
Technology Mapping for High Performance

Static CMOS and Pass Transistor Logic Designs �

Yanbin Jiang y Sachin S. Sapatnekar z Cyrus Bamji �

y Department of ECE, Iowa State University, Ames, IA 50011

z Department of ECE, University of Minnesota, Minneapolis, MN 55455
� Cadence Design Systems, San Jose, CA 95134.

Abstract

Two new techniques for mapping circuits are proposed in this paper. The �rst method, called the odd-level

transistor replacement (OTR) method, has a goal that is similar to that of technology mapping, but without the

restriction of a �xed library size, and maps a circuit to a virtual library of complex static CMOS gates. The

second technique, the Static CMOS/PTL method, uses a mix of static CMOS and pass transistor logic (PTL)

to realize the circuit, and utilizes the relation between PTL and binary decision diagrams. The methods are

very e�cient and can handle all of the ISCAS'85 benchmark circuits in minutes. A comparison of the results

with traditional technology mapping using SIS on di�erent libraries shows an average delay reduction above

18% for OTR, and an average delay reduction above 35% for the Static CMOS/PTL method, with signi�cant

savings in the area.

1 Introduction

Technology mapping is a cornerstone of the logic synthesis process and this area has been well studied in the

past. Most existing techniques for technology mapping are based on static pre-characterized libraries, and can be

classi�ed into four categories: rule-based mapping [13], graph matching [15], direct mapping [18] and functional

mapping [20]. However, with changes in device technologies and the use of more complex static CMOS gates (for

example, in silicon-on-insulator technology, where longer transistor stacks are permitted), the limitations of the

library-based design are becoming apparent. A library of �xed size restricts the design choices that are available

to a circuit designer, while a dynamic library that is generated on the 
y enables a better exploration of the

�This work is supported in part by a Lucent Technologies DAC graduate scholarship, by a gift from Intel Corporation, and by the

NSF under contracts MIP-9502556 and MIP-9796305.

1



design space. This paper develops techniques for generating complex gates on the 
y and performing technology

mapping for two types of technologies:

� Static CMOS: A topological mapping method called the odd-level transistor replacement (OTR) is developed

for library-less mapping to complex static CMOS gates.

� Mixed static CMOS/pass transistor logic (PTL): A Boolean functional mapping method using binary deci-

sion diagrams (BDD's) to map logic to PTL is developed.

This paper employs a similar dynamic programming based framework for both of these problems, and although

they are solved as separate problems, we present them together in one publication for this reason.

1.1 Library-less mapping

Traditional methods for technology mapping are directed towards a speci�c library and are targeted towards

objectives such as minimizing the circuit delay, minimizing the area and reducing the power dissipation. Using a

pre-characterized library methodology has the inherent disadvantage that the quality of the results is dependent

on the richness of the library: a library with a larger number of cells is likely to lead to better results than a

sparsely populated library. The impact of the library size on logic synthesis was shown in [14], where it was

demonstrated that using larger libraries can reduce the area usage as compared to using smaller libraries.

However, a complicating factor is the e�ect of deep-submicron technologies, where it has been shown [24] that

the ratio of the delay of NAND/NOR gates to the inverter delay is becoming smaller than in older technologies.

This encourages the use of longer chains of pull-up/pull-down logic in circuits, making the increased usage of

complex gates in deep-submicron circuits more viable. While this leads to better circuit performance, it also

complicates the problem of traditional library-based technology mapping. With the increasing use of complex

gates in the design, the number of possible gate types increases exponentially [10]. Therefore, the number of

gates in any library of a reasonable size can only capture a small fraction of the total number of possibilities, and

traditional technology mapping is too restrictive.

To take full advantage of the availability of complex gates, the idea of using a dynamic \virtual library" is

becoming attractive. In this approach, individual complex gates (cells) are generated on the 
y, instead of using a

pre-characterized library. The translation of this new gate to a layout can be performed using a module generator.

The complete design methodology for this paradigm is as shown in Figure 1. This methodology can be extended

2



Technology-independent
Optimized netlist

Library
Module

Physical  Layout Design

Generator

Global Gate Collapsing

Figure 1: New design methodology

to work with the traditional design methodology, so that in case a library is available, the complex gates may be

implemented using either the cells in the given library or the virtual library.

One barrier to this dynamic library approach relates to the quality of the layout generator and the accuracy

of timing characterization for the cells generated on the 
y. An argument that is often made in favor of a

static precharacterized library is that the layout and timing estimates for these cells are much more accurate.

However, it is our contention that the limitations of these libraries motivate a more serious look at dynamic cell

generation. We note that as layout synthesis systems have become more mature, module generators have become

capable of synthesizing layouts for arbitrary complex gates more accurately and e�ciently. Several industrial

layout synthesis tools such as [7, 17] have been proposed to overcome this barrier to help make the application

of dynamic libraries possible. For example, C5M [7] has successfully been used to design a 400 MHz processor,

and LAS [17] is a commercial tool that can be used to customize standard/complex and PTL cells and digital

random logic blocks with up to 60,000 gates. It was reported in [7] that the quality of the layout generation

for a circuit with complex gates is comparable to the quality of hand-crafted layout and the timing information

of the complex gates maintain a high �delity between pre-layout and post-layout generation. Therefore, for our

application, we can expect that module generators like those described above may be used to generate layouts

that are consistent with the technology mapping.

The matching and covering methods used by traditional technology mappers such as MIS [4] cannot be applied

on the virtual library since the number of possible templates is far too large. A pattern/Boolean matching method,

3



which compares the pattern/logic function of the cells in the library with the pattern/Boolean representation of

the target circuit, operates by choosing a covering that is the best solution over all possible matchings. Clearly,

both the quality of the results and the CPU time are related to the size of the library.

There has been little prior work that solves the problem of library-less mapping. The work in [12] traverses

the circuit and chooses a succession of windows within which to perform local resynthesis operations with sizing,

using a sequence of locally optimal decisions to �nd a solution to the problem. Our technique, in contrast, uses

dynamic programming to consider the implications of a decision on the entire circuit at the same time. Other

related work includes [1, 2], which builds a graph representation for a logic expression and decomposes it into

subexpressions; each subexpression maps on to a complex gate. The mapping algorithm works on the structure

of the logic expression graph, and delays are accounted for using an RC model. The work in TABA [22] uses

a BDD representation for the network, decomposes the BDD into parts and then �nds a mapping for each part

based on the BDD representations. TABA maps a set of Boolean equations onto a set of static CMOS complex

gates under a given constraints in the number of serial transistors, and represents the latest results, prior to ours,

for library-less mapping method in the literature. Another approach [23] starts with a tree of NAND and NOR

nodes for the logic expression and then performs dynamic tree covering on this tree.

Our approach to solving the library-less mapping problem avoids manipulating logic expressions, and instead,

uses a simple and straightforward method that is entirely topological in nature. Moreover, we use more accurate

delay models than those used in past approaches.

1.2 Pass transistor logic mapping

Pass transistor logic (PTL) has recently emerged as a signi�cant alternative to full static CMOS since it

has the capability to implement a logic function with a smaller number of transistors, smaller delay and power

dissipation. Several pieces of work on PTL research of realizing circuits have been published during last few years

(for example, [16, 21, 25, 27, 28, 34, 35]), demonstrating the viability of this technology.

However, there has been relatively little work on design automation for PTL at the technology mapping stage,

and this work is among the �rst published techniques to incorporate pass transistor logic with technology mapping

issues. A related body of work is a recent heuristic approach to logic synthesis for PTL [5, 6], which is more

focused on the logic synthesis aspects and uses a simple delay model that estimates the delay using the number

of transistors on a PTL chain. The work in [19] uses a sequence of heuristic steps to perform performance-driven

4



PTL synthesis with bu�ers inserted to control the length of a PTL chain, using Elmore time constants to estimate

the delay. The approach presented in [31{33] uses BDD's to represent the logic expression and decomposes a

BDD into AND/OR and XOR (XNOR, MUX) parts; it then uses static CMOS gates to realize the AND/OR

parts and uses PTL for the XOR parts. Our work is di�erentiated from this research in that we use a more

sophisticated SPICE-calibrated delay model, and use a dynamic programming approach instead of locally greedy

optimizations. Moreover, we apply PTL to realize any type of complex gates, and not merely XOR gates.

Our work mixes PTL and CMOS design style to take advantage of the advantages of both. The idea of mixing

PTL and CMOS is not new, and the bene�t of this strategy has been proved by a fabricated chip in [30]. The

basic di�erence between our work and theirs is the strategy used to determine the PTL segments of the circuit.

The work in [30] treats those parts (in the BDD representation) with a input �xed to Vdd or ground as candidates

to be implemented by CMOS. A similar goal was pursued in a recently published paper [11], where a greedy

algorithm was used to create as large a PTL block as possible, relying on bu�er insertion to enforce limits on

the maximum number of series transistors permitted in the PTL segment. One di�erence, however, is that their

work generates layouts for the circuits as well, a task that is not addressed in this work.

1.3 Contributions of this work

In this work, we propose a dynamic programming framework for technology mapping for a library-less envi-

ronment and for PTL. Our work on library-less mapping focuses on the formation of gates, a procedure we call

gate collapsing, which collapses smaller gates in a decomposed circuit into more complex gates. Our work does

not address the issue of module generation for the layout of these cells.

The basic idea of gate collapsing has been used by traditional techniques for technology mapping that performed

local gate collapsing through pattern matching to improve the circuit performance. The word \local" refers to

the fact that the collapsed gates are constrained to belong to the available cell library in these approaches. In

contrast, our approach of global gate collapsing does not tie the list of permissible gates to any speci�c library.

Our procedure works on a virtual library that is assumed to have all possible cell types, so that the global gate

collapsing technique can have the full 
exibility of �nding the optimum possible combination of standard gates

in a network.

The input to global gate collapsing comes from the output of technology-independent optimization, and the

result of the procedure is a network where the input netlist is collapsed into an optimal set of complex gates

5



corresponding to that decomposition. This technique can result in a solution that can be optimized for various

objectives such as minimizing the circuit delay or the circuit area, or the power dissipation, etc.

For PTL mapping, our approach uses dynamic programming techniques to partition the circuit into PTL

segments separated by static CMOS gates. The basic unit in a PTL circuit is a multiplexor, and there is a close

relationship between the BDD representation of a circuit and its PTL implementation. Our method dynamically

builds BDD's of logic functions and �nds an optimal mapping, under the constraint that the number of PTL

transistors in series must be constrained never to exceed a user-speci�ed number.

Our work uses accurate delay models calibrated using SPICE. An exhaustive set of SPICE simulations is

performed to characterize complex gates and PTL and an accurate look-up table is constructed, listing the gate

delay as a function of parameters such as the input signal transition time, the load, the transistor sizes and

position of the switching transistor within the gate. An additional contribution of this work is a new technique

that is employed to reduce the size of the look-up table and the corresponding memory overhead.

The organization of the paper is as follows. The �rst technique for gate collapsing, called the OTR method, is

described in Section 2. The method is based on an observation that uses the topological properties of the circuit

in collapsing complex gates in a computationally e�cient manner. Next, we consider the problem of mixed static

CMOS/PTL mapping in Section 3, using the relationship between PTL structures and BDD's. Experimental

results are presented after each method, and the paper ends with concluding remarks in Section 4.

2 Odd-level Transistor Replacement (OTR) Method

2.1 An Example

We will now present a method for building complex gates, based on a simple topological technique that permits

subcircuits with an odd number of gate levels to be collapsed into a single complex gate.

The basic idea of the OTR method is to use the pull-down (pull-up) transistor structure from the gates at the

previous level gates to replace the pull-up (pull-down) transistors of the gates at the next level. To illustrate this,

consider the circuit in Figure 2(a) consisting of gates G1 through G7. This structure has 20 transistors in all, and

a transistor-level version is shown in Figure 2(b). During the procedure of transforming the circuit into a complex

gate, we will need to generate intermediate gates shown in Figure 3(a) for temporary use. Those intermediate

gates will be transformed into a normal static CMOS gate at the end of transformation.

As shown in the �gure, we will refer to the pull-down and pull-up transistor in G1 (G2) as an and ap (bn and

6



,7

,7

,5

1

,7

,7

,5

,6

,6

,6

,6

,5p

n 

2n 

1n 

2
p1p

2n 
1n 

2
p

1p

1n 

2
p

,5

2

a

b

c

d

ap

an

bp

bn

cn

dp

dn

G1

G2

G3

G4

G5

G6

G7

(a) (b)

a

b

c

d

G1

G2

G3

G4

G5

G6

G7 cp

Figure 2: A circuit for gate collapsing

bp), respectively. We use the pull-down (pull-up) transistors in G1 and G2 to replace the fanout pull-up (pull-

down) transistors of these gates in G5 to obtain the gate G5', resulting an intermediate static CMOS gate shown

in Figure 3(a). For example, the pull-down blocks of G1 and G2 fan out to the pull-up transistors p1;5 and p2;5 in

G5, respectively, and hence an and bn are inserted in their place to create G5'. Similarly, the transistors in G3 and

G4 are inserted into G6 to obtain another intermediate static CMOS gate, G6'. We treat these intermediate gates

as intermediate synthesis stages and we will eliminate them in the next step by performing the same operation,

replacing the pull-down (pull-up) block of G7 consisting of transistors p1;7 and p2;7 (n1;7 and n2;7) by the pull-up

(pull-down) blocks of the intermediate gates G5' (G6'). Therefore, noting that for G5', the pull-up block consists

of an and bn and the pull-down block of ap and bp, that G6' has a pull-up block comprising transistors cn and

dn and a pull-down block comprising cp and dp, we perform the following operations to obtain the �nal collapsed

gate: (1) use an and bn from G5' to replace n1;7 of G7 (2) use cn and dn from G6' to replace n2;7 of G7 (3) use ap

and bp from G5' to replace p1;7 of G7 (4) use cp and dp from G6' to replace p2;7 of G7. The detailed illustration

of the �nal collapsed gate is shown in Figure 3(b). Note that the �nal implementation has only 8 transistors, a

transistor count reduction of 60%.

From the principle illustrated in this example, it is easy to see that if we collapse an even number of levels of

gates, we will be left with an intermediate static CMOS gate, whereas if we collapse an odd number of levels,

we will return to the formal CMOS complex gate structure, and therefore we call this technique the odd-level

7



Intermediate gates at intermediate stage

Final circuit after transformation

an bn

cn dn

ap

bp

cp

dp

a

bc

d

G7’

(b)

(a)

ap

bp

bn

c

d

dn

p

p

G5’ G6’

an
cn

Figure 3: The procedure of OTR gate collapsing

transistor replacement (OTR) method.

2.2 Proof of Logic Correctness

Before beginning this proof, it is important to state that the OTR technique works when the network is entirely

speci�ed in terms of inverting gates, as is the case in any CMOS implementation. When the circuit is speci�ed

in terms of noninverting gates, the �rst step would be to convert all noninverting gates into an inverting gate

followed by an inverter, and then apply the OTR method.

Theorem:

(1) On completion of the OTR procedure, all gates are transformed into (complex) traditional static CMOS gates.

(2) The OTR method preserves the logic function f(x1; x2; � � � ; xn) of the original circuit.

Proof: The �rst part of this proof is easy to see, since by construction, the pull-up of the �nal gate consists

purely of pMOS transistors and the n part consists purely of nMOS transistors, and each pMOS structure in the

pull-up will have a dual nMOS structure in the pull-down. Therefore, the �nal result will be a traditional static

CMOS gate.

We prove the second result on the reduction of a three-level subcircuit to one level. The proof for other odd

numbers of levels l can be deduced from this proof in a constructive manner by applying this procedure to reduce

the number of levels in steps to l� 2; l � 4; � � � ; 1.

For the circuit con�guration shown in Figure 4, we label the levels from 1 to 3 as shown. We will consider the

situation when the output of level 3 is at logic 1; the proof for the logic 0 case is analogous.

8



g1

g2

gk

Level 2 Level 3Level 1

T
o level 2

T
o level 3

f1,1

f1,2

f1,m

Figure 4: Circuit con�guration considered in the proof

Since the level 3 output is at logic 1, it implies that there is a set of pMOS transistors that provides at least

one pull-up path between Vdd and the output node. We will show that under the OTR scheme, the new gate will

also have a pull-up path corresponding to each of these pull-up paths.

Without loss of generality, we may consider any one of these paths, P . Before proceeding, we note that in the

original circuit, each of the inputs g1; g2; � � � ; gk of P is connected to a pull-down path in the previous level that

is connected to ground, i.e.,

g1 ^ g2 ^ � � � ^ gk = 0

Each transistor on P is replaced by transistor segments from the intermediate nontraditional CMOS gate by

applying the OTR procedure, which replaces that transistor with the pull-down of the preceding intermediate

gate.

To show that after modi�cations, the path P continues to provide a pull-up path between Vdd and the output

node, it su�ces to show that each such preceding intermediate gate has a path from ground to its output node.

We will call this Requirement (�).

Consider any such level 2 gate gi in the original circuit that excites a transistor on path P . If the level 3 output

is high, then it must be true that there is one or more path in gate gi that connects the output node to ground

in the original circuit. Without loss of generality, we consider any one such path Qi. Then it must be true that

9



if the level 1 gates driving this path are fi;1; fi;2; � � � ; fi;m, then

fi;1 ^ fi;2 ^ � � � ^ fi;m = 1

The OTR procedure constructed the intermediate gate by inserting pull-up stages from level 1 to replace the

pull-down transistors on Qi. Therefore, any conducting pull-up path in a level 1 gate will be conducting pull-down

subpath in the intermediate gate. Therefore, all the subpaths corresponding to fi;1; � � � ; fi;m will be conducting

pull-down paths in the intermediate gate at level 2, and when these are placed in series, we have a conducting

pull-down path between output and ground for the intermediate version of gate gi at level 2. Thus we have shown

Requirement (�) and hence the proof.

2.3 Delay Estimation

In this section, we describe the technique used in this work for delay calculation for complex gates, including a

new method used to reduce the amount of storage for a look-up table based approach, while maintaining accuracy.

In order to calculate delay information accurately for complex gates, the rise delay and fall delay of the

complex gates are characterized in the look-up table as a function of four parameters (1) the position of the

switching transistor (2) the transistor size (3) the input slope S, and (4) the loading capacitance C. The switching

position here refers to which transistor in a series chain causes a gate to switch. For example, for the fall

transition of a NAND gate, it is possible that the switching may be caused by a transition at any one of the

three transistors in the pull-down chain, each of which will lead to di�erent delays. Therefore, we incorporate

this information into the look-up table by parameterizing it by the location of the switching transistor. In our

implementation, we assume that each transistor in a gate has the same size. This makes the task of layout easier,

and compacts the size of the look-up table, although it is possible that some further timing improvements may

be facilitated by allowing transistors to be sized individually. Our experimental results show that even under our

implementational assumption, substantial area/performance improvements are possible. Moreover, the theoretical

framework presented here can be extended to the case of nonuniform sizes.

Given a switching position and a transistor size, a traditional look-up table is a two-dimensional array of values

parameterized by S and C, as shown in Figure 5(a). We maintain a set of these two-dimensional tables to record

this delay information. The number of such tables is given by twice the product of the total number of switching

transistor positions and the number of possible transistor sizes, with the factor of two corresponding to separate

tables for the rise and fall delays. This look-up table scheme requires a large amount of memory which can make

10



x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

C

S

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

C

S

Delay Equation

Equation

Equation

Equation
Data

q
u
a
t
i
o
n

E

E
q
u
a
t
i
o
n

E
q
u
a
t
i
o
n

(b) Refined Table(a) Traditional Table

Figure 5: Look-up tables

the look-up speed slow, since it is impossible to store all such tables for all possible switching transistor positions

and transistor sizes in the cache or in the RAM. In order to re�ne this look-up table method, we compact the

information in this table into a characteristic delay equation for each such two-dimensional array. For the purposes

of characterization, we �nd a least-squares �t to the characteristic delay equation from [29] which is of the type

used by Synopsys:

D = � � S + � � C + 
 � S � C + !;

where �, �, 
, ! are constants. However, if we attempt to �nd a single delay equation for the entire table, the

accuracy of the characterization may be poor. Therefore, we use a set of equations that capture the information

embedded in a subset of the data, ensuring that the accuracy of each such �t is within a prescribed range, �.

The entire data can be �tted accurately to a small set of delay equations, and any data points that have an error

larger than � from the set of equations are stored as pure data. The overall structure of the storage is as shown

in Figure 5(b).

Our experimental results show that we can use the delay equation to represent about 75% of the delay data

points by using 4-10 di�erent sets of coe�cient for each two-dimensional table within an � error of 5%.

The procedure for �nding the values of �; �; 
 and ! requires a least-squares minimization of the following

form:

minimize F =
X

i

[(� � Si + � � Ci + 
 � Si � Ci + !)�Di]
2

where the summation is performed over all SPICE-measured data points i, and Ci; Si and Di, denote the load

11



capacitance, slope and delay corresponding to the ith data point, respectively. This unconstrained minimization

can be performed by setting the partial derivatives of F with respect to each of the parameters to zero, i.e.,

@F
@�

= 0; @F
@�

= 0; @F
@


= 0; @F
@!

= 0. This yields a system of linear equations that is solved to �nd the values of

�; �; 
 and !.

2.4 Outline of the Algorithm

We now present a dynamic programming based approach to solve the problem of area minimization under

delay constraints. To appreciate the di�culty of this problem, we point out that technology mapping, a special

case of global gate-collapsing, is known to be NP-complete for directed acyclic graph structures [15]. A technique

that has been routinely and successfully used in technology mapping is to decompose a DAG into a set of trees

and to perform mapping on those trees (for example, in [8, 10, 15]), with the trees being selected in such a way

that they are all rooted at gates with multiple fanouts or at gates at the primary output. We persist with this

approach in our work.

It is worth pointing out that an alternative class of approaches to technology mapping begins by merging

each fanout-free region into a complex gate, so that the circuit consists only of multi-fanout complex gates; the

technology mapping problem can then be treated as the problem of decomposition of these gates into complex

gates. We do not use this method for two reasons. First, the computational complexity of decomposing the

complex gate is exponential in the number of its inputs, and there are no optimal techniques for �nding a

decomposition of such a network. Second, since the decomposition method only handles fanout-free regions at

a time, it is essentially similar to tree mapping in that respect. It is an open question as to which kind of

decomposition will eventually yield the best results, and therefore, in our work, we assume that the initial circuit

has already been decomposed into a 2-input NAND gate and inverter network.

The algorithm is based on dynamic programming and uses OTR combinations to generate possible complex

gates within each tree. As in [8], we begin with a 2-input NAND gate and inverter decomposition of the circuit.

While other decompositions may also be used, the purpose of using a 2-input NAND gate decomposition is

to increase the granularity of the initial circuit, to provide more freedom to the OTR procedure in generating

arbitrary complex gates. In contrast, a coarse-grained approach will allow a smaller degree of 
exibility in gate

collapsing. The pseudocode for the algorithm is follows:

12



Algorithm Outline

Input:Initial circuit decomposed into inverters and 2-input NAND gates.

Output: Optimum network of complex gates.

f
levelize the circuit

find roots

sort roots

from primary inputs to primary outputs

for each root generate tree

apply dynamic programming

for each node in the tree from leaf nodes to the root

find all possible collapsing solutions

store non inferior solutions [Area, Delay]

find optimum solution based on all generated noninferior states

g

An explanation of the pseudocode is as follows. The circuit is �rst levelized to �nd the level number for

each gate, which is the maximum number of gates between the primary inputs and the gate output. Next, the

procedure find roots is invoked to split the DAG circuit structure into a forest of trees. The function sort roots

then arranges the roots of these trees according to their level number. The trees are processed in order of the

level number of their roots, thereby ensuring that before each tree is considered, all of its fanin nodes have been

processed.

The dynamic programming procedure [9] proceeds by associating a set of states with each node, where a node

corresponds to a gate output. A state is a partial solution that relates to a possible con�guration of collapsed

gates for the subtree rooted at that node. The state information for each node is a pair [Area,Delay], calculated

from the primary inputs up to that node. The method can easily be extended to consider measures such as power

in this framework. The Area at a node g is given by the sum of the Area of a candidate complex gate with

output g, and the node Area for all possible states at the fanin nodes of the current complex gate. The complex

gates are chosen so that the number of series-connected MOSFETs on a path to Vdd or ground does not exceed

a user-speci�ed number k.

The algorithm consists of two phases. Phase one is a postorder traversal from the leaves to the root of the tree,

during which dynamic programming proceeds by enumerating the possible states at a node, and eliminating all

states in a partial solution that are provably suboptimal. For example, a state [Area,Delay] is provably inferior if

there exists another state [Area',Delay'] such that Area � Area' and Delay � Delay'. The pruned list of possible

states at each node are used as candidate states at the next node, and so on. Under this basic framework, the

13



dynamic programming procedure stores only the noninferior [Area,Delay] combinations and proceeds in a manner

that is fundamentally similar to that in [8]. Due to limitations of space, we do not describe any further details

here.

Phase two is a preorder traversal from the root node to the leaves, where the best solution is chosen from the

set of solutions generated from phase one. When all noninferior states have been enumerated, the optimal state

is chosen and the corresponding circuit con�guration is determined. An outline of the computational complexity

is provided after the pseudocode for the Static CMOS/PTL method described in Section 3.

The delay calculation in our work is very similar to that in [8]. When we process node g during the postorder

traversal, the load of node g is unknown. Hence we assume a typical value for the load of node g and �nd a set

of solutions. After the fanout of node g has been handled, we know the exact load for node g, and we may then

perform a timing recalculation for node g according to the actual load value.

(a) (b) (c)

Figure 6: Increasing the versatility of the OTR procedure

The OTR procedure fundamentally requires the presence of three levels of logic on which the transform may

be applied. However, our dynamic programming procedure adapts this to consider the collapsing of two levels of

gates as well. Consider the situation shown in Figure 6(a), with two levels of logic. The output wire is logically

equivalent to two inverters in series, and therefore, it is possible to consider two types of gate collapsing schemes,

as shown in Figure 6(b) and (c). This scheme increases the versatility of choices available for the dynamic

programming procedure, and this additional 
exibility can give signi�cant improvements in the results.

2.5 Experimental Results: OTR

The OTR method described in this paper was implemented in C on a SUN Sparc 1/170 workstation. For

purposes of comparison, results were generated using SIS [26], and OTR on the ISCAS'85 benchmark circuits.

The circuits were �rst decomposed into inverters and two-input NAND gates using SIS. Next, we performed a

minimum circuit delay technology mapping in SIS for the circuits using the libraries nand-nor.genlib, mcnc.genlib,

lib2.genlib and 44-6.genlib. To maintain compatibility between the delay models, we characterized the SIS library

14



with the same set of technology parameters that we used for the circuit simulations used to generate our delay

models. The value of the parameter k (described in Section 2.4) was set to 4 in our work.

Our OTR results and SIS results on nand-nor.genlib, mcnc.genlib and lib2.genlib libraries are shown together

in Table 1 for various circuits. These libraries were characterized so that the area and delay measures were

consistent with OTR, and the number of power levels for each cell were consistent with those for OTR (although

OTR can naturally allow a wider variety of cells). The sizes of cells (power levels) in SIS libraries were chosen

based on the sizes of the transistors of the virtual cells for OTR. We chose multiple typical power levels for

virtual cells and performed SPICE simulation for delays. The process of characterization for the virtual library

took us about one month. We show the results of applying this technique to �nd the minimum delay, but the

method can equally well be used to solve the constrained optimization problem. In this table, column 1 shows

the circuit name; columns 2-4 show, respectively, the minimum delay, the corresponding area, and the CPU time

of the SIS mapping results for each circuit on the nand-nor.genlib library. The same information is then shown

for the SIS mapping results for each circuit on the mcnc.genlib library are shown in columns 5-7, and for the

lib2.genlib library in columns 8-10, and �nally, for our OTR method results in columns 11-13. The last line shows

the average improvements of delay and area.

Here, the area de�nes the relative area cost of the cell, in any unit system that is convenient for a circuit

designer. The relative area cost was determined from LAS [17]. The area measure used in our method was

consistent with the measure used in the characterized SIS libraries.

A comparison of the results of SIS and OTR, shows that that OTR provides better results than SIS results,

with average delay reductions of about 40% with about 40% smaller areas.

The reason for these improvements is that in the above modestly sized SIS libraries, none of the complex

gates that have four transistors in series in the pull-up/pull-down path, while in our work, we have the 
exibility

of choosing any complex gate with up to four series transistors. In contrast, a library that contained all gates

with up to four parallel chains, each with up to four series transistors, would require the characterization of 3503

gates [10]; typical libraries contain a few hundred gates. Another reason for the improvement is that the cells

used by OTR have more variations of size (power levels) than the cells in the SIS libraries.

These results are indicative of the power of our technique. It is important to note that SIS simply cannot work

in our new design methodology because it cannot work on a virtual library, and requires all allowable gates to

be listed and characterized in the library, which could be a prohibitive overhead. Our methods are fast and the

15



Table 1: Experimental Results of SIS and OTR Methods

Circuit nand-nor.genlib mcnc.genlib lib2.genlib OTR method
Minimum Area CPU Minimum Area CPU Minimum Area CPU Minimum Area CPU
Delay(ns) (unit) Time(ns) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s)

C432 50.68 8072 10.6 45.97 7640 16.3 43.29 7824 14.1 24.53 3354 4.86

C499 39.11 13880 16.8 36.66 12640 27.4 32.59 13088 23.8 24.15 6912 7.93

C880 35.91 10808 13.1 33.36 10652 22.8 31.82 10255 21.2 24.08 5573 6.99

C1355 43.12 16192 19.0 40.93 16752 30.9 38.35 17594 28.2 24.99 7392 7.87

C1908 52.64 19696 24.3 47.75 18464 37.6 41.07 20405 33.2 30.07 11004 13.49

C2670 50.30 26416 31.5 44.19 23008 57.1 38.77 21688 59.2 30.41 16098 22.29

C3540 71.86 27328 46.8 65.38 29328 74.4 60.24 31264 65.7 52.36 21600 29.30

C5315 66.52 59024 73.0 64.10 56088 129.1 60.83 51042 107.5 35.50 35670 60.31

C6288 197.47 54886 78.1 195.65 54762 143.7 192.66 53792 129.3 100.66 28992 23.83

C7552 61.32 62680 155.3 55.49 59936 371.2 51.15 57224 292.3 28.96 43896 70.02

Avg. Imp. 42.3% 43.2% 37.7% 41.2% 32.3% 41.0%

Table 2: Experimental Results of SIS and OTR Methods on a Large Library

Circuit 44-6.genlib OTR method
Minimum Area CPU Minimum Area CPU
Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s)

C432 32.45 6504 101.98 24.53 3354 4.86

C499 26.93 7868 174.41 24.15 6912 7.93

C880 26.81 7492 164.16 24.08 5573 6.99

C1355 28.76 11840 208.16 24.99 7392 7.87

C1908 37.02 12760 284.08 30.07 11004 13.49

C2670 38.93 18498 440.18 30.41 16098 22.29

C3540 58.67 23928 621.73 52.36 21600 29.30

C5315 42.10 39544 1014.61 35.50 35670 60.31

C6288 156.91 45726 1032.27 100.66 28992 23.83

C7552 39.06 51024 2371.93 28.96 43896 70.02

Avg. Imp. 18.7% 22.1%

largest ISCAS'85 circuit can be handled in minutes.

Table 2 shows the results from SIS running on a large library, 44-6.genlib, a complete library with 3503 cells,

in comparison with the results of OTR. In this paper, only one power level was used for this 44-6.genlib library

for ease of characterization and in order to control the CPU times for SIS. It is shown that because of the larger

size of the library, the results of SIS are better than those from the smaller libraries. Our OTR method continues

to be better than the results of SIS even on this larger library, although the average improvement is diminished

from Table 1.

After comparing our library-less mapping method with SIS, a library-based mapping method, we compare

our method with another library-less mapping method TABA [22]. As mentioned earlier, TABA provides the

latest results for library-less mapping in the literature. Table 3 shows the results in terms of the number of gates

(including inverters)/transistors using TABA and OTR on some IWLS'93 benchmark circuits. We see that the

results of OTR are better than those of TABA in 6 out of 8 circuits. Table 4 shows the number of transistors (the

number of gates used by TABA is not reported) using TABA and OTR on the ISCAS'85 benchmark circuits;

again, we see that OTR yields better results than TABA. In the cases where our approach does worse, it can be

16



Table 3: Results of TABA and OTR Methods

Circuit TABA(4,4) OTR
Gates/Trans. Gates/Trans.

5xp1 51/302 64/378
9sym 65/404 43/272
duke2 223/1110 201/996
misex1 25/148 27/158
rd53 17/82 17/82
rd73 35/174 31/152
rd84 55/290 48/252
sao2 65/362 58/320

Table 4: Transistor Numbers of TABA and OTR Methods

Circuit TABA(4,4) OTR
Transistors Transistors

C432 710 644
C499 1464 1352
C1355 1592 1304
C1908 2346 1858
C2670 2880 2842
C3540 4106 4012
C5315 5922 5542
C6288 8096 7992
C7552 8556 8298

attributed to the limitation of OTR which relies on the initial circuit decomposition.

The results can be improved still further by enhancing the set of choices available to the dynamic programming

procedure by applying the procedure illustrated in Figure 6. Table 5 shows these results: column 1 shows the

circuit names, and the remaining columns show the minimum delay and area obtained with and without using

this approach, and the corresponding CPU time. On average, it is seen that this improves the results by an

average of 26%, and a maximum of 43% in delay, while simultaneously providing area reductions of an average

of 0.5%, and a maximum of 57%.

17



Table 5: Results of OTR Method by Adding Inverters

Circuit Original Modi�ed
Min. Area Min. Area CPU
Delay (unit) Delay (unit) Time
(ns) (ns) (s)

C432 24.53 3354 18.17 1423 8.34
C499 24.15 6912 16.12 4491 17.46
C880 24.08 5573 17.76 4163 14.82
C1355 24.99 7392 18.14 8154 18.79
C1908 30.07 11004 23.90 9222 29.71
C2670 30.41 16098 25.31 25451 40.08
C3540 52.36 21600 30.04 28104 69.16
C5315 35.50 35670 26.47 34083 111.34
C6288 100.66 28992 75.25 41796 106.15
C7552 28.96 43896 23.18 39659 151.17

3 Combined Static CMOS/Pass Transistor Logic Design

3.1 PTL Fundamentals

Although static CMOS has been a mainstay of circuit design for decades, with increasing performance re-

quirements on circuit in terms of speed and power, there is a conscious attempt to seek design styles with better

performance. Several techniques such as dynamic logic and PTL have been proposed recently. In this section,

we develop techniques for the synthesis of circuits with a combination of static CMOS and PTL and present a

procedure that partitions a circuit into static CMOS and PTL to achieve the minimum delay.

PTL is widely considered to be a promising design style since it can implement most functions using fewer

transistors than a static CMOS implementation. This reduces the overall capacitance, resulting in circuits with

higher speed and lower power dissipation. The logic style is illustrated in Figure 7, which shows a PTL logic

segment that realizes the two-input AND function. Only recently has PTL become noticed as a viable design

style in its own right, and consequently and there are no mature synthesis tools to realize the advantages of this

logic style.

In dealing with PTL, a designer must be aware of the following limitations:

(1) For an nMOS (pMOS) transistor, the low-to-high (high-to-low) transition is imperfect and therefore PTL

cannot achieve full voltage swings, resulting in reduced noise margins.

(2) It is possible for sneak paths between Vdd and ground to exist unless the circuit is designed carefully. An

18



A A

B B

F

Vss

Vss
Vdd

Figure 7: Realization of an AND function using PTL logic

example of sneak paths is shown in Figure 8: if X = 1 and Y = 0 at the same time, then F is connected to both

power supply and ground simultaneously.

X

Y

F
Gnd

Vdd

Figure 8: An example of a sneak path

Pass transistors can be used to build a 2-input multiplexer, leading to a one-to-one correspondence between

BDD's and their PTL implementations. Since a BDD can represent any logic function, we can use the BDD repre-

sentation to directly arrive at a PTL implementation of a complex gate. In Figure 9, we show the correspondence

between a BDD node and a pass transistor, build the BDD representation for the 2-input AND gate, and arrive

at the pass transistor implementation of the BDD. Figure 9(a) shows a BDD node whose PTL implementation is

shown in Figure 9(b). Using this as a basis for design, we take the BDD in Figure 9(c), representing a two-input

AND gate, and build the corresponding PTL implementation as shown in (d). A second example of more complex

logic is shown in Figure 10.

F

G H

X A

B

0 1

0

1

10

F

A A

B B

F

Vss

Vss
Vdd

(b)

F

X

G H

X

(a) (c) (d)

Figure 9: Circuit example 1

19



A

B

C

D

A

B C

D

1 0

1 0

0

1

1

1 0
0

F

A A

B B

C C

D D

F

F

F = AB +CD

(b) (c)

(a)

Figure 10: Circuit example 2

3.2 Fundamental Pass Transistor Cell Selection

F

G H

X X X

G H

F

X

(a) (b)

Figure 11: Two types of PTL units

In order to implement a BDD node using a 2-input multiplexer-like pass transistor, a suitable choice of the

fundamental pass transistor cell must be made. As pointed out in [6], there are two possible types of fundamental

pass-transistor units, as shown in Figure 11(a) and (b). The �rst uses a pair of nMOS pass transistors, while

the other utilizes an nMOS transistor and a pMOS transistor. While the worst case noise immunity of the �rst

con�guration is better than that of the second, it requires the generation of complementary signals at the gate

inputs, which results in an extra area overhead. Moreover, the extra delay in generating the complement could

lead to a sneak path, which could result in a larger power dissipation. In this work, we choose a fundamental cell

with one nMOS and one pMOS transistor; however, the work can be extended to handle the other con�guration

too.

20



3.3 Outline of the Algorithm

The dynamic programming approach for gate collapsing proposed in Section 2.4 is adapted to develop a

technique for building mixed static CMOS/PTL circuits. The basic idea is to use BDD's to represent a candidate

logic function that can be implemented in PTL during dynamic programming. The implementation uses the BDD

package described in [3].

In using PTL, as in the case of complex static CMOS gates, we must ensure that the number of pass transistors

in series should be no more than a predetermined number p. In other words, while generating BDD's, we do not

permit the depth of the BDD to become larger than p, and at that point, we force the use of a static CMOS

gate at the fanout. The �nal circuit is likely to contain pieces of pass transistor logic that are isolated from each

other by static CMOS gates. Since PTL generates high and low voltages that are a threshold voltage away from

Vdd and ground, respectively, this can cause the short circuit current of the CMOS transistor to be signi�cant.

These e�ects are averted in practice by connecting a weak pull-up/pull-down in a feedback loop from the output

of the CMOS gate to its inputs, so that the high voltage is raised to Vdd and the low voltage lowered to ground

potential.

The dynamic programming approach here is used to determine how the circuit should be partitioned between

static CMOS and PTL implementations with OTR-based gate collapsing being used for the static CMOS segment.

In our current implementation, we use look-up table method for PTL delay model that is similar to that used for

the static CMOS logic, with the coe�cients being altered, i.e., using di�erent values of coe�cients in the delay

equation mentioned in Section 2.3.

As in Section 2.4, and for the same reasons, the algorithm begins by decomposing the circuit into a forest of

trees. For each such tree, we perform mapping by dynamic programming in a manner similar to that described

in Section 2.4 to implement the design using mixed static CMOS/PTL logic. Since the threshold value p is a

small number, it is computationally inexpensive to generate BDD's in the fanin cone up to a BDD depth of p.

Moreover, the number of possibilities for mapping a node either into a complex gate with a bounded number, k, of

series-connected MOSFETs, or as PTL with a bounded p value, is �nite and small. Therefore, the computation is

fast. The dynamic programming approach is guaranteed to �nd the optimal solution of mixed static CMOS/PTL

circuits for tree structures. For DAG structures, since the approach uses techniques that have worked well for

technology mapping, we expect the results to be near-optimal for this problem too, and as our experimental

results show, the procedure leads to sensible designs.

21



The dynamic programming procedure is similar to the OTR algorithm described earlier and is represented by

the following pseudocode:

Algorithm Outline

Input:Initial circuit decomposed into inverters and 2-input NAND gates.

Output: Optimum mixed PTL/static CMOS gate network.

f
levelize the circuit

find roots

sort roots

from primary inputs to primary outputs

for each root generate tree

for each node in the tree from leaves to the root

apply dynamic programming procedure

find maximum fanin cone

generate all possible BDDs inside the maximum fanin cone

to generate PTL solutions

find all possible collapsing solutions

store non inferior solutions [Area,delay]

find optimum solution of the primary outputs

g

The chief di�erence between the OTR approach and this approach is that we maintain BDD representations

for all possible candidate PTL implementations; as mentioned earlier, due to the limitation on the number of

series-connected PTL transistors, these BDD's operate within a maximum fanin cone and are typically small. We

compute the possible states of a node g, or a PTL implementation using the BDD representation, and calculate

the Area and Delay for every candidate state. As before, each state corresponds to an [Area,Delay] combination,

and only the noninferior states are stored. Finally, when all noninferior states have been enumerated, the optimal

state is chosen and the corresponding circuit con�guration is determined.

While the nature of dynamic programming makes it inherently di�cult to arrive at an accurate measure of the

computational complexity, it is worthwhile to attempt an estimate of the complexity. For both the OTR and the

static CMOS/PTL methods, we need to build complex gates, either in static form or as PTL. Suppose that for

each node, it is possible to build C possible complex gates, that a complex gate can have a maximum of I inputs,

and that each node can have up to M [Area, Delay] pairs stored during dynamic programming. Therefore, for

each node, the amount of computation for calculating the [Area, Delay] pairs is O(C � I �M). In general, C and

I are bounded, and so the computation complexity can be written as O(M). Since the dynamic programming

technique handles each of the N gates in the circuit, the computation complexity of our algorithm is O(N �M).

22



3.4 Experimental Results: PTL

The Static CMOS/PTL method described above was also implemented in C on a SUN Sparc 1/170 workstation.

Results were generated using our mixed static CMOS/PTL method on the ISCAS'85 benchmark circuits. As

before, the circuits were �rst decomposed into inverters and two-input NAND gates. Each PTL cell has multiple

power levels as for OTR. The results generated on SIS are identical to those described earlier, but are displayed

again in this table for better readability. The value of the parameter p (described in Section 3.3) was set to to 4

in our experiments unless speci�ed.

Table 6: Experimental Results of SIS and PTL Methods

Circuit nand-nor.genlib mcnc.genlib lib2.genlib Static CMOS/PTL method
Minimum Area CPU Minimum Area CPU Minimum Area CPU Minimum Area CPU
Delay(ns) (unit) Time(ns) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s)

C432 50.68 8072 10.6 45.97 7640 16.3 43.29 7824 14.1 19.24 1372 190.90

C499 39.11 13880 16.8 36.66 12640 27.4 32.59 13088 23.8 19.50 3098 196.66

C880 35.91 10808 13.1 33.36 10652 22.8 31.82 10255 21.2 19.18 2432 168.50

C1355 43.12 16192 19.0 40.93 16752 30.9 38.35 17594 28.2 20.77 3450 376.49

C1908 52.64 19696 24.3 47.75 18464 37.6 41.07 20405 33.2 25.28 4753 296.05

C2670 50.30 26416 31.5 44.19 23008 57.1 38.77 21688 59.2 26.75 5980 621.61

C3540 71.86 27328 46.8 65.38 29328 74.4 60.24 31264 65.7 36.20 9059 887.46

C5315 66.52 59024 73.0 64.10 56088 129.1 60.83 51042 107.5 25.92 11601 990.18

C6288 197.47 54886 78.1 195.65 54762 143.7 192.66 53792 129.3 88.33 14403 1306.02

C7552 61.32 62680 155.3 55.49 59936 371.2 51.15 57224 292.3 21.74 18350 1093.61

Avg. Imp. 54.0% 76.2% 50.3% 75.4% 46.0% 75.4%

Table 7: Experimental Results of SIS and OTR Methods on a Large Library

Circuit 44-6.genlib OTR Method Static CMOS/PTL Method
Minimum Area CPU Minimum Area CPU Minimum Area CPU
Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s)

C432 32.45 6504 101.98 24.53 3354 4.86 19.24 1372 190.90

C499 26.93 7868 174.41 24.15 6912 7.93 19.50 3098 196.66

C880 26.81 7492 164.16 24.08 5573 6.99 19.18 2432 168.50

C1355 28.76 11840 208.16 24.99 7392 7.87 20.77 3450 376.49

C1908 37.02 12760 284.08 30.07 11004 13.49 25.28 4753 296.05

C2670 38.93 18498 440.18 30.41 16098 22.29 26.75 5980 621.61

C3540 58.67 23928 621.73 52.36 21600 29.30 36.20 9059 887.46

C5315 42.10 39544 1014.61 35.50 35670 60.31 25.92 11601 990.18

C6288 156.91 45726 1032.27 100.66 28992 23.83 88.33 14403 1306.02

C7552 39.06 51024 2371.93 28.96 43896 70.02 21.74 18350 1093.61

Avg. Imp. (OTR) 18.7% 22.1%

Avg. Imp. (CMOS/PTL) 35.2% 67.5%

Table 6 illustrates the results of our Static CMOS/PTL algorithm for various circuits, as compared with SIS

on the three libraries (nand-nor.genlib, mcnc.genlib, lib2.genlib). In this table, column 1 shows the circuit name;

columns 2-4 show, respectively, the minimum delay, the corresponding area, and the CPU time of the SIS mapping

results for each circuit on the nand-nor.genlib library. The same information is then shown for the SIS mapping

results for each circuit on the mcnc.genlib library are shown in columns 5-7, and for the lib2.genlib library in

columns 8-10, and �nally, for Static CMOS/PTL method results in columns 11-13. The last line shows the average

improvements of delay and area using our approach.

23



Table 8: Results of BDDlopt.ptl and Our Static CMOS/PTL Methods

Circuit BDDlopt.ptl Our Static CMOS/PTL Method
Gates Gates

5xp1 74 63
9sym 36 42
alu2 214 189
alu4 628 431
cordic 38 29
f51m 49 37
my adder 110 99
parity 15 15
rd53 24 17
rd73 45 31
rd84 58 46
t481 23 24
z4ml 19 16

A comparison of Static CMOS/PTL results with the results of SIS shows much greater performance enhance-

ments from the use of PTL in the circuits. The average delay reduction is about 50% with simultaneous area

reductions of above 70% over the results of SIS. One reason for this improvement are because PTL can easily

realize non-inverting gates, while SIS must use invertering gates cascaded by an inverter to realize the same

function if the library does not have the corresponding non-inverting gate. Moreover, the PTL-based complex

gates have more variations of size (power level) than the cells in the SIS libraries. The authors would like to point

out the results presented here are pre-layout, and that the post-layout results of our method and SIS may vary

from these values. However, we expect that with the use of a high quality module generator, the general trends

should be maintained.

Table 7 shows the results of SIS on 44-6.genlib, OTR and Static CMOS/PTL methods. It can be seen from

this table that the static CMOS/PTL design style has the best performance among the those three techniques.

Table 6 and Table 7 show the comparison between our library-less method and a library-based method, SIS.

We will compare our library-less method with other library-less methods in Table 8 and Table 9. Table 8 shows

the comparison between BDDlopt.ptl [32] and our Static CMOS/PTL method in terms of the number of gates.

For a fair comparison, we set p = 3 in our approach here since the PTL cells used by BDDlopt.ptl have up to 3

pass transistors in series. For 11 out of 13 circuits, our Static CMOS/PTL are better than BDDopt.ptl because

our method does not limit the PTL parts only to be XOR (XNOR) gates, and we use a dynamic programming

24



Table 9: CMOS/PTL Cells Numbers of Ferrandi and Our Methods

Circuit Ferrandi's Method Our Method
CMOS/PTL cells CMOS/PTL cells

C432 11/36 10/33
C499 5/69 12/28
C880 10/75 19/51
C1355 5/69 16/49
C1908 31/104 42/83
C2670 52/119 53/103
C3540 50/298 53/141
C5315 71/226 63/194
C6288 3/498 48/147
C7552 112/411 65/206

algorithm for selecting static CMOS and PTL parts. The two worst cases are due to the limitation of our method,

due to which it relies on the initial circuit structure. In realistic designs, designers may use p = 3 or even 4 for

generating a larger variety of acceptable gate types, in terms of delay, for better design performance. With p = 2

for XOR (XNOR) and p = 1 for MUX, BDDlopt.ptl tends to use smaller gates and results in non-optimal results.

Table 9 shows the results of the numbers of CMOS cells and PTL cells from Ferrandi's method [11] and our

Static CMOS/PTL method. While most of the results in [11] are for pure PTL implementations, there is one

set of results for mixed CMOS/PTL implementations, and we compare our results with those. In general, if we

add the number of CMOS and PTL cells used, we see that our approach uses a smaller number of cells than

Ferrandi's method. Moreover, the ratio of the number of CMOS cells to the number of PTL cells in our method

is better than Ferrandi's method. For example, for the circuit C6288, Ferrandi's method uses 3 CMOS gates

and 498 PTL gates; this is not likely to lead to a viable circuit without bu�ering to limit the number of PTL

transistors in series. In contrast, our approach takes these requirements into account while �nding the solution

and consequently has a better balance of the number of CMOS cells to PTL cells.

4 Conclusion

We have presented a new idea of global gate collapsing for pure static CMOS designs, and of using BDD's

to realize mixed technology design using a combination of static CMOS and PTL. Our goal has been to present

a general technique for performing overall circuit optimization using purely topological and Boolean functional

techniques for static CMOS and small BDD's for PTL. Because OTR generates complex gates according to the

25



initial circuit structure, it does not need to perform Boolean matching or pattern matching with cells in a library.

The OTR method is fast and simple and avoids the intractable subproblems in technology mapping, such as

matching and covering, by constructing complex gates topologically. The use of PTL is a powerful technique to

reduce the area and power dissipation of the circuit, and our work, along with the approaches in [6,11] are early

approaches in developing design automation support for PTL synthesis. We believe that the application of virtual

library and static CMOS/PTL design style will play a more and more important role in the high performance

design. Layout issues including cell generation, cell characterization on the 
y remain an open and challenging

problem. In our future work, we intend to study these problems and the problem of automated layout generation

for the mapped circuits, including interconnect wires between cells.

Acknowledgement

The �rst author would like to thank Ruchir Puri, Leon Stok and Daniel Brand for discussions about the pass-

transistor logic work and Professor Ricardo Reis for valuable references. The authors would like to thank the

reviewers for their constructive suggestions.

References

[1] M. R. C. M. Berkelaar, and J. A. G. Jess, \TechnologyMapping for Standard-Cell Generators," in Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design, pp. 470-473, 1988.

[2] M. R. C. M. Berkelaar, \Area-Power-Delay Trade-O� in Logic Synthesis," Ph.D. Thesis, 1992.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant, \E�cient Implementation of a BDD Package," in Proceedings

of the ACM/IEEE 27th Design Automation Conference, pp. 40-45, 1990.

[4] R. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L. Pei, N. Phillips, R. Rudell, R. Segal, A. Wang,

R. Yung, and A. Sangiovanni-Vincentelli, \Multiple-level Logic Optimization System," in Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pp. 356-359, 1986.

[5] P. Buch, A. Narayan, A. R. Newton, and A. Sangiovanni-Vincentelli, \On Synthesizing Pass Transistor

Networks," in Proceedings of the International Workshop on Logic Synthesis, pp. 1-8, 1997.

[6] P. Buch, A. Narayan, A. R. Newton, and A. Sangiovanni-Vincentelli, \Logic Synthesis for Large Pass Tran-

sistor Circuits," in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,

pp. 663-670, 1997.

26



[7] J. L. Burns, and J. A. Feldman, \C5M - A Control-Logic Layout Synthesis System for High-Performance

Microprocessors," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.

17, No. 1, January 1998.

[8] K. Chaudhary, and M. Pedram, \A Near Optimal Algorithm for Technology Mapping Minimizing Area

under Delay Constraints," in Proceedings of the ACM/IEEE 29th Design Automation Conference, pp. 492-

498, 1992.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill Book Company,

New York, New York, 1990.

[10] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, \Technology Mapping in MIS,"

in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 116-119, 1987.

[11] F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. Scarsi, and F. Somenzi, \Symbolic Algorithm for Layout-

Oriented Synthesis of Pass Transistor Logic Circuits," in Proceedings of the IEEE/ACM International Con-

ference on Computer-Aided Design, pp. 235-241, 1998.

[12] S. Gavrilov, A. Glebov, S. Pullela, S. C. Moore, A. Dharchoudhury, R. Panda, G. Vijayan, and D. T. Blaauw,

\Library-Less Synthesis for Static CMOS Combinational Logic Circuits," in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 658-662, 1997.

[13] D. Gragory, K. Bartlett, A. de Geus, and G. Hachtel, \SOCRATES: A System for Automatically Synthe-

sizing and Optimizing Combinational Logic," in Proceedings of the ACM/IEEE 23rd Design Automation

Conference, pp. 79-85, 1986.

[14] K. Keutzer, K. Kolwicz, and M. Lega, \Impact of Library Size on the Quality of Automated Synthesis," in

Proceedings of the International Symposium on Circuits and Systems, pp. 120-123, 1987.

[15] K. Keutzer, \DAGON: Technology Binding and Local Optimization by DAG Matching," in Proceedings of

the ACM/IEEE 24th Design Automation Conference, pp. 341-347, 1987.

[16] T. Kuroda, and T. Sakurai, \Overview of Low-power ULSI Circuit Techniques," IEICE Transactions on

Electronics, Vol. E78-C, No. 4, pp. 334-344, April 1995.

27



[17] LAS Users Guide. Cadence Design Systems, Inc..

[18] M. Lega, \Mapping Properties of Multi-level Logic Synthesis Operations," in Proceedings of the IEEE Inter-

national Conference on Computer Design, pp. 257-260, 1988.

[19] T.-H. Liu, A. Aziz, and J. Burns, \Performance Driven Synthesis for Pass-Transistor Logic Circuits," in

Workshop Notes, International Workshop on Logic Synthesis, pp. 259-259, 1998.

[20] F. Mailhot, and G. DeMicheli, \Technology Mapping Using Boolean Matching and Don't Care Sets," in

Proceddings of the IEEE European Design Automation Conference, pp. 212-216, 1990.

[21] N. Ohkubo, \A 4.4ns CMOS 54x54-b Multiplier Using Pass-transistor Multiplexer," IEEE Journal of Solid-

State Circuits, Vol. 30, No. 3, pp. 251-257, March 1995.

[22] A. Reis, R. Reis, D. Auvergne, and M. Robert, \The library Free Technology Mapping Problem," in Pro-

ceedings of the IEEE/ACM International Workshop on Logic Synthesis, 1997.

[23] A. Reis, and R. Reis, \Covering Strategies for Library Free Technology Mapping," in Proceedings of the

IEEE/ACM International Workshop on Logic Synthesis, 1999.

[24] T. Sakurai, and A. R. Newton, \Delay Analysis of Series-connected MOSFET Circuits," IEEE Journal of

Solid-State Circuits, Vol. 26, No. 2, pp. 122-131, February 1991.

[25] Y. Sasaki, \Multi-level Pass-transistor Logic for Low-power ULSIs," in Proceedings of the IEEE Symposium

on Low Power Electronics, pp. 14-15, 1995.

[26] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,

R. K.Brayton, and A. Sangiovanni-Vincentelli, \SIS: A System for Sequential Circuit Synthesis," Technical

Report UCB/ERL M92/41, Electronics Research Laboratory, University of California at Berkeley, Berkeley,

May 1992.

[27] D. Somasekhar, and K. Roy, \Di�erential Current Switch Logic: A Low Power DCVS Logic Family," IEEE

Journal of Solid-State Circuits, Vol. 31, No. 7, pp. 981-991, July 1996.

[28] M. Tachibana, \Synthesize Pass Transistor Logic Gate by Using Free Binary Decision Diagram," in Pro-

ceeedings of the International ASIC Conference, September 1997.

28



[29] D. F. Wong, \A Fast and Accurate Technique to Optimize Characterization Tables for Logic Synthesis," in

Proceedings of the ACM/IEEE 34th Design Automation Conference, pp. 337-340, 1997.

[30] S. Yamashita, K. Yano, Y. Sasaki, Y. Akita, H. Chikata, K. Rikino, and K. Seki, \Pass-Transistor/CMOS

Collaborated Logic: The Best of Both Worlds," in Proceedings of the Symposium on VLSI Circuits, pp. 31-32,

1997

[31] C. Yang, V. Singhal, and M. Ciesielski, \BDD Decomposition for E�cient Logic Synthesis," in Proceedings

of the International Conference on Computer Design, 1999.

[32] C. Yang, and M. Ciesielski, \Synthesis for Mixed CMOS/PTL Logic: Preliminary Results," in Proceedings

of the International Workshop on Logic Synthesis, 1999.

[33] C. Yang, V. Singhal, and M. Ciesielski, \BDD Decomposition for E�cient Logic Synthesis," in Proceedings

of the International Workshop on Logic Synthesis, 1999.

[34] K. Yano, Y. Sasaki, K. Rikino, and K. Seki, \Top-down Pass-Transistor Logic Design," IEEE Journal of

Solid-State Circuits, Vol. 31, No. 6, pp. 792-803, June 1996.

[35] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and A. Shimizu, \A 3.8ns CMOS 16x16-

b Multipliter Using Complementary Pass-transistor logic," IEEE Journal of Solid-State Circuits, Vol. 25,

No. 2, pp. 388-395, April 1990.

29


