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ABSTRACT–This paper presents a statistical leakage 
estimation method for FinFET devices considering the unique 
width quantization property. Monte Carlo simulations show that 
the conventional approach underestimates the average leakage 
current of FinFET devices by as much as 43% while the 
proposed approach gives a precise estimation with an error less 
than 5%. Design example on subthreshold circuits shows the 
effectiveness of the proposed method. 
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I. INTRODUCTION 
As device feature sizes enter the nanometer regime, 

leakage power consumption in VLSI systems has become 
one of the main barriers to technology scaling. Precise 
modeling of leakage current under process variations is 
crucial for the proper estimation of leakage power 
consumption and the optimal design of leakage-sensitive 
circuits such as dynamic circuits, SRAM bitlines and 
subthreshold circuit [1, 2].  A significant amount of work has 
been published on the prediction of leakage power under 
process variation using statistical methods. For example, 
Chang developed models which consider the spatial 
correlations of inter-die and intra-die process parameters [3].  

Double-gate FinFET transistors are recognized as one of 
the most promising successors of traditional planar bulk 
devices in the sub-25nm regime due to the significantly 
reduced leakage current, excellent short channel behavior, 
and a fabrication process which is compatible with existing 
SOI or bulk technology processes [4]. One of the major 
differences between a FinFET device and a planar device is 
the fact that the FinFET device consists of multiple small unit 
fins. This unique width quantization property in FinFETs 
comes from the constant fin height constraint. Conventional 
leakage estimation approach does not consider the width 
quantization property of FinFET. For example, Ananthan 
proposed a compact physical model to obtain the leakage 
distribution of FinFET devices due to gate length and body 
thickness variation [5].  Rao derived a mathematical equation 
to predict the mean and variance of full-chip leakage [6]. 
However, both of them extended the variation for an 
individual device into multiple devices by simple scaling 
which ignored the local mismatch and can lead to errors for 
multi-fin devices such as FinFETs.  Srivastawa proposed a 
full-chip leakage estimation method using 

principle components approach and accounted for the local 
mismatch between devices [7].  However, the work requires 
very involved mathematic computation and is not specific for 
FinFET device where individual fin possesses identical 
statistical characteristics. This paper, instead, used an 
effective VT to model the VT change in a multiple-fin device 
and offered a much simpler solution for leakage prediction of 
FinFET device. Monte Carlo simulations show that the 
proposed approach significantly improved the accuracy of 
leakage estimation for FinFET device.  

All simulations in this paper used a FinFET model 
developed by the Taurus device simulator [8].  Fig. 1 shows 
the cross section of the FinFET model and Table 1 
summarized the device parameters used in this paper. 

 
 

Fig. 1. Cross section of a 21nm FinFET model designed in Taurus. 

Table 1. Device parameters of the Taurus FinFET model  

Device Parameters Values 

Drawn Channel Length Ldrawn 25nm 

Effective Channel Length Leff 21nm 
Oxide Thickness Tox 14Å 
Body Thickness TSi 5nm 
Device Height H 30nm 

Vdd 0.8V 
VT 0.22V 

II. IMPACT OF WIDTH QUANTIZATION ON FINFET 
LEAKAGE ESTIMATION 

Width quantization is a unique property of FinFET devices: 
a large single device always consists of multiple small unit 
fins.  Given the mean µ and standard deviation σ of the 
single fin VT, conventional approaches [9] estimate the VT 
and leakage distribution of a multi-fin device assuming the 
same mean VT value and a σ which is inversely proportional 
to the square root of the device area (or the number of fins in 
FinFET) as: 
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Here, TxVσ  is the standard deviation of a single fin VT.    
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Fig. 2 shows the difference between conventional leakage 
estimation method and the Monte Carlo simulation which 
serves as the golden result in this example.  The conventional 
approach shows a large error in leakage estimation and more 
importantly it underestimates the leakage value leading to the 
potential failure of meeting design targets, such as power 
budget and noise margin requirements.  This error happens 
because the conventional approach does not capture the 
exponential relationship between leakage and VT.  As a 
solution, this paper proposes a precise model for leakage 
estimation where both µ and σ of the “effective” VT are 
functions of the number of fins.  The analytical derivation and 
the experimental results will be shown in the next few sections. 

 
Fig. 2. Leakage distribution of a 4-fin device from the conventional estimation 
approach and Monte Carlo simulation (golden) showing a large discrepancy.  

III. STATISTICAL LEAKAGE ESTIMATION UNDER 
WIDTH QUANTIZATION 

In a width quantized FinFET device, the total leakage of an 
n-fin device is the sum of the leakage currents of each unit 
fin. Hence it can be expressed as the sum of lognormal terms 
as shown in (2),  
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where W is the total width of the FinFET device, T is the 
temperature, m is the body effect coefficient, q is electron 
charge, k is Boltzmann’s constant, and C is a technology 
parameter. q/mkT is referred as constant B for simplicity. The 
threshold voltage (VTi,) changes due to factors such as 
channel length variation and random dopant fluctuation 
(RDF).  The threshold voltage of each fin can be modeled 
using correlated Gaussian random variables because: 

(1) RDF introduces uncorrelated VT variations because the 
device dopant concentration, which significantly influences 
the VT value, can be random even for devices within a small 
area. Xiong et.al, showed that as device dimensions scale 
below 25nm, the number of dopant atoms per device becomes 
less than 100, and thus VT can vary significantly due to the 
fluctuation in the number and placement of dopants [10].  
Recently, Chiang shows that although undoped silicon is 
likely the material of choice for FinFET devices, even a single 
impurity atom randomly deposited in the channel region can 
lead to significant fluctuation in threshold voltage because of 
the ultra-thin body [11].  As a result, RDF will still remain as 
one of the major sources of variation in FinFETs. 

(2) Process parameters such as channel length and fin height 
show a strong spatial correlation. Our analysis also considers 
the spatial correlation between the fins in order to develop a 

general leakage estimation framework that can be applicable 
for different variation sources.  

As shown in equation (2), the leakage of a large FinFET 
device can be expressed as a sum of lognormals. Although a 
closed form expression for a sum of lognormals does not 
exist, Wilkinson’s method provides a simple approximation 
for modeling the sum of lognormals [12]. In Wilkinson’s 
approach, a sum of lognormals ⎟
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approximated as another lognormal ( )yWe  where y is a new 
Gaussian variable with a calculable mean and standard 
deviation. This approximation is completed by matching the 
first and second moment of both equations. Let ),m(

ii xx σ  and 
),m(

ii yy σ be the mean and standard deviation of the original 
Gaussian variables xi and the new Gaussian variable y of the 
lognormal functions, respectively.                                          

Let rij be the correlation coefficient of each random 
variable and n be the number of fins in a device. By equating 
the first two moments of the original lognormal equation and 
the new lognormal equation, we get: 
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In a FinFET device, it is fair to assume every fin has the 
same mean and variance of VT, and the same correlation 
between each other. Therefore, by solving equation (3), the 
mean and standard deviation of the new Gaussian variable in 
the lognormal equation is found as follows: 
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Reader can easily prove that ∆ is a non-negative number. 
Finally, the average and standard deviation of the new 

equivalent VT can be derived from (4) by including the 
constant B defined in the subthreshold current equation (2). 
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Here, VTy denotes the threshold voltage of an effective 

large single-fin device and VTx denotes the threshold voltage 
of the original single fin. This can be understood from the 
following relationship:  
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In the rest of the paper, we will refer to VTy as the 
“effective threshold voltage”. By introducing the effective 
threshold voltage concept, we can efficiently find the leakage 
distribution of a width quantized FinFET without having to 
run Monte Carlo simulations for n number of random 
variables. The expression for the effective VT in (5) reveals 
that the average of VT is reduced compared to that of a single 
fin.  The amount of change in the average is determined by a 
single non-negative parameter ∆.  The standard deviation 

TyVσ also decreases with the larger number of fins due to the 

∆ parameter in equation (5).  Simulations were run for the 
cases with and without spatial correlation between the fins. 
The leakage distribution is compared for the following three 
cases: (i) Monte Carlo simulation assuming random variation 
for each fin which offers the most realistic “golden” leakage 
distribution; (ii) conventional leakage estimation which 
considers a FinFET device as a large single-fin device; and 
(iii) the new leakage estimation method using (5).  

 

   
Fig. 3. Leakage distribution for various numbers of fins and different standard 
deviation of VTx. 

A. Leakage distribution with no correlation between fins 

Fig. 3 shows the leakage distribution with r = 0 for 
different numbers of fins and different TxVσ values. Here 

TxVσ  refers to the standard deviation of a single fin as 
defined earlier. The conventional method significantly 
underestimates the FinFET device leakage for all cases. For 
four fins and 20% VTx standard deviation (i.e. 

TxTx VV / μσ =20%), the error of the mean value of the 
estimated effective VT using the conventional approach is 
about 12%. This corresponds to a 42.3% error in terms of the 
mean leakage current value. On the other hand, the proposed 
method based on equation (5) gives a precise estimation of 
the total leakage with an error of less than 5%.   

Fig. 4 shows the changes of estimation errors in 
comparison between the conventional approach and proposed 
approach as we vary the number of fins and standard 
deviation of VTx.  The figure shows the improvement of 
estimation accuracy using the proposed approach.  Although 
the error in the conventional approach does not vary much 
with the increase in the number of fins, it grows quickly with 

the standard deviation TxVσ . On the other hand, the error 
using the proposed approach is maintained at a very small 
value under the different conditions.  We also notice that the 
error in the proposed approach becomes relatively large when 

TxVσ / TxVμ  reaches 30% or higher.  This is because the 
Wilkinson’s method itself is no longer accurate when 

TxVσ becomes considerable [12].  In reality, TxVσ / TxVμ  is 
less than 30% in most CMOS processes.  Note that the 
leakage of a large number of independent fins will produce a 
Gaussian-like distribution curve from the central limit 
theorem [13].  That is consistent with our results shown in 
Fig. 3 when the fin number increases from 4 to 100.  Unlike 
the central limit theorem, our leakage estimation approach 
can also handle the correlated situations as well. 

  
 

 
 
Fig. 4. Leakage estimation error compared between the conventional approach 
and the proposed approach. (a) Error in mean value of leakage for various 
numbers of fins, (b) error in std value of leakage for various numbers of fins, 
(c) error in mean value of leakage for various TxTx VV / μσ , (d) error in std 

value of leakage for various TxTx VV / μσ . 

B. Leakage distribution with correlation between fins  

Fig. 5 shows the leakage distribution for different values of 
correlation coefficient r for the three test cases. The 
distribution when r = 1 is also shown for comparison. The 
following conclusions are drawn from the simulation results. 

(i) Even with correlation, the approach developed in this 
paper matches very well with the Monte Carlo simulation.  
Note that in a fully correlated case where r=1, ∆ in equation 
(5) becomes zero and the mean and standard deviation of the 
effective VT becomes same as those of a unit fin.  The 
leakage distribution is then simply a multiplication of the 
unit-fin leakage.  As shown in equation (5) and (6), our 
approach is still accurate for this extreme case. 

(ii) In presence of correlation, VT is a weighted sum of the 
correlated component and the uncorrelated component. As r 
increases, the correlated component becomes dominant in the 
total leakage distribution. Therefore, as shown in the figure, 
when r increases from 0.1 to 0.4, the total distribution is 
becoming close to a fully correlated case with r=1.    

(a) (b) 

(c) (d)



(iii) In both correlated and uncorrelated cases, the 
conventional leakage estimation exhibits large errors because 
the width quantization effect has not been considered.  

    
Fig. 5. Leakage distribution with various correlation coefficients. 

IV. WIDTH QUANTIZATION AWARE CIRCUIT DESIGN  
This section shows an example where the proposed 

approach can be beneficial for FinFET circuit design. 
The supply voltage for minimum energy operation in low-

to-medium-performance applications has been shown to lie 
in the subthreshold regime [14].  FinFET devices could prove 
to be especially useful in this design regime due to the 
decreased impact of short-channel effects and the improved 
subthreshold swing.  However, in subthreshold designs, 
leakage current becomes the drive current, and therefore both 
current and delay are modeled as lognormal random variables 
that are exponentially dependent on the threshold voltage. 

In order to approximate the delay through a chain of 
FinFET gates operating in the subthreshold regime, one must 
first sum the current distributions of the fins that comprise 
each individual gate.  The delay through each gate, which is a 
function of the leakage computed in that first step, is 
subsequently summed to produce the final delay distribution.  
That is, due to width quantization, one must apply equations 
(5) twice in order to find the delay distribution of FinFET 
devices.  The delay through n gates is computed as [14]: 
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where η is the delay factor due to a non-ideal input 
waveform, and Cs is the load capacitance driven by each gate.  
Fig. 7 shows the delay distribution of a FinFET inverter 
chain operated in subthreshold region. As seen in figure, the 
delay distribution predicted under our approach accurately 
matches the results of the Monte Carlo simulations. Because 
the overall leakage is increased after considering width 
quantization, the average delay is reduced by 5% compared 
to that from the conventional method. Basing design 
parameters on conventional calculations would lead to an 
over-design, which is especially detrimental in subthreshold 
designs, as this would lead to increased power consumption. 

V. CONCLUSION 
Double-gate FinFET devices are considered as one of the 

most promising successors of conventional MOSFET devices. 
Due to the physical fin structure, the width of a FinFET 
device is quantized. In this paper, we show that the impact of 
width quantization on statistical leakage estimation is 
significant for FinFET devices. We developed a new leakage 
estimation method which can accurately capture the 

statistical characteristics of leakage current under process 
variation. Monte Carlo simulation has been used to prove the 
accuracy of the proposed method. Simulation results show 
that the conventional approach for leakage estimation can 
significantly underestimate the average leakage current by as 
much as 43% while the proposed approach gives an error of 
less than 5%. A design example is provided on how to apply 
our leakage estimation approach to a subthreshold FinFET 
circuit. The result shows that the average delay is 5% less 
than what is expected using the conventional technique 
because of the width quantization property. 

 
Fig. 7. Delay distribution of an inverter chain operating in the subthreshold 
region. A total of 80 fins with 10% standard deviation of VTx are used. 
(Vdd=0.2V) 
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