

1. The receiving cost components of all data transfers from its predecessors

2. The processing cost of the routine it corresponds to

3. The sending cost components of all data transfers to its successors

The two distinguished nodes START and STOP do not perform any computation, they have zero

weight.

The weight of an edge between a pair of nodes in the MDG is taken to be the network cost

component of data transfer between the routines corresponding to the nodes.

The usefulness of MDGs is that they can be used to decide on the strategy to be used to minimize

execution time of the given program on the target multicomputer. MDGs expose functional and

data parallelism in the program, allowing us to exploit both in an optimal manner. Data parallelism

information is implicit in the weight functions of the nodes and functional parallelism is implicit
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Figure 1: Example Showing Functional Parallelism

in the precedence constraints among nodes. In order to decide on a good execution strategy for

a program, we use an Allocation and Scheduling approach. Allocation decides on the number of

processors to use for each node in the MDG and scheduling decides on a scheme of execution for

the allocated nodes on the target multicomputer. Our work in this paper provides methods that

allocate and schedule any given MDG such that the �nish time obtained is within a factor of the

best �nish time theoretically obtainable.

1.2 Example

The usefulness of good allocation and scheduling may not be clear at �rst sight. It can be better

appreciated by considering an example. Figure 1 shows an MDG with three nodes N1, N2 and N3.

Plotted alongside are the processing costs of the routines they correspond to as a function of the

number of processors used. For ease of understanding we assume there are no data transfer costs

between routines. By our de�nitions, the weights of the nodes in this MDG would be the same

as the corresponding processing costs and the weight of edges would be 0. Now, given a system

with 4 processors, there could be many ways in which we can allocate and schedule the MDG. For

instance, a naive scheme would be to execute the nodes one after another on all 4 processors. In

this case, we have an execution time of 15:6 seconds. On the other hand, a better way of executing

the MDG would be to �rst execute N1 on all 4 processors, then allocate 2 processors each to nodes

N2 and N3 and execute them concurrently. This way, the routines �nish in 14:3 seconds. The two

schemes are shown pictorially in Figure 2. The �rst scheme is exploiting pure data parallelism, i.e.,

all routines use 4 processors. The second scheme on the other hand, is exploiting both functional

and data parallelism, i.e., routines 2 and 3 execute concurrently as well as use 2 processors each.
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Figure 2: Allocation and Scheduling Schemes for Example

Intuitively, good allocation and scheduling makes program execution faster because of more

e�cient execution. Most real applications execute more ine�ciently as the size of a processor

system grows, the processing e�ciency curves of Figure 1 in our example are typical. We can

see that by executing the nodes N2 and N3 concurrently and using fewer processors for them, the

second scheme improves overall e�ciency over the �rst. This makes the second scheme execute the

program faster than the �rst.

A point of interest with respect to the type of code generated in the two schemes is that the

�rst scheme will essentially have each processor execute similar code on di�erent data sets. We

refer to this type of code as Single Program Multiple Data (SPMD). On the other hand, the second

scheme can have very di�erent code for each processor; this type of code is called Multiple Program

Multiple Data (MPMD). Therefore, SPMD code exploits only data parallelism while MPMD code

exploits both data and functional parallelism.

1.3 Allocation and Scheduling

The basic problem of optimally scheduling a set of nodes with precedence constraints on a p

processor system when each node uses just one processor has been shown to be NP-complete by

Lenstra and Kan in [25]. Further treatment on this topic can also be found in the book by Garey

and Johnson [26]. The allocation and scheduling problem is considerably harder than the one just

described. There have been two major approaches to the approximate solution of the allocation
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and scheduling problem. The �rst has been a bottom up approach like those used by Sarkar in

[23], and Gerasoulis and Yang in [27, 28]. A bottom up approach considers the MDG to be made

up of lightweight nodes (in terms of computation requirements) with each using only one processor

(an explicit allocation is not done). The bottom up scheduling methods of [23, 27, 28] then use

clustering on the nodes to form larger nodes during the construction of a schedule. The second

approach to allocation and scheduling is a top down approach like the ones used by Prasanna

and Agarwal in [24], Belkhale and Banerjee in [12, 13], by Subhlok et. al. in [17, 29, 30], by

Ramaswamy and Banerjee in [14, 15] and in this paper. Top down approaches start with the

assumption of heavyweight nodes (again, in terms of computation requirements) in the MDG and

break them down during the process of constructing an optimal schedule. Top down methods

are considered better in that they take a more global view of the problem than the bottom up

approaches. Therefore they may be able to perform better optimizations.

The di�erence between earlier top down approaches mentioned above and the work presented

here is signi�cant. The methods presented in [24] do not consider data transfer costs between nodes

of the MDG. In addition, they make simplifying assumptions about the type of MDGs handled and

the processing cost model used. We do not make any assumptions for our MDGs and use very

realistic cost models. The work in [12, 13] also does not consider the e�ects of non-zero data

transfer costs. Their allocation and scheduling algorithms are similar to the ones we use. The

research presented in [17, 29, 30] considers allocation and scheduling for a class of problems that

process continuous streams of data sets. The computation for each data set has a tree-structured

MDG for all their benchmark programs [31]. A set of heuristics are used to decide on a good

allocation and scheduling scheme. There is no performance analysis of these heuristics and it is

not clear how they would work for more general MDGs (DAGs). Our methods on the other hand

have been theoretically analyzed for performance bounds and work well for general MDGs as we

will show.

1.4 MAST : MDG Allocation and Scheduling Tool

In order to provide an interface to our MDG allocation and scheduling methods, we designed and

implemented MAST. Some of the ideas used for MAST are similar to the ones used for the HeNCE

tool [32]. Basically, MAST provides users with the capability of specifying the MDG representation

for their programs in a graphical manner. Once an MDG has been speci�ed, MAST helps the user

study the performance of his code on various architectures and run the code if needed on any of

those architectures.

MAST has three major components to it:
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Figure 3: Startup View of MAST

Figure 4: View of MAST After Nodes Have Been Drawn
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Figure 5: View of MAST After a Complete MDG Has Been Drawn

Figure 6: View of MAST After an Update Statistics
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1. A graphical programming tool

2. A library of parallel scienti�c routines whose execution is well pro�led on all the desired target

multicomputers

3. An allocation and scheduling tool based on the methods discussed in this paper

MAST ties up the three components and provides the user with various utilities. A step by

step use of MAST has been shown in Figures 3 through 6. We now explain the signi�cance of

each �gure:

Figure 3 shows MAST when it is started up. At this point the graphical programming tool on

the left half of MAST has only two nodes { START and STOP.

Figure 4 shows MAST after the user has decided on the routines to be used in his program and

placed the required nodes. Nodes are drawn using the one of the utilities of the graphical

programming tool that can be seen on the top left corner of the canvas. Once a node has been

drawn, it can be tied to a library routine using a pull down menu provided (shown in �gure).

On closer inspection of the �gure, the nodes can be seen to have di�erent routine names

on them. It can also be seen that each node has little tag boxes on top and bottom; these

represent the input and output arrays for the routine the node represents. Di�erent routines

have di�erent numbers of tag boxes depending on their input and output array counts.

Figure 5 shows MAST after the user has connected the nodes using the edge drawing utility of

the graphical programming tool. Edges connect an output tag box of a node to an input tag

box of another node. This indicates the array being written into by the �rst node is being

read by the second node. Output tag boxes may have multiple edges, input tag boxes can

have only one edge.

Figure 6 shows MAST after the user has completed the MDG and has asked for a performance

evaluation on a speci�ed target architecture of a speci�ed size. This performance evaluation

uses the execution pro�le information of the scienti�c library. Performance statistics provided

include predicted uniprocessor time, SPMD time and MPMD time. Speedup and e�ciency

predictions are also provided for the SPMD and MPMD cases; also provided is a Gantt chart

showing the allocation and scheduling used for the MPMD case. In addition, MAST uses the

allocation and schedule computed to generate source code containing:

� Calls to routines in the scienti�c library provided in MAST.
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� Routines generated for data redistribution { this is done using the work discussed in [22].

In that paper, techniques for redistributing arrays (for regular distributions) between

arbitrary processor sets have been discussed.

� Routines generated to enable the scienti�c routines and redistribution routines to execute

on subsets of processors. These routines are based on concepts similar to those of groups,

contexts and communicators in MPI [33].

This generated code is ready to be compiled and executed on the target architecture.

In contrast to our graphical programming approach, other researchers in the area of integrating

data and functional parallelism have used language extensions for specifying available data and

functional parallelism. The work in [17, 29, 30] on the Fx compiler is based on extensions of

FORTRAN which are used to specify functional and data parallelism. Data parallelism is speci�ed

using constructs similar to HPF and functional parallelism is speci�ed using constructs called Par-

allel Sections. The FORTRAN-M language inherently provides constructs for specifying functional

parallelism [18]; recent work proposes to integrate the language with HPF in order to specify

data parallelism [34]. The work in [19] has proposed extensions to FORTRAN-90 for specifying

functional parallelism.

In the next section, we provide a brief overview of the theory of convex and posynomial functions

which we use in developing our allocation algorithm. In the following sections we discuss our

allocation and scheduling algorithms. We then present our processing and data transfer cost models

in Section 5. Theoretical results that discuss the optimality of our algorithms are provided in

Section 6. Section 7 provides preliminary results obtained using our algorithms.

2 Theory of Convex and Posynomial Functions

In this section we provide a brief overview of the theory of convex and posynomial functions. A

detailed discussion of convex functions and convex programming can be found in Luenberger's book

[35]. A discussion of the theory of posynomial functions is provided by Ecker in [36]. We have

selected a few important and relevant points about these functions for our discussion here.

2.1 Convex Sets

A set C in Rn is said to be convex if, for every x1, x2 2 C, and every real number �, 0 � � � 1,

the point �x1 + (1� �)x2 2 C.
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Figure 7: Convex sets.
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Figure 8: Convex Functions

This de�nition can be interpreted geometrically as stating that a set is convex if, given two

points in the set, every point on the line segment joining the two points is also a member of the

set. Examples of convex and nonconvex sets are shown in Figure 7.

2.2 Convex Functions

De�nition : A function f de�ned on a convex set 
 is said to be convex if, for every x1, x2 2 
,

and every �, 0 � � � 1,

f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2): (1)

f is said to be strictly convex if the inequality in Equation (1) is strict for 0 < � < 1.

Geometrically, a function is convex if the line joining two points on its graph is always above

the graph. Examples of convex and nonconvex functions are shown in Fig 8.



Technical Report CRHC-94-10, University of Illinois 1994 12

2.3 The Convex Programming Problem

The convex programming problem is stated as follows:

minimize f(x) (2)

such that x 2 S (3)

where f is a convex function and S is a convex set.

This problem has the property that any local minimum of f over S is a global minimum, thereby

easing the optimization process since it is unnecessary to perform hill-climbing out of local minima.

2.4 Posynomial Functions

A posynomial is a function g of a positive variable x 2 Rn that has the form

g(x) =
X

j


j

nY

i=1

x
�ij

i (4)

where the exponents �ij 2 R and the coe�cients 
j > 0. A posynomial is a function that is similar

to a polynomial, except that

- The coe�cients 
j must be positive.

- An exponent �ij could be any real number, and not necessarily a positive integer, unlike the

case of polynomials.

A posynomial has the useful property that it can be mapped onto a convex function through an

elementary variable transformation [36]

(xi) = (ezi) (5)

Such a functional form is very desirable, since such a transformationmaps the problem of minimizing

a posynomial function under posynomial constraints to a convex programming problem.

For example, the function 3:7x1:41 x
p
3

2 + 1:8x�11 x2:33 is a posynomial in the variables x1; x2; x3.

A few other examples include:

f(xi) = 1=xi (6)

f(xi) = constant (7)

f(xi; xj) =
xi
xj

(8)

f(xi) = xi (9)

The fact that these functions are posynomials will be used later in the paper.
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2.5 A few Properties of Convex and Posynomial Functions

If f and g are convex functions de�ned on a convex set S, then the following properties hold:

Sum Property The functions f + g is a convex function over S.

Constant Property The function c � f , where c is a non-negative constant, is a convex function

over S.

Max Property The function max(f; g) is a convex function over S.

Min Property The function min(f; g) is a convex function over S.

As shown before, posynomials can be transformed to convex functions using Equation 5. There-

fore, given two posynomial functions h and j de�ned on S, all the above properties hold for the

pair. We will use these properties later in the paper.

3 MDG Allocation Algorithm

We �rst consider the problem of allocation of processors to the nodes of a given MDG. After the

allocation is carried out using this algorithm, the MDG is ready to be scheduled using the algorithm

described in the next section.

For the purposes of allocation and scheduling, we assume the given MDG has n nodes numbered

consecutively from 1 to n. In addition, node 1 is the START node and node n is the STOP node.

To obtain an optimum solution to the allocation problem for a given MDG and a given p

processor target system, we solve:

minimize �, where:

� = max(Ap; Cp)
Ap =

1
p
�
Pn

i=1 Ti � pi
Cp = yn
yi = maxm2PREDi

(ym + tDmi) + Ti
Ti = (

P
m2PREDi

tRmi + tCi +
P

n2SUCCi
tSin)

tmi
R

t
S
in

t
C
i

t
R
in

tin
D

Ti

tmi
S

tmi
D

iy

ym
PRED

SUCC

where

1. pi represents the number of processors used by the ith node.
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2. tCi is the processing cost of the routine corresponding to node i and is a function of pi.

3. tRmi represents the time required at node i to process the messages it receives from predecessor

nodem (receiving cost component of data transfer). tDmi represents the network delay required

between the completion of node i and the start of node m (network cost component of data

transfer, weight of edge between nodes m and i). tRin represents the time required at node i

to process messages it sends to successor node n (sending cost component of data transfer).

All these quantities are functions of pi and pj .

4. PREDi and SUCCi are the sets of predecessor and successor nodes of node i in the given

MDG, respectively.

5. Ti is the total time required to process node i (weight of node i).

6. yi is the �nish time of the ith node.

7. � is the Optimum Finish Time obtainable for the execution of the program corresponding to

the given MDG.

8. Ap is also called the Average Finish Time for the case when nodes use up to p processors

each. To better understand the idea behind using the average �nish time, consider a quantity

called processor-time area for a node. This is the product of time taken for executing a node

and the number of processors it uses. If we sum the processor-time areas for all nodes in

the MDG, this will represent the minimum processor-time area requirement for the MDG.

Another way of saying the same is that � must be at least same as the average �nish time

which represents the sum of processor-time areas of all the nodes in the MDG averaged over

p.

9. Cp is called the Critical Path Time for the case when nodes use up to p processors each. Since

the critical path is the longest in the MDG, it represents the shortest possible time in which

we can �nish executing the MDG. This implies � must be at least same as the critical path

time.

The free variables in this formulation are the pi's, with 1 � pi � p; i = 1; n.

Our formulation relies on the properties of convex functions and posynomial functions discussed

in the previous section. Basically, our allocation problem is equivalent to a convex programming

formulation if the following conditions hold:

1. tDij , t
R
ij , t

S
ij , and tCi can all be represented by posynomial functions of the free variables.
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2. tRij � pj , t
S
ij � pi and tCi � pi are also posynomial functions of the free variables.

Later, in Section 5, we present cost functions to represent the quantities tDij , t
R
ij , t

S
ij , and tCi

which satisfy these conditions. We also demonstrate the practicality of these functions.

The discussion above implies that in practice, we can construct a formulation equivalent to a

convex programming formulation for allocation, and, therefore, obtain a unique minimum value for

�. The allocation that corresponds to this value will be an optimum allocation for the given MDG.

This method of allocation inherently assumes the existence of a perfect scheduler, i.e. one that

can produce a schedule which �nishes the program in � time units. In practice, producing such a

schedule is an NP-Complete problem [26]. We therefore, use a scheduler as described in the next

section which might produce a �nish time di�erent from �. As we will show in Section 6, we have

quanti�ed this deviation.

4 MDG Scheduling Algorithm

To schedule a given MDG with processor allocation done according to the method described in the

previous section, we use an algorithm called the Prioritized Scheduling Algorithm (PSA). The steps

involved in the PSA are:

1. The processor allocation produced by the convex programming formulation will be a set of

positive real numbers in the general case, however, we cannot allocate processors in this

manner on a real system. In this step we round-o� the allocated processors for all the nodes

to the nearest power of 2. This is done to make the �nal code generation very easy. The

results we obtain in Section 7 will show that this does not result in much loss in practice.

We refer to this step in the sections that follow as the rounding-o� step.

2. The rounded-o� processor allocation for the MDG is then modi�ed to impose a bound (PB)

on the number of processors used by any node. If the ith node uses pi processors and pi > PB,

pi is reduced to PB, else it is left unchanged. It can be seen that PB has to be a power of

two or else we will have to round-o� again and that may lead to a violation of the bound.

The value of PB to be used is determined using Theorem 3 which is discussed in Section 6.

We refer to this step in the sections that follow as the bounding step.

3. Since the processor allocation for the MDG may have been changed from the value produced

by the allocation step, we need to re-compute the weights of the nodes and the edges of the

MDG based on the new allocation. Next, we place the node START on a queue called the

ready queue and mark its Earliest Start Time (EST ) as 0.
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4. In this step, we pick a node from the ready queue that has the lowest possible EST . We then

check to see the time at which the processor requirement of this node can be met, i.e., the time

at which the required processors will be done with the node(s) they are currently processing

and can accept another node. This is called the Processor Satisfaction Time (PST ). If

PST � EST , the node can be scheduled at PST else, it can be scheduled only at EST . It

must be noted that there will be some idle time in the latter case since the required processors

are available but not used. However, the scheduler is not forcing idleness, it simply does not

have any other node to schedule since we have picked the node with the lowest EST .

5. If the node just scheduled is the STOP node, the scheduler is terminated else, we go to the

next step.

6. After scheduling the node, we now check to see if any of its successors have all their prede-

cessors scheduled, i.e. have their precedence constraints satis�ed. If so, we compute the EST

for those nodes based on the node and edge weights of the MDG and the schedule built so

far. Such nodes are then placed in the ready queue.

7. Steps are repeated starting at Step 4.

The �nish time of the STOP node based on the schedule is the predicted �nish time of the

program.

The scheduling algorithm described above is a variant of the popular List Scheduling Algorithm

(LSA) which has been used for example, by Liu in [37], by Garey, Graham and Johnson in [38], by

Wang and Cheng in [39], by Belkhale and Banerjee in [13], by Turek, Wolf and Yu in [40], and,

by Ramaswamy and Banerjee in [14, 15]. It must be noted that some of the mentioned researchers

also use variants of the LSA. We call it the PSA because of the implicit prioritization in Step 4

where a node with the lowest EST is picked even though other nodes may be ready for scheduling.

In the case where the number of processors used by any node is bounded, the PSA is shown to

be within a factor of the optimum in Theorem 1 in Section 6. While similar results have been

shown in the references mentioned above when there are no data transfer costs, our result is unique

in that it takes into account these costs. In fact, it is the �rst such result to be derived.

5 Mathematical Cost Models

This section deals with the important aspect of choosing appropriate functions to represent the

processing and data transfer costs involved in an MDG. The cost functions we choose have to

satisfy two criteria; they have to be convex or posynomial functions, and, they have to be practical.
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In this section we show that our cost functions are posynomials, their suitability is shown in Section

7.

The processing cost function we use is an often used model. On the other hand, the data

transfer cost functions are our own. The derivation of these functions is described in detail in [41].

Processing Cost Model

For the processing cost model, we use Amdahl's law, i.e., the execution time of the routine

corresponding to the ith node (tCi ) as a function of the number of processors it uses (pi) is given

by:

tCi = (�i +
1� �i
pi

) � �i (10)

where �i is the execution time of the routine on a single processor and �i is the fraction of the

routine that has to be executed serially. It can be seen that:

0 � �i � 1

0 � �i (11)

The way we calculated alpha and tau for the various routines used in our benchmarks is by

actually measuring execution times for these routines as a function of the number of processors

they use and then using linear regression to �t the measured values to a function of the form we

have chosen. In the future, we are considering the use of static techniques to predict these values.

At this point, we only wish to demonstrate that processing costs can be modeled by a function of

the form shown above. As our results will show, our form models processing costs fairly accurately

in practice.

Lemma 1 tCi is a posynomial function w.r.t. pi.

Proof : From Equation 10 we can see that tCi is made of two components; a constant component

�i � �i and a variable component (1��i)��i
pi

. The �rst component is a posynomial since it is a non-

negative constant (under Equation 11). The second component has a non-negative constant factor

multiplying a posynomial 1
pi
. Under the Constant Property discussed in Section 2, this component

is also a posynomial. Since both components are posynomials, using the Sum Property of Section

2, tCi is a posynomial. 2

Lemma 2 tCi � pi is a posynomial function w.r.t. pi.
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Proof : Using Equation 10, we can write down:

tCi � pi = �i � �i � pi + (1� �i) � �i (12)

We can see that this equation has two components; a variable component �i � �i � pi which has

a non-negative constant factor �i � �i multiplying a posynomial pi. By the Constant Property of

Section 2, this component is a posynomial. The other component in the equation above is a non-

negative constant which is also a posynomial. Hence, using the Sum Property of Section 2, we see

that tCi � pi is a posynomial. 2

We would like to point out that � and � for a routine could depend on the size of data input

to the routine. This does not a�ect the statements made in either Lemma above.

Data Transfer Cost Model

Here we consider the cost of redistribution of an array of data elements between the execution of

two nodes of the MDG involving pi and pj processors at the sending and receiving ends respectively.

For modeling such a transfer, we assume that the array is distributed evenly across the pi sending

processors initially, and across the pj receiving processors �nally. In addition, we assume that

the number and sizes of messages will be same for each sending processor and for each receiving

processor. For example, every sending processor may send 3 messages of 1000 bytes and every

receiver may receive 5 messages of 1500 bytes. These are both valid assumptions for the realm of

regular computations which we are dealing with.

The regular distributions of an array along any of its dimensions (size along dimension is S)

across a set of p processors are classi�ed into the following cases:

� ALL : All elements of the array along the dimension are owned by the same processor (p = 1)

� BLOCK : Elements of the array are distributed evenly across all the processors with each

processor owning a contiguous block of elements of size S=p.

� CYCLIC : Elements of the array are distributed evenly across all the processors in a round

robin fashion with each processor owning every pth element, the ith processor starting at

element i.

� BLOCKCYCLIC(X) : Elements of the array are distributed evenly across all the processors

in a round robin fashion with each processor owning every pth block of X elements, the ith

processor starting at the ith block of X elements.

Details of regular distributions can be found in [2, 1]. For our discussion of data transfer costs,

the distribution of an array can change from any of those listed above to any other along one or
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more of its dimensions.

In considering costs for any type of array transfer from node i to node j, we have already seen

that there will be three basic components : a sending component tSij , a network component tDij ,

and, a receiving component tRij . We have also seen that tSij is accounted for in the weight of node

i, tDij is taken to be the weight of the edge joining node i and node j, and, tRij is accounted for in

the weight of node j. The reason for doing this is that tS and tR require processor involvement,

whereas tD does not.

We propose the following expressions for the three cost components:

tSij = Sij(pi; pj) � tss + L �
1

pi
� tps

tDij =
L

pi � Sij(pi; pj)
� tn (13)

tRij = Rij(pi; pj) � tsr + L �
1

pj
� tpr

where,

� L is the length (in bytes) of the array being transferred

� tss, tps are the startup and per byte cost for sending messages from a processor

� tn is the network cost per message byte

� tsr, tpr are the startup and per byte cost for receiving messages at a processor

� Sij is the number of messages sent from each sending processor

� Rij is the number of messages received at each receiving processor.

Intuitively, the sending component (tSij) for each sending processor involves a startup cost for

each of the Sij messages sent and a processing cost for its share of the array ( L
pi
). The same logic

holds for the receiving component for receiving processors. The network component represents the

minimum delay required for messages to be delivered to the receiving processors after they have

been sent from the sending processors. If we assume a pipelined network with no congestion e�ects,

this delay will depend on the length of the last message sent. By our assumption of equal sized

messages, we see that the size of each message will be L
pi�Sij(pi;pj)

. This is the reasoning behind the

network cost component expression shown.

It can be seen that the quantities Sij and Rij will depend on the kind of redistribution occurring.

It is possible to express these quantities in terms of a pair of parameters of the sending and receiving
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Distribution Block Factor

ALL L

BLOCK L
pi

CYCLIC 1

BLOCKCYCLIC(X) X

Table 1: Block Factors for Various Regular Distributions

Distribution Skip Factor

ALL L

BLOCK L

CYCLIC pi
BLOCKCYCLIC(X) X � pi

Table 2: Skip Factors for Various Regular Distributions

distributions. The �rst of these parameters is called the Block Factor (BF), it provides a measure

of the sizes of the blocks of elements a processor owns under any of the regular distributions. The

Block Factor for the di�erent regular distributions of an array of L bytes on pi processors is shown

in Table 1. The other parameter we use is called the Skip Factor (SF), it provides an idea of

the distance between the successive blocks of elements a processor owns. We have listed the Skip

Factors for the various regular distributions of an array of L bytes on pi processors in Table 2. We

now write down the expressions for Sij and Rij as:

Sij = max(1;
SFj
SFi

;
BFi
BFj

;
SFj
SFi

�
BFi
BFj

)

Rij = max(1;
SFi
SFj

;
BFj
BFi

;
SFi
SFj

�
BFj
BFi

) (14)

where BFi and SFi are the Block Factor and Skip Factor for the sending distribution; BFj and

SFj are the Block Factor and Skip Factor for the receiving distribution.

In all the expressions above, we have omitted some details in order to make them more under-

standable. First, we have considered only a one-dimensional array being transferred in all the cost

functions. In practice, arbitrary n-dimensional arrays may be redistributed. In addition, the redis-

tribution may not be con�ned to a single array, more than one array may need to be redistributed

between a pair of nodes with the type of redistribution being di�erent for each of the arrays. It

is easy to extend our functions to account for these e�ects; we have not shown these extended
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forms as they are complex and lengthy. Our actual implementation uses an extended form of these

functions.

Lemma 3 tSij , t
R
ij and tDij are posynomial functions w.r.t. pi and pj for all possible cases of redis-

tributions.

Proof : A complete proof would require us to show that the statement above is true for all cases

of redistributions. However, the lack of space prevents us from doing this, details can be found in

[41]. Instead, we show that the statement holds for a pair of cases:

� Case A: BLOCK to BLOCK.

For this case, the expressions for Sij and Rij (using Tables 1 and 2 and Equation 14) are

given by:

Sij = max(1;
pj
pi
)

Rij = max(1;
pi
pj
) (15)

Using these values in Equation 13, we obtain:

tSij = max(1;
pj
pi
) � tss + L �

1

pi
� tps

tDij =
L

pi �max(1;
pj
pi
)
� tn ) tDij = min(

L

pi
;
L

pj
) � tn (16)

tRij = max(1;
pi
pj
) � tsr + L �

1

pj
� tpr

Proceeding in a manner similar to the one used for the processing cost function (using the

posynomial function examples and properties of posynomial functions), it can easily be shown

that tSij , t
D
ij , and tRij are all posynomial functions w.r.t. pi and pj .

� Case B: BLOCKCYCLIC(X) to BLOCKCYCLIC(Y )

For this case, the expressions for Sij and Rij (using Tables 1 and 2 and Equation 14) are

given by:

Sij = max(1;
pj �X

pi � Y
;
X

Y
;
pj
pi
)

Rij = max(1;
pi � Y

pj �X
;
Y

X
;
pi
pj
) (17)
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Using these values in Equation 13, we obtain:

tSij = max(1;
pj �X

pi � Y
;
X

Y
;
pj
pi
) � tss + L �

1

pi
� tps

tDij =
L

pi �max(1;
pj�X
pi�Y ;

X
Y
;
pj
pi
)
� tn ) tDij = min(

L

pi
;
L � Y

pj �X
;
L � Y

pi
;
L

pj
) � tn (18)

tRij = max(1;
pi � Y

pj �X
;
Y

X
;
pi
pj
) � tss + L �

1

pj
� tps

Proceeding in a manner similar to the one used for the processing cost function (using the

posynomial function examples and properties of posynomial functions), it can easily be shown

that tSij , t
D
ij , and tRij are all posynomial functions w.r.t. pi and pj .

Lemma 4 tSij � pi and tRij � pj are posynomial functions w.r.t. pi and pj for all possible cases of

redistributions.

Proof : A complete proof would require us to show that the statement above is true for all cases

of redistributions. However, the lack of space prevents us from doing this, details can be found in

[41]. Instead, we show that the statement holds for a pair of cases:

� Case A: BLOCK to BLOCK.

As shown in the previous lemma, the expressions for tSij and tRij are given by:

tSij = max(1;
pj
pi
) � tss + L �

1

pi
� tps

tRij = max(1;
pi
pj
) � tsr + L �

1

pj
� tpr (19)

We can now write down the expressions for tSij � pi and tRij � pj as:

tSij � pi = max(pi; pj) � tss + L � tps

tRij � pj = max(pj ; pi) � tsr + L � tpr (20)

Proceeding in a manner similar to the one used for the processing cost function (using the

posynomial function examples and properties of posynomial functions), it can easily be shown

that tSij � pi and tRij � pj are both posynomial functions w.r.t. pi and pj .
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� Case B: BLOCKCYCLIC(X) to BLOCKCYCLIC(Y )

As shown in the previous lemma, the expressions for tSij and tRij are given by:

tSij = max(1;
pj �X

pi � Y
;
X

Y
;
pj
pi
) � tss + L �

1

pi
� tps

tRij = max(1;
pi � Y

pj �X
;
Y

X
;
pi
pj
) � tss + L �

1

pj
� tps (21)

We can now write down the expressions for tSij � pi and tRij � pj as:

tSij � pi = max(pi;
pj �X

Y
;
X � pi
Y

; pj) � tss + L � tps

tRij � pj = max(pj ;
pi � Y

X
;
Y � pj
X

; pi) � tss + L � tps (22)

Proceeding in a manner similar to the one used for the processing cost function (using the

posynomial function examples and properties of posynomial functions), it can easily be shown

that tSij � pi, and tRij � pj are both posynomial functions w.r.t. pi and pj .

Having shown the statement of the Lemma true for the two example cases, we extend this result

to cover all the possible cases of redistribution. 2

6 Optimality of the Allocation and Scheduling Method

While developing the Allocation algorithm, we assumed the existence of a perfect scheduling algo-

rithm. Since the actual scheduling algorithm we use is not perfect, our methods may not achieve

the optimum value in practice. The theoretical results that follow quantize the deviations of our

algorithms from the best possible solution. In deriving these theorems, we have assumed that the

underlying computation and communication cost functions are of the form discussed in the previous

section.

We present below a de�nition of a term used in the proof of the theorem that follows.

De�nition 1 Area of Useful Work

When a schedule S is used for a given MDG on a given multicomputer system, the area of useful

work (Ws) done by it is de�ned as:

Ws =
X

i=1;nb

tibusy � p
i (23)

where, tibusy is the ith interval during which a constant number (pi) processors are kept busy by

the schedule. The quantity nb denotes the total number of such intervals.
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Theorem 1 Assume we are given an MDG with n nodes and a processor allocation such that

no node uses more than PB processors. Let Tpsa denote the value of the �nish time obtained by

scheduling this MDG on a given p processor system using the PSA algorithm and TPB
opt denote the

value obtained using the best possible scheduler. The relationship between these two quantities is

given by:

Tpsa � (1 +
p

p� PB + 1
) � TPB

opt (24)

Proof:

In the best case the area of useful work done by the optimal scheduling algorithm can be

p � TPB
opt . This is because it can, at best, keep all p processors in the system for the entire length of

the schedule it produces. If the work done by the PSA is denoted by Wpsa, we can write:

Wpsa � p � TPB
opt (25)

If any node uses at most PB processors, we can say that the PSA being unable to schedule the

next node immediately means it has at least p�PB +1 processors busy currently. However, as we

will see later, this will not always be true. If the duration when this is not true is � (in the worst

case), we can write (using the de�nition of useful work):

Wpsa � (Tpsa ��) � (p� PB + 1) +W� (26)

Here we are assuming W� is the worst case useful work (if any) done during the periods when

less than p� PB + 1 processors are busy.

If greater than PB processors are idle, it means the PSA algorithm has a case when PST < EST

for all the unscheduled nodes (Refer Section 4). This implies that every other unexecuted node

is dependent on the currently ongoing events which may be a node execution or a edge delay in

progress. It is also clear that such a situation could occur many times in the building up of the

schedule.

Let us call a situation such as the one described above an Idling Situation (IS). We now contend

that one or more of the events involved in the ith such IS (ISi) control each of the the events of

every subsequent IS (ISj for all j > i). If this were not true, it means we can �nd some node

execution or edge delay in an ISk; k > i such that no event in ISi controls it. In such a case this

node execution or edge delay would have been scheduled concurrently with the events in ISi, which

means it cannot belong to ISk which is a contradiction. Therefore our contention is true.
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The implication of this dependence between events in IS's is that they must form a set of paths

(partial or complete) in the given MDG. We know that the length of any path in the MDG is

bounded by the length of the critical path. Therefore, in the worst case, we can see that the total

duration for which IS's can occur in the schedule is the length of the critical path. Since TPB
opt must

be at least the length of the critical path, we can write:

� � TPB
opt (27)

It can be seen that in the worst case, no processors will be busy during any IS (all events are

edge delays), implying no work is done. This would give us a W� � 0. Using this inequality and

equation 27 in 26, we have:

Wpsa � (Tpsa � TPB
opt ) � (p� PB + 1) (28)

From Equations 25 and 28, we have:

(Tpsa � TPB
opt ) � (p� PB + 1) � Wpsa � TPB

opt � p

) Tpsa � (1 +
p

p� PB + 1
) � TPB

opt (29)

which is the required result 2.

Theorem 2 In the �rst two steps of the PSA we modify the processor allocation produced by the

convex programming formulation of Section 3. If TPB
opt denotes the value of the �nish time obtained

for the given MDG on a p processor system with this modi�ed allocation using the best possible

scheduler, we have:

TPB
opt � (

3

2
)2 � (

p

PB
)2 �� (30)

where, � is the solution obtained from the convex programming formulation.

Proof: We �rst look at the e�ect of increasing or decreasing the number of processors used by the

nodes of the MDG on the value of its average �nish time and critical path time. This can be seen

from the de�nition of these quantities in Section 3 and the cost functions of Section 5.

From this information, we can see that if we increase the allocation to any node i from pi to p0i,

its contribution to the average can increase by a factor of no more than (
p0
i

pi
)2. This factor comes

about because of the startup component in tRij and tSij . On the other hand, it is also evident that

decreasing the processor allocation for any node will only decrease the value of the average.
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Again, by looking closely at the material in the sections mentioned, we see that increasing the

allocation to any node i from pi to p0i will increase the critical path by a factor no more than
p0i
pi
. This is because of the startup component in tRij and tSij . Similarly, decreasing the processor

allocation of a node i from pi to p
0
i could also increase the critical path. This time the factor may

be up to (pi
p0i
)2. This is because of the structure of tDij .

Having seen this, we now examine the e�ect of the initial steps of the PSA on the values of the

average and critical path produced by the convex programming formulation (Ap and Cp).

In order to make our allocation practical, we �rst rounded-o� the processor allocation in Step 1

of the PSA. Since we round-o� to the nearest power of 2, it can be shown that the processor

allocation for the ith node is changed at most by 1
3 of its original value, i.e., pi can decrease to 2�pi

3

or increase to 4�pi
3 in the worst case. Let the value of the average �nish time and critical path time

of the MDG thus allocated be denoted by ARO and CRO respectively. From the discussion on the

e�ect of increase or decrease of processor allocation , we can write:

ARO � (
4

3
)2 �Ap ; CRO � (

3

2
)2 � Cp (31)

After performing the round-o�, we imposed a bound on the number of processors used by each

node in Step 2. The value of PB we use is assumed to be a power of 2. If not, we would have

to round-o� again and might end up making some pi's more that PB, which renders the bound

useless. The net e�ect of this step is of a decrease in the processor allocation of some nodes, and no

change in the processor allocation of others. The worst case decrease for any node is clearly from

p to PB. If APB is the value of the average �nish time and CPB is the value of the critical path

time for this bounded allocation, using the discussion on e�ects of processor increase or decrease,

we have:

APB � ARO ; CPB � (
p

PB
)2 � CRO (32)

Since TPB
opt denotes the time obtained by using the best scheduler on this rounded-o� and

bounded processor allocation, we can write:

TPB
opt = max(APB ; CPB) (33)

Using Equations 31 and 32 in the equation above we have:

TPB
opt � max((

4

3
)2 �Ap; (

3

2
)2 � (

p

PB
)2 � Cp) ) TPB

opt � (
3

2
)2 � (

p

PB
)2 �max(Ap; Cp) (34)

From the equation above and the de�nition of � in Section 3, we have:



Technical Report CRHC-94-10, University of Illinois 1994 27

TPB
opt � (

3

2
)2 � (

p

PB
)2 �� (35)

which is the required result 2.

Intuitively, this theorem summarizes the e�ect of our rounding o� and bounding steps. It tells

us how much the solution can deviate from the optimal even if we used the best possible scheduler

after having applied these steps. In the next theorem, we summarize all e�ects, i.e., using the PSA

to schedule after the round-o� and bounding steps.

Theorem 3 Let Tpsa denotes the value of the �nish time obtained for a processor allocation using

the convex programming formulation of Section 3 and the PSA. Then, we have:

Tpsa � (1 +
p

p� PB + 1
) � (

3

2
)2 � (

p

PB
)2� (36)

where, � is the solution obtained from the convex programming formulation.

Proof: This result is a direct consequence of the previous theorems ( 1 and 2) 2.

Corollary 1 The power of 2 that minimizes the value of the following expression is the optimum

value of PB to use for the PSA:

(1 +
p

p� PB + 1
) � (

3

2
)2 � (

p

PB
)2 (37)

Proof: From Theorem 3 it is clear that the expression to be minimized is the one given above.

As we have discussed in Section 4, we must choose a PB that is a power of 2 or we may end

up with an infeasible solution. A feasible solution is one in which the processor allocation for any

node is a power of 2 as well as bounded by PB. Hence, the result 2.

7 Implementation and Results

The allocation and scheduling algorithms proposed above were tried out on three benchmark MDGs.

The MDGs were hand generated after studying the programs they correspond to and are shown in

Figure 9. Our testbed machines were a 128 node Thinking Machines CM-5 and a 128 node Intel

Paragon.

The �rst MDG corresponds to multiplication of two complex matrices of 128� 128 elements.

It has few nodes and is relatively simple. The other MDG we used corresponds to the Strassen's

algorithm for multiplication of a pair of matrices of size 256�256 elements. This is a more complex

MDG with many more nodes than the previous one. The book by Press et. al. [42] describes



Technical Report CRHC-94-10, University of Illinois 1994 28

INITIALIZATION

STOP

START

F F F F F F

FFF

+ + +

* * * * * *

COMPUTATIONAL FLUID DYNAMICS

* MATRIX MULTIPLY+ MATRIX ADD/SUBTRACT F 2D FFT

COMPLEX MATRIX MULTIPLY STRASSEN MATRIX MULTIPLY

+ +

*

INITIALIZATION

START

* * * * * * *

+ + + + + + + + + +

+++++

+ +

START

INITIALIZATION

***

+

STOPSTOP

Figure 9: Benchmark MDGs Used

Strassen's algorithm in detail and explains its usefulness. Our third benchmark MDG corresponds

to a Fourier-Chebyshev spectral Computational Fluid Dynamics (CFD) algorithm applied on a

128� 128� 65 grid. Details of this algorithm can be obtained from [43]. The important routines

used in our benchmark MDGs are Matrix Multiply, 2D FFT, Matrix Add, and, Matrix Subtract.

Having obtained the MDGs, we used MAST to study their execution pro�les using 32, 64 and

128 processors on both target architectures. MAST generated the SPMD and the MPMD versions

of code for all the benchmark MDGs so that we could compare the performance obtained for the

two cases. For the SPMD case, every node in the MDG uses all the processors available; there

are no data redistributions. For the MPMD case, we perform allocation and scheduling using our

methods, data redistributions may be needed. The speedups and execution e�ciencies obtained

are shown in Figure 11 for the CM-5 and in Figure 12 for the Paragon. From these �gures it

can be seen that speedups obtained for the MPMD programs are much higher as compared to

SPMD versions, especially, for larger systems. The only exception to this observation is the 32

processor case for the CFD algorithm on the CM-5. Here, the SPMD version performs slightly

better than the MPMD version. This is because the data redistribution overhead for the MPMD

program outweighs the gains obtained by e�cient execution of the routines. In all other cases this
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Figure 10: Allocation and Scheduling of Complex Matrix Multiply

Machine Benchmark Predicted Actual Error
Time (Secs) Time (Secs)

CM-5 Complex Matrix Multiply 0.484 0.442 +9.5 %
Strassen's Matrix Multiply 0.758 0.766 -1.0 %

Computational Fluid Dynamics 0.467 0.426 +9.6 %

Paragon Complex Matrix Multiply 0.161 0.187 -13.9 %
Strassen's Matrix Multiply 0.288 0.306 -5.9 %

Computational Fluid Dynamics 0.266 0.244 +9.0 %

Table 3: Predicted versus Actual Execution Times of Benchmark Programs for 64 Processors

overhead is more than amortized by the e�cient execution of routines. The increased performance

bene�ts obtained for larger systems makes allocation and scheduling critical for massively parallel

computing. Intuitively, the bene�ts of using functional and data parallelism together will be greater

when most of the available data parallelism in a routine has been exploited (this happens for large

systems)

Another aspect of interest is the practicality of our models for processing and data transfer

costs. In order to check this we have plotted the predicted and measured �nish times of the three

benchmark programs for a system size of 64 nodes for both target architectures in Table 3. The

�gure shows the close correspondence of the two quantities, which means our cost models are very

practical.
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Figure 11: Speedup and E�ciency Comparison for SPMD and MPMD versions of Benchmark
Programs on the Thinking Machines CM-5
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Figure 12: Speedup and E�ciency Comparison for SPMD and MPMD versions of Benchmark
Programs on the Intel Paragon
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8 Conclusions and Future Work

In this paper we have presented a framework for exploiting data and functional parallelism together.

Basic to our framework is the MDG representation for a program. The MDG is constructed using

a graphical programming tool. Costs for its nodes and edges are estimated using cost function

models provided. We then use an allocation and scheduling approach on the MDG for exploiting

functional and data parallelism together. Allocation is performed using a convex programming

approach and scheduling is done using a variant of list scheduling. The performance of our allocation

and scheduling approach has been theoretically analyzed; practical results have also been provided

which show it is very e�ective.

In the future we will consider the following extensions:

� Using the SPMD compilation techniques developed for the PARADIGM compiler [9, 11, 10]

to generate data parallel versions of the scienti�c library routines in MAST. Currently, we

use hand coded parallel versions. Using the SPMD compilation will allow us to extend the

scienti�c library in an easy manner.

� Development of static processing cost estimation techniques like the ones described in [8, 44].

This way, we can pro�le any user speci�ed routine and not con�ne the user to using routines

from the library provided in MAST.

� Minimization of redistribution costs by modifying the scheduling algorithm. Currently, this

algorithm does not take data locality into account; by using such information, it may be able

to avoid redistribution costs if the pair of nodes involved are executing on the same set of

processors and have the same data distributions.
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