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Abstract—State-of-the-art timing tools are built around the
use of current source models (CSMs), which have proven to be
fast and accurate in enabling the analysis of large circuits. As
circuits become increasingly exposed to process and temperature
variations, there is a strong need to augment these models to
account for thermal effects and for the impact of adaptive body
biasing, a compensatory technique that is used to overcome on-
chip variations. However, a straightforward extension of CSMs
to incorporate timing analysis at multiple body biases and
temperatures results in unreasonably large characterization tables
for each cell. We propose a new approach to compactly capture
body bias and temperature effects within a mainstream CSM
framework. Our approach features a table reduction method for
compaction of tables and a fast and novel waveform sensitivity
method for timing evaluation under any body bias and temper-
ature condition. On a 45nm technology, we demonstrate high
accuracy, with mean errors of under 4% in both slew and delay
as compared to HSPICE. We show a speedup of over five orders
of magnitude over HSPICE and a speedup of about 92× over
conventional CSMs.

I. INTRODUCTION

V ARIATIONS in process parameter values and on-chip
temperatures have grown larger with shrinking feature

sizes. Process variations occur due to phenomena such as
proximity effects in photolithography, non-uniform conditions
during deposition, and random dopant fluctuations, and lead
to fluctuations in parameters such as transistor dimensions,
oxide thicknesses, and dopant concentrations [1]–[3]. On-
chip temperature variations occur due to power dissipationin
the form of heat. Such thermal variations have a significant
bearing on the mobilities of electrons and holes, as well as
the threshold voltage of the devices. These effects have led
to increased shifts in circuit performance, due to which a
significant fraction of the total number of acceptable dies may
fail to achieve the prescribed performance goals. To overcome
this problem, designers must build resilient circuits thatmeet
their performance goals in spite of these variations.

A key enabler for variation-tolerant design is the ability
to simulate the timing behavior of a circuit during the de-
sign process using static timing analysis (STA). Traditional
standard cell modeling approaches represent the delay and
output slew as nonlinear functions of the input slew and output
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load capacitance [4]. When interconnect resistance became
significant, these methods were replaced by the notion of
effective capacitance [5]. However, this approach models the
input as a saturated ramp with piecewise constant slope, and
was further enhanced by the development of CSMs, which
represent a cell as a voltage controlled current source and
provide fast and accurate timing estimates.

A CSM approach termed as “Blade” [6] represents the
cell as a voltage-controlled current source (VCCS) with an
internal capacitance and a time-shifted input waveform driving
an arbitrary load. A lookup table, indexed by the input voltage,
Vin, and the output voltage,Vout, models the VCCS current,
Iout. These ideas were further refined in [7]–[12]. The work
in [7], [8] removed the assumptions of linearity, and [9]–[12]
addressed multiple input switching and stack effects. Further,
a current source model based on orthogonal functions was
proposed in [13], and an approach based on the small-signal
model of a transistor was built in [14].

Within the CSM framework, process variations are com-
monly captured through the use of process corners. Tradition-
ally, temperature variations were also handled using corner-
based methods, but this is no longer viable. Corner-based
approaches are predicated on the idea that the timing varies
monotonically over the temperature range, but this is no longer
the case with thermally-driven variations [15]. In nanometer-
scale technologies, elevated temperatures cause reductions in
device mobilities (which tend to increase the delay) as well
as reductions in threshold voltages (which tend to decrease
the delay). The interplay between these effects may cause the
circuit delay to increase monotonically (negative temperature
dependence), decrease monotonically (positive temperature
dependence), or vary nonmonotonically (mixed temperature
dependence) with temperature. In the last case, the worst case
may occur in the interior of the temperature range, rather
than at its edges. As a result, a set of temperature corners
is no longer adequate, and circuit delays must be simulated as
functions of temperature.

Therefore, a first necessary enhancement of CSMs involves
extending them to determine the cell delay as a function
of temperature. This capability is useful not only for circuit
analysis but also for building optimization techniques that
compensate for temperature variations [3], [16]–[19].

A second way in which CSMs require augmentation is in
building an ability to simulate cell timing in the presence of
body biases. The application of adaptive body biases (ABBs)
allows circuits to be made resilient and variation-tolerant by
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applying a deliberate bias to the body terminals of transistors
in a circuit. Realistically, ABB is applied at coarse levelsof
granularity, e.g., by biasing individual n-wells and/or p-wells,
each of which contains a number of transistors. Forward body
bias (FBB) effectively reduces the transistor threshold voltage
and speeds up the device, at the cost of increased leakage, while
reverse body bias (RBB) achieves the opposite effect on speed
and leakage. ABB involves the use of FBB or RBB to help dies
recover from variations, and may be applied dynamically to
tighten the distribution of the dies with maximum operational
frequency, while simultaneously meeting the leakage power
constraints [1]–[3], [17], [20].

Traditional CSMs simulate the circuit at fixed values of
the body bias (vbp = vbn = 0) and at fixed values of the
temperature. The obvious extensions to existing CSMs that
enable them to capture body biases and temperature effects
are rather inefficient. In principle, the body terminal of a
device can be considered to be another port, and the cell
can be accordingly characterized by creating a look-up table
for various combinations of body biases,vbp, vbn. Further,
such lookup tables would have to be constructed for various
temperature values. However, this increases the amount of
memory used as well as the characterization time significantly
over the zero body bias and the nominal temperature case. For
instance, for 10 values each ofvbp andvbn, and for 10 values
of temperature, the table for each library cell becomes 1000×
larger. The need to access a larger lookup table may also result
in a significant concomitant increase in the simulation runtime
of CSM macromodels.

This paper develops efficient timing characterization meth-
ods for building CSMs that incorporate changes in the body
bias and the temperature. Since ABB is applied at the granu-
larity of a well, we assume that all PMOS transistors in a cell
have the same body bias value,vbp, and all NMOS devices are
biased atvbn. Further we assume that all transistors in the cell
experience a uniform temperature: this is reasonable, since the
rate of decay of temperature with respect to the distance from
the cell has a “time constant” that is significantly larger than
the size of a cell.

Our framework for incorporating effects of body bias and
temperature into the CSM has a very small memory and
runtime overhead, while maintaining high levels of accu-
racy. Our mathematical framework consists of two key steps.
First, we intelligently adapt an existing scheme to enable the
compaction of look-up tables for the sensitivities of CSM
components to body bias and temperature, over the range
of allowable values of both the applied body bias and on-
chip temperature. Our second key contribution is to develop
a novel waveform sensitivity model for evaluating the impact
of the applied body bias and variations in temperature, which
provides accurate waveforms at the output of the cell under any
body bias or temperature condition, with minimal computation.
The essential idea of this approach is that since body bias
or temperature variation constitutes a small perturbationto
the nominal waveform, it should be possible to determine the
perturbed waveform cheaply by determining and saving the
parameters that compute its shift from the nominal waveform.

We develop a scheme for characterizing this perturbation and
computing it efficiently. Specifically, mathematical models for
such parameters are developed and further analyzed for their
independence over body bias and temperature variations foran
efficient computation of such parameters.

The remainder of the paper is organized as follows. Sec-
tion II presents the development of sensitivity models for CSM
components to handle variations in body bias and temperature.
Section III presents our algorithms for compacting the CSM
sensitivity tables. Then we present the conventional macro-
model solvers used in state-of-the-art CSMs in Section IV,
and is followed by a description of our method for fast output
waveform evaluation in Section V. Section VI presents exper-
imental results on a set of library cells in a 45nm technology.
We then present the conclusion of our work in Section VII.

II. CSM SENSITIVITY MODEL DEVELOPMENT

Fig. 1: Example of a CSM: the output port is modeled as
a nonlinear VCCS dependent on all input port voltages, in
parallel with a nonlinear capacitance.

The CSM is a gate-level black-box abstraction of a cell in a
library, with the same input and output ports as the originalcell.
Our CSM structure, shown in Figure 1, is of the type proposed
in [6], and is augmented to model nonlinearities as in [9].
Specifically, output portp is replaced by a nonlinear voltage-
controlled-current-source (VCCS),Ip, in parallel with a non-
linear capacitance,Cp. The VCCS model enables the CSM
to be load-independent, and permits it to handle an arbitrary
electrical waveform at its inputs. The CSM is characterized
in terms of the value ofIp and the charge,Qp, stored on
the capacitor,Cp. The variables,Ip andQp, are functions of
all input and output port voltages and temperature, and are
determined by characterizing the cell at various port voltages,
body bias combinations and temperatures as follows:

Ip = F (Vi, Vo, vbp, vbn,∆T ) (1)

Qp = G(Vi, Vo, vbp, vbn,∆T ) (2)

The parametersIp and Qp are modeled using the functions
F and G, respectively, andVi and Vo are, respectively, the
voltages at the transitioning input and output ports of the cell.
We use the term∆T to represent the temperature offset from a
baseline temperature value, taken here to be room temperature
(25◦C). In the temperature range of [−25◦C, 125◦C] that we
work in, the range for the values of∆T is [−50◦C, 100◦C].

For a cell,Ip characterization involves DC simulations over
multiple combinations of DC values of(Vi, Vo), while Qp is
characterized through a set of transient simulations [9]. The
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presentation of our model is targeted to the more widely-
used scenario of single-input switching for gates with a single
output, though the idea can easily be extended to multiple input
switching (MIS) and multioutput gates, leveraging currentwork
on CSMs on these topics [9], [11], [12].

As mentioned earlier, in order to capture the sensitivity of
CSM parameters to the applied body bias and temperature
offset, in principle, the circuit could be characterized over a set
S of all possible(vbp, vbn,∆T ) points, treating body terminals
as input ports, and temperature offset as the independent vari-
able. Since the allowable values of the applied body biases and
temperature offset change in discrete steps, the cardinality of
this set is large, and the corresponding characterization would
be computationally intensive, even as a precharacterization
step that is to be performed once for a technology. Moreover,
memory requirements of the table multiply significantly over
the current characterization procedure at zero body bias and
zero temperature offset.

We observe through simulations that the functionsF andG
dependmuch moreweakly onvbp, vbn, and∆T as compared to
Vi or Vo. Hence, a simpler model can be utilized to save on this
computation. We thus develop sensitivity models of CSM with
respect tovbp, vbn and∆T (as we will soon show, the models
with respect to body bias and temperature are independent),
and then present a scheme to incorporate the effects of the
two.

A. Independence of Body Bias and Temperature Effects

Next, we explain the rationale for analyzing the effects of
body bias and temperature independently. Body bias (a change
in the substrate bias voltage,VBS) changes the threshold
voltage,Vth. The sensitivity ofVth with respect toVBS can
be captured from following equation [21]:

∂Vth

∂VBS

=
Cdep

Cox

(3)

whereCdep is the depletion capacitance of the MOS transistor
andCox is the oxide capacitance.Cdep is a very weak function
of temperature, being proportional to the inverse square root
of the built-in potential. Similarly, it is observed that the
expression forVth sensitivity with respect to temperature is
independent ofVBS [21]. Hence, the effects of changes in body
bias and temperature on MOS transistors can be treated as in-
dependent. SinceIp andQp essentially abstract the internal cell
behavior, the effects of body bias and changes in temperature
on Ip andQp can also be assumed to be independent. This is
further verified by the model formulations and accuracy results
as presented in the subsequent subsections and sections.

B. CSM Body Bias Sensitivity Model

We first present the body bias sensitivity model, which is
independent of the changes in temperature and constructed
at ∆T = 0◦C (i.e., at room temperature). We construct a
polynomial approximation for the variations ofIp and Qp

with respect to(vbp, vbn). Our simulations show that a linear
approximation yields an average of2.0% relative error with
respect to HSPICE, evaluated over all(vbp, vbn) points, for

all (Vi, Vo) points. The CSM is now modified by using the
equations:

Ip(Vi, Vo,vbp, vbn, 0)

= IZp · (1 + aI(Vi, Vo)vbp + bI(Vi, Vo)vbn) (4)

Qp(Vi, Vo,vbp, vbn, 0)

= QZ
p · (1 + aQ(Vi, Vo)vbp + bQ(Vi, Vo)vbn) (5)

where IZp = F (Vi, Vo, 0, 0, 0), QZ
p = G(Vi, Vo, 0, 0, 0), and

{aI , bI , aQ, bQ} correspond to the sensitivity of the function
to the corresponding body bias. These parameters are charac-
terized at a discrete set of(Vi, Vo) values and are saved in a
lookup table.

The characterization ofIp and Qp using equations (4)
and (5) can now be carried out using a minimum of three
simulations at each(Vi, Vo), since it is a linear model; however,
additional redundancy is preferable to account for the small
nonlinearities, and a linear least squares fit can be used instead.

For notational simplicity, we will define the following func-
tions:

LI(vbp, vbn) = 1 + aI(Vi, Vo)vbp + bI(Vi, Vo)vbn (6)

LQ(vbp, vbn) = 1 + aQ(Vi, Vo)vbp + bQ(Vi, Vo)vbn (7)

Clearly,

Ip(Vi, Vo, vbp, vbn, 0) = IZp LI(vbp, vbn) (8)

Qp(Vi, Vo, vbp, vbn, 0) = QZ
p LQ(vbp, vbn) (9)

C. CSM Temperature Sensitivity Model

We now construct the temperature sensitivity model at zero
body bias. We observe that the variations ofIp and Qp

with ∆T are nonlinear, unlike the body bias case where a
linear approximation was adequate. We employ a second-
order polynomial approximation, and find that the fit has an
average relative error of 1.6% relative error in comparisonwith
HSPICE simulations. The CSM for the temperature sensitivity
model with the first and second order sensitivities in tem-
perature offset is now represented by the following modified
equations:

Ip(Vi, Vo, 0, 0,∆T )

= IZp · (1 + cI(Vi, Vo)∆T + rI(Vi, Vo)∆T 2) (10)

Qp(Vi, Vo, 0, 0,∆T )

= QZ
p · (1 + cQ(Vi, Vo)∆T + rQ(Vi, Vo)∆T 2) (11)

whereIZp , QZ
p are as defined above, and{cI , cq, rI , rQ} cor-

respond to the sensitivity of the function to the corresponding
powers of the temperature offset,∆T . As in the case of{aI ,
bI , aQ, bQ}, these parameters are characterized at a discrete
set of (Vi, Vo) values and saved in a lookup table. Since the
temperature sensitivity model is a second order model, we need
at least three points to determine the values of{cI , rI , cQ, rQ}.

As before, for notational simplicity, we will define the
following functions:

SI(∆T ) = 1 + cI(Vi, Vo)∆T + rI(Vi, Vo)∆T 2 (12)

SQ(∆T ) = 1 + cQ(Vi, Vo)∆T + rQ(Vi, Vo)∆T 2 (13)
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Clearly,

Ip(Vi, Vo, 0, 0,∆T ) = IZp SI(∆T ) (14)

Qp(Vi, Vo, 0, 0,∆T ) = QZ
p SQ(∆T ) (15)

D. CSM Complete Sensitivity Model

The complete body bias and temperature sensitivity model
can now be formulated by integrating the models ofIp and
Qp with body bias from equations (8), (9), and with temper-
ature offset from equations (14), (15). The complete model is
constructed as follows:

Ip(Vi, Vo, vbp, vbn,∆T ) = IZp · LI(vbp, vbn) · SI(∆T ) (16)

Qp(Vi, Vo, vbp, vbn,∆T ) = QZ
p · LQ(vbp, vbn) · SQ(∆T )

(17)

Simulations show that the above model yields approxima-
tions with an average of2.9% relative error with respect to
HSPICE. This also justifies our assumption that the effects of
body bias and changes in temperature on CSM components
can be analyzed independently.

III. COMPACT CSM FORMULATION

As described in Sections I and II, the lookup tables obtained
for {aI , bI , aQ, bQ} and{cI , rI , cQ, rQ} reduce the excessive
memory requirements described in Section I. However, we still
need a separate lookup table (indexed by(Vi, Vo)) for each
parameter of every cell in the library. If we can further reduce
the size of these tables by suitably compacting them, we can
gain more in terms of memory overheads induced. We thus
present the development of a compact lookup table scheme
used for reducing the size of such lookup tables.

A. Table Size Reduction for Conventional CSMs

As a preliminary step, we attempt to apply the method in
[22] to create compact lookup tables forIp andQp for the zero
body bias and nominal temperature case, i.e.,IZp andQZ

p , with
controlled loss of accuracy. For general values of the body bias
and temperature, we must also create lookup tables for{aI ,
bI , aQ, bQ} and {cI , rI , cQ, rQ} at each value of(Vi, Vo):
as we will see, for these parameters, a direct extension of the
method in [22] does not yield satisfactory results.

We first overview the procedure in [22]. This method begins
with ann×n table of characterized points, indexed by variables
x andy in the horizontal and vertical directions, respectively.
The idea behind table size reduction is to keep a subset of all
these points and to interpolate the rest. For instance, consider
the rectangle bounded by points(x1, y1), (x2, y1), (x2, y2), and
(x1, y2): a point(x, y) within this rectangle can be dropped if
the interpolation error in its value, using these points lies within
a specified bound.

Instead of an expensive enumeration, the work in [22]
presents a dynamic programming method for reducing a two-
dimensionaln × n table. The objective of the algorithm is to
create a smallerm×m table, wherem is prespecified, while
minimizing the total error corresponding to the points thatare
dropped from the table. The procedure begins by constructing

an initial 2 × 2 table corresponding to the points at the four
corners of the table. Next, this table is expanded to include
additional entries using the idea ofh-hops.

Fig. 2: The initial step, considering all rectangles from any
point (i, j), extending to any point(k, l) at the northeast corner.

(a) (b)

Fig. 3: (a) A 1-hop solution from(i, j) to (n, n), through an
intermediate point,(k, l). (b) A 2-hop solution from(1, 1) to
(n, n) through an intermediate point,(k, l) uses a previously
computed optimal1-hop solution from(k, l) to (n, n).

In the initial step, we consider all rectangles originatingat
a point (i, j) at the southwest corner, extending to any point
(k, l) at the northeast corner, as shown in Figure 2. We compute
the error metric over the rectangle, corresponding to the case
where only the points at the four corners of the rectangle are
kept in the lookup table, and all internal points are dropped.
The error metric is the sum of the interpolation errors for all
points within and on the perimeter of the rectangle. Each such
rectangle corresponds to an optimal substructure for dynamic
programming: the optimal solution will be composed from
some (but not all) such substructures.

Next, we define a1-hop operation. We optimize the region
bounded by point(i, j) to the southwest and(n, n) to the
northeast by finding an optimal point(k, l) within this region.
Here, optimality is defined as follows: the point(k, l) divides
the region into four subregions, as shown in Figure 3(a), and
over all candidate(k, l) points, the optimal point minimizes
the total error summed up over these four subregions. Since
the error over each rectangle was calculated in the initial step,
this step involves enumerating all candidate(k, l) points, and
summing up the previously calculated error over the rectangles
in constant time for each such point. We refer to this as a1-
hop, indicating that for each(i, j), the table “hops” over a
single point, corresponding to the optimal(k, l), on the way to
(n, n). The associated optimal error encountered is the1-hop
error for (i, j).

In general, anh-hop from(i, j) to (n, n) finds a point(k, l)
such that the error from(i, j) to (k, l), plus the(h − 1)-hop
error from (k, l) to (n, n), is minimized over all candidate
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points (k, l). To obtain anm × m table, the procedure stops
afterm− 1 hops, and the optimalm-hop from(1, 1) to (n, n)
provides the compact table. Figure 3(b) shows an example of a
2-hop solution fromP (1, 1) to P (n, n); if the algorithm were
to stop here, it would result in a4 × 4 compacted table. The
computational complexity of this algorithm isO(m·n4), but as
n is typically small (n = 30 in our simulations), this remains
tractable, as we will show in Section VI-A that the runtimes
for this scheme are reasonable.

It should be noted that although this method proceeds along
the main diagonal of the table (in the north-east direction),
the interpolation error is computed by considering all the four
end points of a rectangle (in Figure 3(a) for instance). Thus, it
also considers the interpolation error induced along the other
diagonal, and the rows and columns of the table as well. While
this method is not exact (for example, for anh-hop, it does not
entertain the possibility of an(h− 1) hop to(k, l) and then a
1-hop to (n, n) ), in practice it is seen to work well. A faster
version of the algorithm, which trades off accuracy for speed,
is also proposed in [22].

B. Modifications for Sensitivity Tables

As stated earlier, the above approach works well for char-
acterizingIp andQp, where neighboring entries have similar
magnitudes. However, in case of the sensitivity parameters,
{aI , bI , aQ, bQ} and {cI , rI , cQ, rQ}, there can be large
differences in the values of neighboring parameters. This is
illustrated in Figure 4(a) and (b), which show, respectively,
the values ofaQ = ∂Qp/∂vbp and cI = ∂Ip/∂∆T for an
inverter cell1. Large “outliers” (i.e., values of large magnitude)
are clearly visible on the plot.

The presence of these outliers is attributed to the nature of
variation of the values ofIZp andQZ

p with (Vi, Vo), and the way
these values are derived in the CSM. At a particular(Vi, Vo)
bias point, it is quite possible that only a small current flows
inside the input and output terminals of the cell. Since the
magnitudes of these inflowing currents decide the values of
IZp andQZ

p , the values of resultantIZp andQZ
p are also small.

Hence, any change relative to this small value becomes large
and is reflected as a large sensitivity value.

In principle, since theseIZp and QZ
p values are small, we

may consider setting the corresponding sensitivities to zero.
This, however, has been observed to create inaccuracies in
waveform evaluations (the waveform evaluation techniquesare
described in Sections IV and V) for when such changes are
multiplied by other quantities with relatively higher magnitudes
(temperature offset for instance), the net contribution from
these small changes, to the computed values ofVo(t) or of the
waveform sensitivities, becomes significant, and hence cannot
be neglected.

For such data, it can easily be shown that the approach in
[22], which depends on gridding the table in the coordinate
directions, is poorly compacted, i.e., the interpolation errors in
the reduced table are large. Such errors are demonstrated to
be easily visible in the output response, where they appear as

1Similar behavior is seen foraI , bI , bQ, rI , cQ, andrQ.

“kinks” in the CSM-based waveform that do not exist in the
corresponding HSPICE waveform. This happens due to the
fact that an interpolation error caused by the presence of these
outliers causes an error inIp and Qp values, which causes
the solver (described in the next section) to generate errors
in output waveforms. A sample waveform with the use of
compactedIp and Qp tables, as generated by the solver for
a rising input ramp is shown in Figure 5. As is seen, due to
poor compaction, kinks appear in the evaluated waveform. The
incorrect waveform also incurs slew and delay errors.
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Fig. 4: The CSM sensitivity parameter distribution for (a)aQ
and (b) cI as functions of(Vi, Vo). (c) The resultant lookup
table for aQ, when all the outliers have been removed and
saved separately in a table.

We propose a simple method for avoiding these problems,
based on the observation that for these sensitivity parameters,
such outliers are few in number and have relatively large mag-
nitudes. We therefore tabulate and save the outliers separately.
As can be observed from Figure 4(a) and (b), the number
of outliers is quite small compared to the total number of
data points. Thus, a separate tabulation of outliers would incur
negligible overhead.

In order to tabulate the outliers separately, given the set of
all points, we find the mean and variance over all entries. Any
entry that is overk variances from the mean is found to be
an outlier; in practice, we findk = 2 to be an adequate value.
The removed entry at table location(x, y) is then replaced by
a dummy point, the error contribution (to the total error) from
which is zero. The modified table is then compacted using the
algorithm in Section III-A.

When a table entry is requested, we first determine whether
the accessed point is an outlier: if so, we fetch it from the
outliers list; else, we find it using the compacted look-up table.

With the outliers separated, the variations in remaining
lookup table become more uniform. Table I shows the list of
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Fig. 5: The presence of outliers yields poor compaction of the
lookup tables when the original scheme from [22] is used. This
results in incorrectly evaluated output waveforms with kinks at
some time points. Our approach however, with a mechanism for
separation of outliers, results in the correctly evaluatedoutput
waveform with minimal errors.

separately tabulated outliers for a lookup table foraQ. Further,
Figure 4(c) shows the remaining entries foraQ in the 2-D
lookup table indexed byVi, Vo. As is clearly seen, the removal
of outliers make the variation in the lookup table more uniform,
allowing for a high compaction using the original algorithm.

TABLE I: The outlier table foraQ

Vi index Vo index aQ

10 25 42.6
13 22 18.9
16 16 15.5
· · ·
· · ·

22 7 60.7

This method of separating the outliers removes the kinks
present in theVo(t) waveforms. As shown in Figure 5, the
smooth waveform obtained from the solver using our approach
is no longer characterized by kinks, as compared to the
waveform which had kinks due to the errors caused by original
compaction scheme. The waveform using our approach further
has negligible slew and delay errors.

A potential alternative for dealing with such outliers is to
decrease the size of(Vi, Vo) voltages steps at whichIZp and
QZ

p are characterized, making the variation of sensitivities
more uniform. We observe that this requires us to increase
the value ofn by about 6-9× for different tables, resulting
in a large increase in the storage space required. For a small
number of outliers, this posed as a significant increase in
the memory requirements for a library with different cells.
It also prohibitively increases the computational time of the
compression algorithm (∝ n4). Therefore, an intermediate
approach of saving outliers separately keeps both the storage
space and the compression time tractable.

IV. THE MACROMODEL SOLVER

Using the approaches described so far, the cell library is
characterized to determine theIp and Qp characterization

tables at zero body bias and zero temperature offset, and the
compressed CSM sensitivity parameter tables for the body
bias coefficients{aI , bI , aQ, bQ} and the temperature offset
coefficients{cI , rI , cQ, rQ}.

A. Using the Macromodel in a Solver

To solve the case of a gate driving an interconnect, including
cases that involve coupled lines and crosstalk, it is enoughto
consider the situation where a gate drives a load described by
an RCπ-model as shown in Figure 6. Standard techniques such
as the O’Brien-Savarino approach [23] are used in our work
to reduce an arbitrary interconnect load to aπ-model at the
driving point. We first obtain the waveform at the driving point
nodeVo, and then we evaluate the waveform at any sink node
in the RC network by solving a linear system using standard
model order reduction methods.

Fig. 6: A CSM for a gate, under zero body bias and zero
temperature offset, driving aπ load.

We analyze the case of a gate output driving aπ-load in the
absence of body bias and at zero temperature offset, as shown
in Figure 6. Finding the output voltage waveform involves
solving the equation:

IZp + IZQp
= IC1

+ IC2
(18)

whereIZQp
=

dQZ
p

dt

IC1
= C1

dVo

dt

IC2
= C2

dVC2

dt
IZp = F (Vi, Vo, 0, 0, 0)

QZ
p = G(Vi, Vo, 0, 0, 0)

Equation (18) is a nonlinear differential equation inVo(t),
and the input voltage,Vi(t), is known. This equation can be
solved using routine circuit simulation methods. We apply the
Backward Euler formula toQp, Vo andVC2

with a time step
h, going from timen to time n + 1 (the superscriptn + 1 is
dropped for notational simplicity) to get:

Qp = Qn
p + hIQp

(19)

C1Vo = C1V
n
o + hIC1

(20)

C2VC2
= C2V

n
C2

+ hIC2
(21)

Moreover, using Ohm’s Law, we haveVC2
= Vo − RIC2

.
SubstitutingVC2

from this in equation (21), we have:

IC2
=

C2(Vo − V n
C2

)

h+RC2

(22)
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We then obtain the values ofIQp
from equation (19), of

IC1
from equation (20) and ofIC2

from equation (22), and
substitute them in equation (18) to obtain:

Ip +
Qp −Qn

p

h
=

C1(Vo − V n
o )

h
+

C2(Vo − V n
C2

)

h+RC2

Solving this forVo, we arrive at the following expressions:

Vo =
1

A

[

hC2V
n
C2

+B(C1V
n
o + hIp +Qp −Qn

p )
]

(23)

whereA = (hC1 + hC2 +RC1C2) (24)

B = (h+RC2) (25)

ObtainingVo, we substituteIC2
from equation (22) in equa-

tion (21) to solve forVC2
:

VC2
=

1

B

[

hVo +RC2V
n
C2

]

(26)

Thus we have obtained the expressions for both the unknown
port voltages in terms of known quantities. However, such ex-
pressions are still implicit, and hence must be solved iteratively.

B. Newton-Raphson Solver

The approach conventionally employed in CSM solvers is
to solve the nonlinear equation (23), through iterative Newton-
Raphson linearization. This approach is hereby termed as the
Newton-Raphson Solver, and referred as such in the rest of
the sections. In the(k+1)th iteration, we use thekth iteration
value, shown by the additional subscriptk, to obtain:

AVo = BC1V
n
o + hC2V

n
C2

+ hB

(

Ip,k +
∂Ip
∂Vo

∣

∣

∣

∣

k

(Vo − Vo,k)

)

+B

(

Qp,k +
∂Qp

∂Vo

∣

∣

∣

∣

k

(Vo − Vo,k)−Qn
p

)

Vo = Vo,k −
AVo,k − hC2V n

C2
−B(C1V n

o + hIp,k +Qp,k −Qn
p )

A−B(h ∂Ip/∂Vo|k + ∂Qp/∂Vo|k)
(27)

This computation is carried out by references to the look-up
tables forIp andQp, with the appropriate use of interpolation
as necessary, and the use of finite differences to compute
derivatives.

V. FORMULATION OF WAVEFORM SENSITIVITY
MODEL

The Newton-Raphson solver in Section IV-B forms the
basis for a procedure for computing the waveform under any
body bias and temperature condition using conventional CSM
solvers. However, evaluation of the delays and slews of the
gates under numerous body bias and temperature offset condi-
tions entails multiple simulations of theentire output voltage
waveform at each combination of body bias and temperature
value. Applications that require timing analysis at multiple
body biases and at multiple temperature values include [1]–
[3], [17], [19].

Intuitively, the repeated computation of full waveforms from
scratch seems unnecessarily excessive, for several reasons.
First, the application of body bias or a variation in temperature

corresponds to a perturbation to a base case, such as the zero
body bias and zero temperature offset case, and it should
be possible to compute the waveform at nonzero body bias
and temperature offset based on the zero body bias and zero
temperature offset case, with some consideration of body bias
and temperature sensitivities, much more cheaply than the
above procedure. Second, as discussed and shown before in
Section II, the effects of changes in body bias and temperature
on CSM can be decoupled. Thus it should be possible to de-
couple and independently compute the effects of body bias and
temperature changes on the output waveforms too. Third, in
most cases, designers are interested not in the entire waveform,
but specific properties of the gate output, such as its delay
and output transition time. In this section, we demonstratethe
efficient computation of such metrics under changing body bias
and temperature without the need for numerous table look-up
operations.

A. Waveform Sensitivity Models

Consider the case when we have the cell maintained at zero
temperature offset (∆T = 0◦C), but with a nonzero applied
body bias (vbp, vbn). For various values of(vbp, vbn), the
solution of the waveform under the framework of equation (27)
entails multiple accesses to the look-up tables forIp andQp.
The entries that are accessed in these tables change according
to the applied body bias. However, since body bias is a small
perturbation, in practice, the accessed entries in each table at
each step of the algorithm are relatively close to each other,
and can be viewed as perturbations to a nominal case.

Therefore, we propose to capture the output waveform
at zero temperature offset for nonzero body bias case as a
perturbation to the waveform with zero body bias and zero
temperature offset as follows:

Vo(t) = V Z
o (t) + α(vbp, vbn, t) · vbp + β(vbp, vbn, t) · vbn (28)

whereV Z
o (t) represents the output waveform,Vo(t), with zero

body bias and zero temperature offset, andα(vbp, vbn, t) and
β(vbp, vbn, t) are time-varying body bias perturbation parame-
ters that are precisely defined as:

α(vbp, vbn, t) =
∂Vo(t)

∂vbp

β(vbp, vbn, t) =
∂Vo(t)

∂vbn
(29)

Similarly, if we consider the variation in temperature of
the cell, the cell being maintained at zero body bias, we can
formulate a linear model as above for capturing the output
waveform at any temperature (with a nonzero temperature
offset,∆T ) as perturbation to the output waveform at nominal
temperature (with zero temperature offset∆T ):

Vo(t) = V Z
o (t) + σ(∆T, t) ·∆T (30)

whereV Z
o (t) is as as described above, andσ(∆T, t) is time-

varying temperature perturbation parameter that is precisely
defined as:

σ(∆T, t) =
∂Vo(t)

∂∆T
(31)
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The following two results provide a precise formula for
α(vbp, vbn, t), β(vbp, vbn, t) and σ(∆T, t). We first present
the results (proved in the Appendix), and then discuss how
the computational cost of evaluating these quantities can be
significantly reduced.

Theorem 1 The waveform sensitivity parameters from equa-
tion (28),α(vbp, vbn, t) and β(vbp, vbn, t), are given by:

α(vbp, vbn, t) = Nα/Dα,β (32)

β(vbp, vbn, t) = Nβ/Dα,β (33)

Nα = B

[

αnC1 + haII
Z
p + aQQZ

p − anQQZ,n
p −QZ,n

p

∂anQ

∂V n
o

αnvbp

−QZ,n
p

∂bnQ

∂V n
o

αnvbn −
∂QZ,n

p

∂vbp
Ln
Q(vbp, vbn)

]

+ hC2

∂V n
C2

∂vbp
,

Nβ = B

[

βnC1 + hbII
Z
p + bQQZ

p − bnQQZ,n
p −QZ,n

p

∂anQ

∂V n
o

βnvbp

−QZ,n
p

∂bnQ

∂V n
o

βnvbn −
∂QZ,n

p

∂vbn
Ln
Q(vbp, vbn)

]

+ hC2

∂V n
C2

∂vbn
,

Dα,β = (−B)

[

hIZp

(

∂aI

∂Vo

vbp +
∂bI

∂Vo

vbn

)

+ h
∂IZp

∂Vo

LI(vbp, vbn)

+QZ
p

(

∂aQ

∂Vo

vbp +
∂bQ

∂Vo

vbn

)

+
∂QZ

p

∂vbp
LQ(vbp, vbn)

]

+A

where terms using the superscriptn are understood to corre-
spond to their values at the previous (nth) time step, and the
superscriptZ refers to the case wherevbp = vbn = 0V, and
∆T = 0◦C.

Theorem 2 The waveform temperature sensitivity parameter
from equation (30), σ(∆T, t), is given by:

σ(∆T , t) = Nσ/Dσ (34)

Nσ = B

[

σnC1 + h(cI + 2rI∆T )IZp + (cQ + 2rQ∆T )QZ
p

− (cnQ + 2rnQ∆T )QZ,n
p −

∂QZ,n
p

∂∆T
Sn
Q(∆T )

−QZ,n
p

∂cnQ

∂V n
o

σn∆T −QZ,n
p

∂rnQ

∂V n
o

σn∆T 2

]

+ hC2

∂V n
C2

∂∆T
,

Dσ = A−B

[

(

hIZp
∂cI

∂Vo

+QZ
p

∂cQ

∂Vo

)

∆T + h
∂IZp

∂∆T
SI(∆T )

+

(

hIZp
∂rI

∂Vo

+QZ
p

∂rQ

∂Vo

)

∆T 2 +
∂QZ

p

∂∆T
SQ(∆T )

]

where the terms have the notations as described above.
Theorems 1 and 2 enable the efficient computationVo(t) at

any body bias value and temperature offset using a closed form
expression, dependent only on the values ofVo at previous time
steps and the values in the waveform at zero body bias and
nominal temperature. As a result, the waveform at arbitrary
body bias and temperature values can be reproduced if the
values ofα(t), β(t) andσ(t) are computed.

B. Simplified Waveform Sensitivity Models

Further simplifications are possible with both the models
discussed above. Consider first the body bias model. On
investigating dependency of the output waveform on(vbp, vbn)
and onα(vbp, vbn, t), β(vbp, vbn, t) , we observe that:

1) The variation inVo(t) over (vbp, vbn) is nearly linear at
each time point of the waveform. Empirically, this can
be seen in Figure 7, which shows typical cases for the
variation ofVo(t) over (vbp, vbn) for various time points
of simulation. This behavior is observed for multiple test
cases, and indicates thatα(vbp, vbn, t), β(vbp, vbn, t) are
actually independent of the applied body bias, and are
only dependent ont.

2) Figure 8 shows the variations inα(vbp, vbn, t) and
β(vbp, vbn, t) with (vbp, vbn). The magnitude of these
variations were observed to be a maximum of0.1 for all
test cases. Since these parameters are further multiplied
by vbp or vbn ∈ [−0.3V, 0.3V] in equation (28), their
effects onVo(t) are expected to be negligible. This is
further validated in Section VI.
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Fig. 7: Typical surface plots forVo showing the linear nature of
Vo variations with(vbp, vbn), with each surface corresponding
to a randomly selected time point during the simulation.
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Fig. 8: Simulations showing the variation ofα(t) andβ(t) at
a range of body biases from the minimum to the maximum,
including zero. Two such test cases are shown in Figure (a)
and (b).

This leads to the following approximation, which provides
accurate waveforms with very low errors, as demonstrated in
Section VI:

α(vbp, vbn, t) ≈ α0(t) = α(vbp = 0, vbn = 0, t)

β(vbp, vbn, t) ≈ β0(t) = β(vbp = 0, vbn = 0, t) (35)
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The simplified body bias waveform sensitivity model is thus
given as follows:

Vo(t) = V Z
o (t) + α0(t) · vbp + β0(t) · vbn (36)

Note that this dramatically reduces the storage requirements
for the lookup table. At each time point, this method requires
just two additional parameters,α0 andβ0.

In order to develop a simplified model with changes in tem-
perature as was done in the body bias case, we investigated the
possibility of being able to generate a simplified temperature
waveform sensitivity model too. We however find that unlike
the body bias case, the following approximation:

σ(∆T, t) ≈ σ0(t) = σ(∆T = 0, t) (37)

does not work very well with the temperature waveform
sensitivity model. The inaccuracies in the resultant delays and
slews, as compared to HSPICE, reach upto20%. This can be
attributed to the nonlinear effects of temperature on the circuit
responses, which lead to reduced accuracy when a linear model
is used.

Therefore, we apply a more accurate piecewise linear model
to address the above inaccuracies. We observe that increasing
the value of |∆T | increases the inaccuracies in waveform
evaluation, and that the magnitude of such errors are not large
for smaller values of|∆T |. Thus, instead of the very simplistic
linear approximation as in equation (37), we propose a more
accurate and less approximate linear simplified temperature
sensitivity model as follows:

σ(∆T, t) ≈ σp(∆T, t)

= σ(∆T = ∆T1, t), ∆TMIN ≤ ∆T < ∆TMIN +

⌈

∆TR

3

⌉

= σ(∆T = ∆T2, t), ∆TMIN +

⌈

∆TR

3

⌉

≤ ∆T < ∆TMIN +

⌈

2∆TR

3

⌉

= σ(∆T = ∆T3, t), ∆TMIN +

⌈

2∆TR

3

⌉

≤ ∆T ≤ ∆TMAX (38)

where,

∆TMIN = Minimum value of temperature offset in the range of∆T

∆TMAX = Maximum value of temperature offset in the range of∆T

∆TR = ∆TMAX −∆TMIN

∆T1 = ∆TMIN +

⌈

∆TR

6

⌉

∆T2 = ∆TMIN +

⌈

3∆TR

6

⌉

∆T3 = ∆TMIN +

⌈

5∆TR

6

⌉

As stated in Section II, the values of∆TMAX and∆TMIN

are taken to be -50◦C and 100◦C, respectively. The above
formulation in equation (38) states that this temperature range
is divided into three ranges of nearly equal size. The waveforms
of σp(∆T, t), with ∆T chosen as the central value in each
of these intervals, are then evaluated and saved. Although in
principle, a waveform corresponding to each of the 13∆T
values can be saved (giving us the lowest error in the model),
a designer would like to save and work with minimal number
of waveforms, without losing much in accuracy. We have found
through simulations that a choice of 3 different waveform

(described through equation (38)) serves this purpose. As we
will show in Section VI, such a choice still preserves the high
accuracy. The gain in storage and waveform evaluation speedup
on the other hand, is significant.

In other words, instead of computing and savingσ(∆T, t)
at just one temperature point (as in the linear case in equa-
tion (37)), we now save the values ofσ(∆T, t) at three
distinct values of temperature to provide a better approximation
that captures thermal nonlinearities. The simplified temperature
waveform sensitivity model is thus given as follows:

Vo(t) = V Z
o (t) + σp(∆T, t) ·∆T (39)

whereσp(∆T, t) is given by equation (38). As will be shown
in Section VI, the above model yields accurate waveforms for
all temperature points.

C. Complete Waveform Sensitivity Model

We now propose the complete body bias and temperature
waveform sensitivity model as follows:

Vo(t) = V Z
o (t)

+ α0(t) · vbp + β0(t) · vbn + σp(∆T, t) ·∆T (40)

This model is a linear combination of the simplified wave-
form sensitivity models as given in equations (36) and (39).
Note that such a linear combination is possible since the effects
of body bias and temperature are independent of each other,
as has been discussed in Section II. Equation (40) predicts that
the effects of perturbations inside a cell caused due to changes
in body bias and temperature, can be captured through a simple
linear model of the output voltage in terms of the changes in
the body bias and temperature.

To summarize, evaluating the output atb body bias points
each forvbp andvbn, and atτ temperature offset points, using
an enumerative approach would solve forb2 · τ waveforms,
involving the extensive use of lookup tables. In contrast, our
approach reduces the solution to finding just six waveforms:
one for the zero body bias,V Z

o (t), and one each forα0(t) and
β0(t), and three forσp(∆T, t). The net result is a large savings
in the storage and computation. Thus, the steps involved
in computing the waveform at any(vbp, vbn) and ∆T are
summarized below:

1) Apply equation (27) to generate the waveform
V Z
o (t) at zero-body bias and zero temperature offset.

2) Compute and saveα0(t), β0(t) at every timestep
from equations (32), (33), and (35).

3) Compute and saveσp(∆T, t) at every timestep from
equations (34) and (38).

4) Use the computedα0(t), β0(t) and σp(∆T, t) in
equation (40) to directly generate the waveform for
any value of(vbp, vbn) and∆T .

VI. EXPERIMENTAL RESULTS

Our results are based on standard library cells using the
45nm PTM [24], and our accuracy is measured through com-
parisons with the results of HSPICE [25] simulations.
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A. Reduction in CSM Sensitivity Table Size

We apply our table reduction algorithm for the sensitivity
parameters,{aI , bI , aQ, bQ} and {cI , rI , cQ, rQ} for a set
of standard cells characterized using 45nm PTM [24], and
demonstrate our results in Table II for a typical table, foraI .
Columns 2 through 4 show the number of entries in the reduced
table using the original compression approach (Section III-A),
and Columns 5 through 7 list the size of the reduced tables
using our approach (Section III-B). These comparisons are
shown for various bounds (2%, 5%, 10%) on the allowable
error, and in each case, the optimal table size corresponds to the
smallestm×m table, indexed by(Vi, Vo), that meets the error
bound. In each case,m = 30 for the original table size, i.e.,
it has 900 entries. As is seen from the table, in each case, our
approach yields much smaller tables than the prior approach.

TABLE II: Results for sensitivity parameter table reduction for
tables with original size = 900

Cell Reduced Table Size with Error Bounds Run
Type Original approach Our approach Time

2% 5% 10% 2% 5% 10%

INV 529 484 324 225 169 100 115s
NAND2 576 484 289 196 144 81 110s
NOR2 900 784 576 324 256 169 168s

NAND3 625 529 256 169 144 81 104s
NOR3 841 729 484 289 225 144 167s
AOI21 576 529 484 196 169 100 114s
AOI22 529 484 361 225 169 81 117s

The last column of Table II shows the runtime of the
algorithm for achieving reduced table sizes for the most
computationally-intensive solution, where the2% error bound
must be satisfied. The runtimes are measured on a 3GHz
Intel Core2Duo CPU, and correspond to the average for the
{aI , aQ, bI , bQ} and{cI , cQ, rI , rQ} sensitivity tables, and are
very reasonable, especially considering that this characteriza-
tion computation must be performed only once for a given
library in a given technology.

It is easy to explain why the original algorithm of Sec-
tion III-A does not lead to sufficient reduction in the table size.
This can primarily be related to outliers: ignoring these points
causes substantial errors at these points when interpolation is
used to predict the values of missing entries. On the other
hand, if these are included, the large jumps at these points
can result in interpolation errors at nearby points that do not
correspond to outliers. These errors can only be diminishedby
using reduced tables of larger sizes.

B. Speedup Due to Waveform Sensitivity Models

We now present the speedup obtained using our various
simplified body bias, temperature and the complete waveform
sensitivity (WS) models, as proposed in Sections V-B, and V-C,
respectively.

We evaluate the speedup of our models over HSPICE and
over the Newton-Raphson solver (see Section IV-B) that would
be used in a simple extension of existing CSMs. To calculate
the above speedup, we perform our tests with each circuit
example under multiple combinations of the following param-
eters: multiple rise/fall waveforms (1ps–100ps input ramps, in

steps of 5-10ps), various RC interconnects from the ChipA-1K,
ChipB-1K and the ChipB-5K family [26] as load benchmarks
reduced toπ-models, multiple body bias points (169 points
with (vbp, vbn) ∈ [-0.3V, 0.3V], in steps of0.05V for each
parameter), and multiple temperature points (13 points with
∆T ∈ [-50◦C, 100◦C], in steps of12.5◦C).

First, we present the speedups with simplified body bias
waveform sensitivity model and those of simplified temperature
waveform sensitivity model independently. Then we present
the speedups of the complete waveform sensitivity model. In
each case, we calculate the runtimes using HSPICE, Newton-
Raphson solver and our simplified waveform sensitivity mod-
els, and average these runtimes over all the test cases to arrive
at final speedup results. For the test cases, we perform transient
simulations and report the speedups of our algorithm over
HSPICE and over the Newton-Raphson solver. Expectedly,
the speedup over HSPICE is large, and is found to be about
five orders of magnitude. More interestingly, our complete
waveform sensitivity model achieves an average speedup of
91.81×, and a maximum speedup of 99.55×, over the Newton-
Raphson solver.

1) Body Bias Waveform Sensitivity Model:We evaluate
the speedup achieved using the standalone body bias model
as presented in Section V-B. We perform evaluations at 169
body bias points within the range(vbp, vbn) ∈ [-0.3V, 0.3V].
All evaluations are carried at the zero temperature offset of
∆T = 0◦C. Table III lists the speedups that are obtained by
our waveform sensitivity model over HSPICE and over the
Newton-Raphson Solver, for standard library cells. As can
be seen from the table, the body bias waveform sensitivity
model achieves an average speedup of around five orders of
magnitude over HSPICE and an average speedup of67.9×
over the Newton-Raphson Solver.

TABLE III: Speedups obtained by the Complete Waveform
Sensitivity (WS) Model over HSPICE and Newton-Raphson
(NR) solver

Cell WS Model Speedups
Body Bias Temperature Combined

Over Over NR Over Over NR Over Over NR
HSPICE Solver HSPICE Solver HSPICE Solver

INV 8.9e4 65.36 4.6e3 4.374 1.15e5 85.12
NAND2 9.6e4 66.29 4.9e3 4.352 1.28e5 88.15
NOR2 9.2e4 69.23 4.0e3 4.454 1.26e5 95.02

NAND3 9.6e4 66.67 4.8e3 4.313 1.29e5 89.50
NOR3 8.9e4 72.15 4.2e3 4.405 1.23e5 99.55
AOI21 10.8e4 66.80 4.8e3 4.389 1.45e5 89.72
AOI22 10.0e4 69.36 4.9e3 4.413 1.39e5 95.60

2) Temperature Waveform Sensitivity Model:Next, we eval-
uate the speedup achieved using the standalone simplified
temperature waveform sensitivity model as presented in Sec-
tion V-B. We perform evaluations at 13 temperature points
within the range∆T ∈ [-50◦C, 100◦C] with zero body biasing.
Table III presents the average speedup attained over HSPICE
and the Newton-Raphson solver. Compared to body bias case,
these speedups are lower since we are evaluating at a much
lesser number of temperature points (13 as compared to 169
in the body bias case).
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Fig. 9: The result of our simplified body bias waveform
sensitivity (WS) method as compared with HSPICE, for several
body bias values: (a) output waveform from an Inverter, loaded
with a 20l benchmark RC interconnect, evaluated at sink node
52, and (b) output waveform from a NAND2, loaded with a
45l benchmark RC interconnect, evaluated at sink node 103.

3) Complete Waveform Sensitivity Model:We now present
the speedup obtained with our complete body bias and temper-
ature waveform sensitivity model as presented in Section V-C.
In this case, we perform evaluations at all combinations of
the 169 body bias and 13 temperature points within the range
(vbp, vbn) ∈ [-0.3V, 0.3V], and ∆T ∈ [-50◦C, 100◦C] (thus a
total of 169× 13 evaluations). Table III presents the average
speedup attained by our complete model over HSPICE and the
Newton-Raphson solver. Note that with the complete model,
we are able to achieve an order of five magnitudes speedup over
HSPICE. Our complete model is much faster as compared to
the Newton-Raphson solver, over which we are able to achieve
an average speedup of91.81×, considering all temperature and
body bias points.

C. Accuracy of the Waveform Sensitivity Models

In this subsection, we present the accuracy achieved by
our body bias and temperature models in both waveform
generation and computation of slews and delays over multiple
combinations of body bias and temperature values. Through
the accuracy of these waveforms and low errors in slews and
delays, we also show that our assumptions of making waveform
sensitivity models simplified are justified. We present accurate
waveform generation both at the output node of the cell as
well as the sink nodes of the RC interconnect loads, which are
connected to the output node of the cell.
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Fig. 10: Similar results of output waveform at the output node
of a gate (a) for a NAND2, modeling an input glitch, and (b)
for a NAND3, with a nonmonotone input.

1) Body Bias Waveform Sensitivity Model:The temperature
offset in this part of evaluation is set to zero. Figures 9
and 10 compare representative waveforms as generated through
HSPICE [25] and the simplified body bias waveform sensitivity
model, when the input waveform takes any arbitrary shape ei-
ther due to glitches, noise or crosstalk. We evaluate accuracies
both at the output node of the cell, and the sink nodes of the
interconnects which load the cell output node. Figure 9 shows
the typical response of the cell at the sink nodes of the RC
tree interconnect loads. The waveform is first obtained at the
output node of the cell, and then evaluated at sink node using
Pad́e-approximation of the RC interconnect circuit, and model
order reduction techniques [23]. Figure 10 shows the output
waveforms at the output node of the cells, with arbitrary inputs.
The waveforms in some cases are coincident to the naked eye,
as our algorithm yields high accuracy. This also validates the
idea thatα, β can be assumed to be independent of(vbp, vbn),
as proposed in Section V-B. Note that the initial ringing error
in these waveforms is due to the use of Padé-approximation,
and not due to the waveform sensitivity model.

2) Temperature Waveform Sensitivity Model:As with the
body bias waveform sensitivity model, the simplified temper-
ature sensitivity model as described in Section V-B yields
accurate waveforms for any temperature offset value. Note
that the body bias is kept at zero in all such evaluations.
Figure 11 shows a set of waveforms obtained from a NOR3
cell, loaded with33l RC interconnect network. The waveform
is first obtained at the output node of the NOR3 cell, and the
waveform shown is then evaluated at sink node 55. As shown in
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(a)

(b)

Fig. 11: The result of our simplified temperature waveform
sensitivity (WS) method as compared with HSPICE, for var-
ious temperature values. Shown above are output waveforms
from a NOR3, loaded with33l benchmark RC interconnect,
evaluated at sink node 55: (a) for a falling step input, and (b)
for a slower rising input.

the figure, the temperature waveform sensitivity model yields
very accurate waveforms. This also validates the simplification
of σ(∆T, t) values, as proposed in Section V-B.

3) Complete Waveform Sensitivity Model:For presenting
the results in this section, we generate waveforms for multiple
combinations of body bias or temperature offset values and
compare the result with the corresponding waveforms obtained
from HSPICE. We find that the complete model as presented
in Section V-C, generates very accurate waveforms. As before,
we evaluate accuracies both at the output node of the cell,
and the sink nodes of the interconnects which load the cell
output node. Figure 12 shows the accuracy obtained at the
output node of an inverter loaded with45l RC interconnect,
with inputs having glitches and arbitrary shapes. Figure 13
shows the waveform evaluated at sink node 52 of20l RC load
interconnect for NAND2 and NOR2 cells. Our results show
that a linear model forVo(t) in both body bias and temperature
with simplifications as in equations (35) and (38), suffices for
generation of waveforms at any combination of body bias and
temperature, with sufficiently desired accuracy.

4) Slew and Delay Errors:We now present some more
descriptive tables for the errors in delays and slews that are
incurred in formulation of the complete waveform sensitivity
model. For this tabulation, we work with the test cases that
were mentioned at the beginning of Section VI-B, and save the
delay and slew values as obtained from our complete waveform

(a)

(b)

Fig. 12: The result of our complete waveform sensitivity (WS)
model as compared with HSPICE, for various temperature and
body bias values. Shown above are waveforms at the output
node of an Inverter with (a)45l as the interconnect load and an
input glitch due to crosstalk, and (b)25m as the interconnect
load and an arbitrary input.

(a) (b)

Fig. 13: Similar output waveforms from cells loaded with20l
benchmark RC interconnect, evaluated at farthest sink node52:
(a) the output from an NAND2 for a rising input, and (b) the
output from a NOR2 for a falling input.

sensitivity model and from HSPICE. We then obtain the rela-
tive percentage error between delays and slews corresponding
to the complete simplified waveform sensitivity model and of
HSPICE. All such errors are tabulated. Table IV shows the
mean and standard deviation of these relative errors for a
NAND2 cell, over all (vbp, vbn, ∆T ) points, presented for each
combination of inputs slews and output load interconnects.It
is seen that both the mean and standard deviations are small
for all test cases.

A more detailed view of these rise and fall delay/slew
errors is presented in Table V, for a particular test case:
with a NAND2 cell loaded with20l as the RC interconnect,
waveforms being evaluated at sink node 52. This table shows
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TABLE IV: Mean and standard deviation (St. Dev.) of the percentage errors over all (vbp, vbn, ∆T ) points, incurred by our
complete waveform sensitivity model in the output rise delay and slew values for NAND2 cell, as compared to HSPICE for
different input slews and output RC interconnect loads

RC Interconnect Loads
Input 25m 33l 45l
Slews Percent Delay ErrorPercent Slew Error Percent Delay ErrorPercent Slew Error Percent Delay ErrorPercent Slew Error

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.
5ps 1.655 1.450 3.128 2.541 1.218 1.266 3.328 2.632 0.889 0.831 3.107 2.448
10ps 1.532 1.394 3.108 2.541 1.031 1.186 3.203 2.656 1.043 0.960 2.407 2.304
20ps 1.328 1.376 3.095 2.552 0.883 0.950 2.832 2.596 1.557 1.338 2.045 2.156
50ps 1.030 1.164 2.826 2.568 1.397 1.090 2.353 2.530 4.026 3.992 1.876 2.167
100ps 1.244 1.192 1.183 1.405 2.245 1.727 2.087 2.331 1.785 1.813 1.869 2.347

TABLE V: Percent delay and slew errors for a NAND2 cell at
various temperature offsets, over allvbp, vbn points

∆T Percent Delay Errors Percent Slew Errors
(◦C) Max. Min. Mean Max. Min. Mean

-50.0 1.43 0.06 0.47 4.63 0.09 1.75
-37.5 1.15 0.02 0.39 4.33 0.19 1.78
-25.0 1.23 0.03 0.40 3.71 0.16 1.64
-12.5 1.14 0.01 0.49 2.02 0.10 0.82
0.0 1.29 0.08 0.44 1.23 0.08 0.70
12.5 1.20 0.09 0.40 1.51 0.06 0.78
25.0 1.15 0.05 0.45 2.50 0.13 1.04
37.5 1.34 0.09 0.66 4.16 0.04 1.53
50.0 2.18 0.38 1.11 4.81 0.06 2.65
62.5 1.96 0.22 0.81 5.48 0.27 2.79
75.0 1.27 0.02 0.39 5.94 0.26 2.92
87.5 1.18 0.06 0.68 6.87 0.40 3.19
100.0 2.16 0.63 1.41 8.93 0.35 3.74

the distribution of the delay/slew errors over all (vbp, vbn)
points, but at different∆T values. Column 1 of the table lists
the temperature offsets from the nominal temperature of25◦C
at which the waveforms are evaluated. Columns 2 to 4 present,
for the value of∆T listed in column 1, the maximum, the
minimum and the mean of the percentage delay errors obtained
over all vbp, vbn points. Similarly, columns 5 to 7 present the
maximum, the minimum and the mean percentage slew errors
obtained over allvbp, vbn points at that temperature offset.
Clearly, at all temperature offsets, both the mean delay and
slew errors over allvbp, vbn points are contained within 4%.

We thus observe from Tables IV and V that only a small
error is incurred in both delays and slews over all combina-
tions of vbp, vbn, and ∆T points, validating the use of our
waveform sensitivity model in predicting the delay and slews
over the entire range of body bias and temperature. Very similar
observations were made for other standard cells in the library.

VII. CONCLUSION

A simple extension of existing CSMs to incorporate the
effects of body bias and temperature in the CSM framework
results in excessive increase in library memory and solver
runtime. We present a novel approach to incorporate body
bias and temperature effects into current source models. We
develop sensitivity model for capturing variations in CSM
components with body bias and temperature, with compaction
of the resulting tables of these model parameters. We incor-
porate this sensitivity model into the mainstream CSM solver
framework, and develop a new model for capturing waveform
sensitivity with body bias and temperature, which allows usto

compute waveforms at multiple combinations of body bias and
temperature points with massive savings in computation. The
results demonstrate the effectiveness of our compaction scheme
and the waveform sensitivity model in achieving HSPICE
level accuracy with high speedups both over HSPICE and
conventional CSM solvers.
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APPENDIX

Proof of Theorem 1
At each time step, combining the nonlinear equation (23) with (29),

andA,B given by (24), (25), we can writeα(t) as:
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Writing Ip, Qp as linear functions ofvbp, vbn from (4), (5), we get
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whereLI andLQ are defined as in equations (6) and (7), respectively,
andLn

Q corresponds to the evaluation ofLQ at time stepn. Further,
∂VC2

/∂vbp can be calculated using equation (26).
Recognizing that ∂Vo

∂vbp
= α, and at time stepn, αn =

∂V n
o

∂vbp
,

collecting all terms multiplied byα, the result of equation (32) follows
immediately. The derivation of equation (33) is analogous. Note

that {aI , aQ, bI , bQ} are independent of body bias, being functions
of (Vi, Vo) only, but appear as functions of(vbp, vbn) since Vo

dynamically changes with body bias during simulation.�

Proof of Theorem 2
The derivation ofσ follows along the same lines as forα andβ.

At each time step, combining the nonlinear equation (23) with (31),
andA,B given by (24), (25), we can writeσ(t) as:
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Writing Ip, Qp as second order functions of∆T from (10), (11),

we get
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whereSI andSQ are defined as in equations (12) and (13), respec-
tively, andSn

Q corresponds to the evaluation ofSQ at time stepn.
Further,∂VC2

/∂∆T can be calculated using equation (26).
Since ∂Vo

∂∆T
= σ, and at time stepn, σn =

∂V n
o

∂∆T
, collecting all

terms multiplied byσ on left hand side, the result of equation (34)
follows immediately. Note that{cI , cQ, rI , rQ} are again independent
of temperature, being functions of(Vi, Vo) only. �
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