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Abstract—Approximate computing is a promising approach
for low power IC design and has recently received considerable
research attention. To accommodate dynamic levels of approx-
imation, a few accuracy configurable adder designs have been
developed in the past. However, these designs tend to incur large
area overheads as they rely on either redundant computing or
complicated carry prediction. Some of these designs include error
detection and correction circuitry, which further increases area.
In this work, we investigate a simple accuracy configurable adder
design that contains no redundancy or error detection/correction
circuitry and uses very simple carry prediction. Simulation
results show that our design dominates the latest previous work
on accuracy-delay-power tradeoff while using 39% lower area.
In the best case the iso-delay power of our design is only 16%
of accurate adder regardless of degradation in accuracy. One
variant of this design provides finer-grained and larger tunability
than the previous works. Moreover, we propose a delay-adaptive
self-configuration technique to further improve accuracy-delay-
power tradeoff. The advantages of our method are confirmed by
the applications in multiplication and DCT computing.

Index Terms—Approximate computing, accuracy configurable
adder, delay-adaptive reconfiguration, low power design.

I. INTRODUCTION

POWER constraints are a well-known challenge in ad-
vanced VLSI technologies. Low power techniques for

the conventional exact computing paradigm have been already
extensively studied. A comparatively new direction is approx-
imate computing, where errors are intentionally allowed in
exchange for power reduction. In many applications, such as
audio, video, haptic processing and machine learning, occa-
sional small errors are indeed acceptable. Such error-tolerant
applications are found in abundance in emerging applications
and technologies.

A great deal of approximate computing research has been
concentrated on arithmetic circuits, which are essential build-
ing blocks for most of computing hardware. In particular,
several approximate adder designs have been developed [1]–
[14]. One such design [2] achieves 60% power reduction for
DCT (Discrete Cosine Transform) computation without mak-
ing any discernible difference to the images being processed.
In realistic practice, accuracy requirements may vary for
different applications. In mobile computing devices, different
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power modes may entail different accuracy constraints even for
the same application. Specifically, arithmetic accuracy can be
adjusted at runtime using methods such as dynamic voltage
and frequency scaling (DVFS) to obtain the best accuracy-
power tradeoff. The benefit of runtime accuracy adjustment
is demonstrated in [3], but their approximation is realized by
voltage over-scaling, where errors mostly occur at the timing-
critical path associated with the most significant bits, i.e.,
errors are often large.

To reduce the overall error, a few approximate designs have
been developed by intentionally allowing errors in lower bits
with shorter carry chain in addition operation. In [4], a design
that considers only the previous k inputs instead of all input
bits can approximate the result with the benefit in half of the
logarithmic delay. Reliable variable latency carry select adder
(VLCSA) shows a speculation technique which introduces
carry chain truncation and carry select addition as a basis [7].
A series of Error Tolerant Adders (ETAI, ETAII, ETAIIM),
which truncate the carry propagation chain by dividing the
adder into several segments, have been proposed [8]–[10].
Correlation-aware speculative adder (CASA) in [11] relies
on the correlation between MSBs of input data and carry-in
values. Another approximate adder that exploits the generate
signals for carry speculation is presented [12]. These designs
focus on static approximation which pursues almost correct
results at the required accuracy. However, in some applications
such as image processing or audio/video compression, the
required accuracy might vary during runtime. To meet the
need of runtime accuracy adjustment, a series of designs are
developed to implement accuracy configurable approximation
which could be reconfigured online to save more power.

A few accuracy configurable adder designs that use approx-
imation schemes other than voltage over-scaling have been
proposed. An early work [15], called ACA, starts with an
approximate adder and augments it with an error detection
and correction circuit, which can be configured to deliver
varying approximation levels or accurate computing. Its base-
line approximate adder contains significant redundancy and
the error detection/correction circuit further increases area
overhead. The ACA design [15] is generalized to a flexible
framework GeAr in [16]. In both ACA and GeAr, the error
correction must start from the least significant bits and hence
accuracy improves slowly in the progression of configurations.
The work of Accurus [17] modifies ACA/GeAr to overcome
this drawback and achieves graceful degradation. However, in
ACA, GeAr as well as Accurus, the error correction circuit
is pipelined, implying that the computation in accurate mode
takes multiple clock cycles and causes data stalls.
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An alternative direction of accuracy configurable adder
design is represented by GDA [18] and RAP-CLA [19]. These
methods start with an accurate adder and use carry prediction
for optional approximation. As such, they no longer need
error detection/correction and do not incur any data stall. In
addition, they intrinsically support graceful degradation. The
GDA design [18] is composed by accurate CRA (Carry Ripple
Adder) and extra configurable carry prediction circuitry, sim-
ilar as the carry look-ahead part of CLA (Carry Look-ahead
Adder). Thus, its area is generally quite large. RAP-CLA [19]
is based on accurate CLA design and reuses a portion of the
carry look-ahead circuit as carry prediction. This leads to an
overall area that is less than GDA but greater than CLA.
In [19], the carry-prediction-based approach is shown to be
superior to error-correction-based design [16].

In this paper, we propose a new carry-prediction-based
accuracy configurable adder design: SARA (Simple Accuracy
Reconfigurable Adder). It is a simple design with significantly
less area than CLA, which, to the best of our knowledge, has
not been achieved in the past in accuracy configurable adders.
SARA inherits the advantages of all previous carry-prediction-
based approaches: no error correction overhead, no data stall
and allowing graceful degradation. Compared to GDA [18],
SARA incurs 50% less PDP (Power Delay Product) and can
reach the same PSNR (Peak Signal-to-Noise Ratio). Moreover,
SARA demonstrates remarkably better accuracy-power-delay
tradeoff than the latest, and arguably the best, previous work
RAP-CLA [19]. A delay-adaptive reconfiguration technique is
developed to further improve the accuracy-power-delay trade-
off. The proposed designs are also validated by multiplication
and DCT computation in image processing.

II. PRIOR WORKS AND RATIONALE OF OUR DESIGN

We review a few representative works on accuracy config-
urable adder design and show the relation with our method.
These designs can be generally categorized into two groups:
error-correction-based configurations [15]–[17] and carry-
prediction-based configurations [18], [19].
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Fig. 1. Error-correction-based configurable adder.

The main idea of an error-correction-based approach [15]–
[17] is shown in Figure 1. The scheme starts with an ap-
proximate adder (the dashed box), where the carry chain
is shortened by using separated sub-adders with truncated
carry-in. In order to reduce the truncation error, the bit-width

in some sub-adders contains redundancy. For example, sub-
adder2 calculates the sum for only bit 8 and 9, but it is an
8-bit adder using bit [9 : 2] of the addends, 6 bits of which
are redundant. Even with the redundancy, there is still residual
error which is detected and corrected by additional circuits.
In Figure 1, the errors of sub-adder2 must be corrected by
error-correction2 before the errors of sub-adder3 are rectified
by error-correction3. As such, the configuration progression
always starts with small accuracy improvements. The redun-
dancy and error detection/correction incur large area overhead.
Since the error correction circuits are usually pipelined, an
accurate computation may take multiple clock cycles and could
stall entire datapath, depending on the addend values.
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Fig. 2. Carry-prediction-based configurable adder.

The framework of carry-prediction-based methods [18], [19]
is shown in Figure 2. These schemes start with an accurate
adder design, which is formed by chaining a set of sub-
adders. Each sub-adder comes with a fast but approximated
carry prediction circuit. By selecting between the carry-out
from sub-adder or carry prediction, the overall accuracy can
be configured to different levels. Such an approach does
not need error detection/correction circuitry. Moreover, the
configuration of higher bits is independent of lower bits.
This leads to fast convergence or graceful degradation in the
progression of configurations. In GDA [18], the sub-adders are
CRA designs while the carry-prediction circuit is similar to
the carry look-ahead part of CLA. Further, its carry prediction
can be configured to different accuracy levels. However, the
complicated carry prediction induces large area overhead. The
RAP-CLA scheme [19] uses CLA for its baseline where the
carry-ahead of each bit is computed directly from the addends
of all of its lower bits. Its carry prediction reuses a part of
the look-ahead circuit rather than building extra dedicated
prediction circuitry, and hence is more area-efficient than
GDA. But its baseline is much more expensive than GDA.

TABLE I
COMPARISON OF CHARACTERISTICS FOR DIFFERENT TECHNIQUES.

Baseline Error Graceful Carry
Method sub-adder correction degradation prediction

ACA [15] Redundant CRA Yes No No
GeAr [16] Redundant CRA Yes No No

Accurus [17] Redundant CRA Yes Yes No
GDA [18] CRA No Yes Stand-alone

RAP-CLA [19] CLA No Yes Reuse
SARA (ours) CRA No Yes Reuse

Our design is a carry-prediction-based approach. Its sub-
adders are CRA instead of expensive CLA as in RAP-CLA.
Its carry prediction also reuses part of the sub-adders rather
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than having dedicated prediction circuitry. As such, it avoids
the disadvantages of both GDA and RAP-CLA. A comparison
among the characteristics of these different techniques is
provided in Table I.

III. SIMPLE ACCURACY RECONFIGURABLE ADDER

A. Preliminaries

An N -bit adder operates on two addends A =
(aN , aN−1, ..., ai, ..., a1) and B = (bN , bN−1, ..., bi, ..., b1).
For bit i, its carry-in is ci−1 and its carry-out is ci. Defining
the carry generate bit gi = ai · bi, propagate bit pi = ai ⊕ bi
and kill bit ki = āi · b̄i, the conventional full adder computes
the sum si and carry ci according to

si = pi ⊕ ci−1, (1)

ci = gi + pi · ci−1. (2)

A gate level schematic of conventional full adder is provided
in Figure 3(a). A CRA is used to chain N bits of conventional
full adders together.
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Fig. 3. (a) Conventional full adder; (b) Our carry-out selectable full adder;
(c) Our carry-in configurable full adder.

By applying Equation (2) recursively, one can get

ci = gi + pigi−1 + . . . + g1

i∏
k=2

pk + c0

i∏
k=1

pk. (3)

This equation implies that ci can be computed directly from
g and p of all bits, without waiting for the c of its lower bits
to be computed. This observation is the basis for CLA adder.

B. SARA: Simple Accuracy Reconfigurable Adder Design

In SARA, an N -bit adder is composed by K segments of
L-bit sub-adders, where K = dN/Le (see Figure 2). Each
sub-adder is almost the same as CRA except that the MSB
(Most Significant Bit) of a sub-adder, which is bit i, provides
a carry prediction as

cprdti = gi (4)

For the LSB (Least Significant Bit) of the higher-bit sub-adder,
which is bit i + 1, its carry-out ci+1 can be computed using
one of two options: either by the conventional ci+1 = gi+1 +
pi+1 · ci, or by using the carry prediction as

ci+1 = gi+1 + pi+1 · cprdti = gi+1 + pi+1 · gi (5)

The selection between the two options is realized using
MUXes as in Figure 4 and the MUX selection result is denoted
as ĉi. Comparing Equation (5) with (3), we can see that
the carry prediction is a truncation-based approximation to
carry computation1. Therefore, ĉi can be configured to either
accurate mode or approximation mode, i.e.,

ĉi ←

{
cprdti , if approximation mode
ci, if accurate mode.

(6)

It should be noted that the carry prediction cprdti reuses gi
in an existing full adder instead of introducing an additional
dedicated circuit as in [18] or Figure 2. This prediction scheme
makes a very simple modification to the conventional full
adder, as shown in Figure 3(b).

One can connect ĉi to its higher bit i + 1 to compute
both carry ci+1 and sum si+1 , as in GDA [18] and RAP-
CLA [19]. We suggest an improvement over this approach
by another simple change as in Figure 3(c), where si+1 is
based on ci instead of ĉi. Such approach can help reduce the
error rate in outputs when an incorrect carry is propagated.
Because the sum keeps accurate and the carry will not be
propagated when addends are exactly the same. Moreover,
out of all four configurations of sum/carry calculation by
approximate/accurate carry-in, the most meaningful way is to
have sum bit calculated by accurate carry and make carry bit
configurable. So sum si+1 is calculated directly by accurate
carry ci without the option of cprdti . Applying this in SARA
as in Figure 4, in the approximation mode, computing sj+1

from cj can still limit the critical path to be between cprdti−1
and sj+1, but has higher accuracy than computing sj+1 from
ĉj . Compared to sum computation in GDA and RAP-CLA,
this technique improves accuracy with almost no additional
overhead. Compared to CRA, the overhead of SARA is
merely the MUXes, which is almost the minimum possible
for configurable adders.
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Although sj+1 is calculated by accurate carry cj , its delay
can still be reduced by approximate carry in lower sub-adder.
In a multi-bit adder, the delay of sum bit depends on the carry
chain propagated from its lower bits. In our SARA structure,
even when accurate carry cj is propagated at bit j, the carry
chain might be truncated by approximate carry in other lower
bits. In Figure 4, when cprdti−1 is propagated, the delay of sj+1

is reduced as its path is shorten to be between bit i − 1 and

1A similar approximation is used in static approximate adder design [12].
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j+1. We can take the 12-bit adder in Figure 5 as an example.
For 12-bit SARA working in approximate mode, the sum s9
uses the accurate carry c8 from a lower sub-adder (bit 5 to 8).
But c8 is propagated from approximate carry cprdt4 of another
sub-adder (bit 1 to 4). As shown in the figure, the delay of
s9 in SARA is about 6 stages. Compared with the same bit in
CRA, the delay of sum bit s9 in SARA is reduced by 3 stages.
Similar delay reduction can be observed in other sum bits (bit
6 to 12). For sums at bit 1 to 5, their delay is the same as
CRA because they are using an accurate carry c0 from LSB.
As a result, the maximum delay in 12-bit SARA is reduced,
since for a multi-bit adder its maximum delay depends on the
longest critical path.
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Fig. 5. Implementation of 12-bit adder in (a) CRA and (b) SARA.

C. Usage of SARA

When ĉi is configured to be ci for all K sub-adders, SARA
operates very much like the CRA, where the critical path is
along N -bit full adders. If all ĉi are selected to be cprdti , the
critical path is shortened to roughly L-bit full adders. This
large delay reduction can be translated to power reduction
by supply voltage scaling. Voltage scaling (reducing supply
voltage) on digital circuits will lead to increase in delay. So
we can reduce the supply voltage on SARA to make its critical
delay same as that of CRA under normal voltage. As the
supply voltage decreases, the power consumption could be
reduced. There can be 2K−1 different configurations. For two
configurations with the same critical path length, obviously
we only need the one with higher accuracy. Therefore, there
are K effective configurations, with critical path length of L-
bit, 2L-bit, ...,K · L ' N -bit full adders. The delay of such
configurable design varies according to configured accuracy,
which results in different power reduction by voltage scaling.

IV. SARA ERROR ANALYSIS

In this section, we give a theoretical analysis on the expected
error of our SARA design and validate the results by numerical
experiments. To make it easier for readers to follow the
analysis, we list the parameters used in this section as Table II.

For any bit i in carry-out selectable full adder as in
Figure 3(b), an error in approximate carry-out occurs when

TABLE II
DEFINITION OF PARAMETERS FOR ERROR ANALYSIS

Parameter Definition
pi propagate bit at bit i
gi generate bit at bit i
ki kill bit at bit i
ci accurate carry-out bit at bit i

cprdti approximate carry-out bit at bit i
ĉi carry-in bit at bit i+ 1

ERprdt
i error rate of cprdti

ÊRi error rate of ĉi

cprdti 6= ci. There is only one situation where this error may
happen: when ci−1 = 1, pi = 1, cprdti = 0 and ci = 1. Then
the error rate, or probability of such error, is given by

ERprdt
i = P (cprdti 6= ci) = P (cprdti = 0, ci = 1)

= P (ci−1 = 1, pi = 1)

= P (ci−1 = 1)P (pi = 1)

(7)

where P indicates probability and the last part assumes that
ci−1 and pi are independent of each other. Then, if the
approximate/accurate carry-out can be selected by a MUX
gate, the error rate of MUX output ĉi is

ÊRi = P (ĉi 6= ci) =

{
ERprdt

i , if ĉi ← cprdti

0, if ĉi ← ci.
(8)

Let’s consider a configuration of SARA in Figure 4, which
has both bit j and bit i − 1 in approximate mode. For the
sub-adder which calculates addends from bit i to bit j, its
LSB (bit i) is using carry-in configurable full adder, while its
MSB (bit j) is in carry-out selectable full adder. According to
Equation (7) and (8), the error rate of ĉj is determined by the
probabilities of cj−1 = 1 and pj = 1.

ÊRj = P (cj−1 = 1)P (pj = 1) (9)

According to the logic of addition, the carry-out bit is calcu-
lated by the carry-in and addends. There are two cases which
can result in cj−1 = 1: generate bit gj−1 should be 1 in case
of carry-in cj−2 = 0; or kill bit kj−1 must be 0 when carry-in
comes with cj−2 = 1. Then, the probability of cj−1 = 1 can
be computed by the probability of cj−2 = 1 as

P (cj−1 = 1) = P (cj−2 = 0, gj−1 = 1) + P (cj−2 = 1, kj−1 = 0)

= P (cj−2 = 0)P (gj−1 = 1) + P (cj−2 = 1)P (kj−1 = 0)

= [1− P (cj−2 = 1)]P (gj−1 = 1) + P (cj−2 = 1)P (kj−1 = 0).
(10)

Similarly, the probability of cj−2 = 1, cj−3 = 1, . . . , ci+1 = 1
can be calculated using the same formula. For the probability
of ci = 1, it’s a little different because the carry-out ci in our
carry-in configurable full adder is based on predicted carry-in
ĉi−1 instead of ci−1. Considering that bit i− 1 is configured
in approximate mode, we have

P (ĉi−1 = 1) = P (cprdti−1 = 1) = P (gi−1 = 1). (11)

Then, the probability of ci = 1 can be expressed as

P (ci = 1) =[1− P (gi−1 = 1)]P (gi = 1) + P (gi−1 = 1)P (ki = 0).
(12)
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TABLE III
ERROR RATE OF SUB-ADDER WITH DIFFERENT WIDTH

Sub-adder length L Calculated error rate Simulated error rate
1 1/8 = 0.125 0.1257
2 3/16 = 0.1875 0.1879
3 7/32 = 0.21875 0.2187
4 15/64 = 0.234375 0.2347
5 31/128 = 0.2421875 0.2424
6 63/256 = 0.24609375 0.2464

By expanding Equation (10) recursively till bit i, the proba-
bility of cj−1 = 1 can be calculated by a function of generate
bit and kill bit from bit i− 1 to bit j − 1.

P (cj−1 = 1) = f{P (gi−1 = 1), . . . , P (gj−1 = 1),

P (ki = 0), . . . , P (kj−1 = 0)}.
(13)

Assuming that the inputs for adder are uniformly distributed
random numbers, we have P (g = 1) = 1/4, P (k = 0) = 3/4.
As the length of sub-adders varies from 1 to 6, the error
rates of ĉj calculated by Equation (9) are listed in the second
column of Table III. Corresponding data from numerical
simulation in Matlab are also presented in the last column.
The error rates calculated by our method match well with
experiment results, which demonstrates the correctness of our
mathematical analysis. We can also observe that as the length
of sub-adder increases the error rate is bounded by 0.25. That
is because when the length of sub-adder comes to infinite the
probability of c = 1 will become 0.5 as the normal carry in
accurate adder.

Theorem 1. If I is the set of bits with MUX at output, the
expected error of SARA for unsigned integers is∑

∀i∈I

ÊRi · P (pi+1 = 1) · 2i+1.

Proof. The overall expected error of SARA can be calculated
by summing respective error introduced by every approximate
bit from LSBs to MSBs. But the propagation of inaccurate
carry bit may cause error in higher bit which also be counted
in the calculation of lower bit. So we need to exclude those
errors to avoid over-calculation in the total error.

Let’s consider the SARA design in Figure 4 which have
approximate configuration at both bit i−1 and bit j. Assuming
that bit i−1 is the lowest bit configured in approximate mode,
we know that all sum bits sk (k ∈ [1, i− 1]) as well as carry
bit ci−1 are accurate.

ci−1 = cacci−1 (14)

Then the probability that carry prediction at MUX output ĉi−1
mismatches with accurate carry cacci−1 should be the same as
the error rate of max ouput ĉi−1.

P (ĉi−1 6= cacci−1) = P (ĉi−1 6= ci−1) = ÊRi−1 (15)

According to the structure of carry-in configurable full adder
(Figure 3(c)), sum bit si calculated from ci−1 is always
accurate; however, the carry-out bit ci becomes conditionally
accurate which depends on both carry-in bit and propagate bit.
As shown in Equation (16), the scenario of accurate carry-out

can be attributed to two conditions: when the carry-in is not
accurate, the carry-out bit becomes accurate as the propagate
bit is false; otherwise, it must be accurate no matter what kind
of addends are given.

P (ci = cacci ) = P (ĉi−1 = cacci−1) + P (ĉi−1 6= cacci−1)P (pi = 0)
(16)

Its complementary part, the probability of inaccurate carry ci,
can be expressed as

P (ci 6= cacci ) = P (ĉi−1 6= cacci−1)P (pi = 1)

= P (ĉi−1 6= ci−1)P (pi = 1)

= ÊRi−1 · P (pi = 1).

(17)

As a result, the approximation at bit i − 1 would cause
an inaccurate carry-in ci at bit i + 1, which introduces the
magnitude of 2i to the overall error in final result. Then the
expected error introduced by approximation at bit i − 1 can
be estimated by

E[ei−1] = P (ci 6= cacci ) · 2i = ÊRi−1 · P (pi = 1) · 2i. (18)

Next, we consider the expected error introduced by approx-
imation at bit j. As bit j is not the lowest bit in approximate
mode, there is a chance that the propagation of inaccurate carry
from bit i− 1 induces error at bit j while it has be taken into
account in the error calculation of bit i−1. Then the problem
is whether the carry cj is accurate when there is a mismatch
between ĉj and cj . If not, we need to exclude the impact from
lower bit when estimating the error at bit j. Let’s answer this
question in the following cases.
• Case 1: If any propagate bit in sub-adder (bit i to j)

equals 0, the error propagation by inaccurate carry will be
paused. In another word, the error carried by inaccurate
carry bit cannot be propagated to higher bit any more,
because the carry-out is independent of carry-in when
propagate bit is false. In this case, the carry cj should be
always accurate regardless of the configuration at bit j.

• Case 2: If all propagate bits of sub-adder equal 1, the
value of inaccurate carry ĉi−1 (0 instead of 1) will be
propagated to cj . In this situation, the actual value of cj
propagated from bit i− 1 must be 0, while the accurate
value should be 1. Assuming that ĉj mismatches with cj ,
we can state that the value of ĉj must be 1. However, it
conflicts with the generation of cj , because carry cj is the
logical conjunction of ĉj and pj · cj−1. So there should
be no mismatch between ĉj and cj in this case.

In conclusion, when there is a mismatch between ĉj and
cj , the value of carry cj must be accurate. We can further
conclude that the contributions of every approximate bit to
the total error are independent to each other. Similar to bit
i− 1, the expected error at bit j can be estimated by

E[ej ] = ÊRj · P (pj+1 = 1) · 2j+1. (19)

Thus, the total error can be obtained by summing up the errors
respectively introduced by every approximate bit.

E =
∑
∀i∈I

E[ei] =
∑
∀i∈I

ÊRi · P (pi+1 = 1) · 2i+1
(20)

�
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If input addends are random variables following uniform
distribution, the expected error of SARA is given by

E =
∑
∀i∈I

ÊRi · 2i. (21)
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Fig. 6. Average error of 9-bit SARA in different configuration.

We can verify Equation (21) by numerical simulation of a
9-bit SARA design. In our experiment, SARA consists of 9
sub-adders whose width is 1 bit. The results are from 200K run
of Monte Carlo simulation with uniform distributed numbers
as input. As shown in Figure 6, there are 2 sets of data for
comparison, experimental data are obtained directly in exper-
iments and estimated data are calculated by Equation (21).
The average errors from experiment are almost the same as
the estimated values. According to the analysis above, we can
estimate the average error of SARA in any configuration, given
the distribution of input numbers.

Since |I| = K−1, the error of the worst case approximation
mode increases with the number of sub-adders, K. In addition,
area overhead increases with K. On the other hand, a large
K implies smaller L, and thus often facilitates shorter critical
path and more power reductions. Therefore, K significantly
affects the tradeoff among accuracy, power, delay and area.

V. DELAY-ADAPTIVE RECONFIGURATION OF SARA

Almost all previous works on accuracy configurable
adder [15]–[19] reasonably assume that accuracy configura-
tion is decided by architecture/system level applications. We
propose a self-configuration technique for the scenarios where
architecture/system level choice is either unclear or difficult.
Simulation results show that SARA with the self-configuration
outperforms several previous static approximate adder designs.

The main idea of self-configuration is based on the observa-
tion that the actual worst case path delay depends on addend
values. Specifically, the actual path delay is large only when
a carry is propagated through several consecutive bits. Any
false propagate bit from the addends results in a shorter carry
propagation chain. When the actual carry propagation chain
is short, there is no need to use approximation configuration,
which is intended to cut carry chain shorter. We propose a
Delay Adaptive Reconfiguration (DAR) technique: the output
of a MUX in SARA is set to approximation mode only when

a potentially long carry chain is detected. Compared to the
constantly-approximate configuration, some errors for actual
short carry chains are avoided, the actual long carry chain is
cut shorter, and delay/power reduction can be still obtained.
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Fig. 7. Design and operation of delay-adaptive reconfiguration for SARA.

The long carry chain detection and SARA-DAR design are
shown in Figure 7(a). When MUX is switched to accurate
mode by any false propagate bit in detection window, the
actual carry chain is retained by the position of false propagate
bit. To obtain a shorter carry chain in accurate mode, the
detection window for MUX at bit i in MSB should start from
bit i+1. In the example of Figure 7, we use a detection window
of 2 bits (pi+1 and pi+2) to tell if there is a carry propagation
across two sub-adders, and configure the MUX according to

ĉi ←

{
cprdti , if pi+1 · pi+2 is true
ci, otherwise.

(22)

In approximation mode, the effective carry chain is represented
by the blue line in Figure 7(a) and its length is no greater
than L + 1 bits. When the MUX is set to accurate mode, the
carry chain is indicated by the red lines in Figure 7(b) and
their lengths can be restrained to within L + 2 bits. Since the
propagate bits only depend on local primary inputs, we can
reuse propagate bits in higher bits to save cost. Note that in
this case the detection overhead here is almost the minimum
possible, i.e., only one NAND gate for configuring each MUX.

In Figure 7, we use 2-bit detection window, which can be
generalized to W -bit. Then, the error rate for MUX at bit i
becomes

ÊR
dar

i = ERprdt
i ·

W∏
j=1

P (pi+j = 1) (23)

The detection window size W decides the tradeoff between
accuracy and the effective carry chain length in accurate mode,
which is L + W . When W increases, the error rate decreases
while the critical path length in accurate mode increases.
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VI. EXPERIMENTAL RESULTS

A. Experiment Setup and Evaluation

Our SARA, SARA-DAR and several previous designs are
synthesized to 32-bit adders by Synopsys Design Compiler
using the Nangate 45nm Open Cell Library. The synthesized
circuits are placed and routed by Cadence Encounter. The
default supply voltage level is 1.25V. To make fair compar-
isons across architectures, we describe all designs by structural
modeling in Verilog to reduce the impact of synthesis and
optimization. For comparison, we synthesize the accurate
adder in behavioral modeling which is described by expres-
sional operator in Verilog. The netlist of such accurate adder
should be automatically optimized by synthesizer in Design
Complier, which is different from any man-craft gate-level
design. In addition, we set the same supply voltage and no
delay constraint on all designs for the same reason.

The evaluation of accuracy configurable adder designs can
be subtle and therefore is worth some discussion.

1) Area: In the literature, the area sometimes refers to
the part of the circuit working in a certain mode, e.g.,
the circuit for the accurate part is not included in area
estimation when evaluating approximation mode. We
report the routed layout area of each entire design.

2) Delay: Some configurable adders, such as ACA [15] and
GeAr [16], implement error correction with pipelining,
which sometimes takes multiple clock cycles to deter-
mine the complete result. The delay or performance
evaluation of such designs is much more complicated
than unpipelined designs. Our work is focused on un-
pipelined implementation, although it can be pipelined.
Thus, the reported delay is the maximum combinational
logic path delay obtained from Synopsys PrimeTime
with consideration of wire delay.

3) Power: The power dissipation is estimated by Synopsys
PrimeTime considering both static and dynamic power.

4) Accuracy: We use PSNR (Peak Signal-to-Noise Ra-
tio), where errors are treated as noise, as a composite
accuracy metric for considering both error magnitude
and error rate. In addition, the worst case error, which
is equivalent to the maximum error magnitude [13],
and error rate are also reported. Each error result is
from 100K-run Matlab-based Monte Carlo simulation
assuming uniform distribution of addends.

5) Tunability: This means the range and granularity of
runtime accuracy configurations. Sometimes, this can be
confused with design-time flexibility.

6) Tradeoff: The tradeoff among the above factors is
complex and is difficult to capture in a simple picture.
To this end, we use composite metrics including power-
delay product (PDP), energy-delay product (EDP) and
iso-delay power.

B. Results of Tradeoff for Different Configurations

In this part, we mainly compare the following accuracy
configurable adder designs:
• GDA [18]: We use the same design as in [18], where

each sub-adder has 4 bits. This design can be configured

by choosing accurate or predicted carry-out for each sub-
adder. The carry prediction at each segment can also be
configured to different accuracy levels by using different
number of lower-bit addends.

• RAP-CLA [19]: We implement four different designs
with carry prediction bit-width from 1 bit to 4 bits, which
is reflected in the name. For example, RAP-CLA2 means
each of its carry prediction is from its 2 lower bits. As
in [19], each design can be configured to either only one
approximation mode or accurate mode.

• SARA: This is our proposed design and we evaluate sub-
adder bit-width of 1 bit, 4 bits and 8 bits, referred to as
SARA1, SARA4 and SARA8, respectively.
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Fig. 8. SARA: PSNR versus power-delay product.
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Fig. 9. SARA: Average error versus power-delay product.

The main result is shown in Figure 8, where each point
is from one configuration of one design. The computation
accuracy is evaluated by PSNR while the conventional design
objectives are characterized by PDP. A design and configura-
tion is ideal if it has large PSNR but low PDP, i.e., northwest
in the figure. PDPs of two classic accurate designs, CRA and
CLA, are indicated by the two vertical lines as their PSNR
is near infinity. The result of SARA working in completely
accurate mode is unable to be presented in the figure, because
its infinite PSNR cannot be displayed as a single dot in
the plot. Evidently, the best solutions are from SARA4 and
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Fig. 10. SARA: The worst case error versus power-delay product.

SARA8. At 100dB PSNR, the PDP of SARA4 and SARA8
is about a half of GDA or CRA. The solutions from RAP-
CLA, the latest previous work, are also largely dominated by
SARA in PSNR-PDP tradeoff. An interesting case is SARA1.
Its tradeoff is similar as GDA and not as good as SARA4 or
SARA8. However, its runtime tunability is superior to all the
other designs. It has the largest tuning range, the finest tuning
granularity and very smooth tradeoff.

Figure 9 and 10 show the tradeoff between error magnitude
and power-delay product. Ideally a better design or config-
uration has smaller average error or worst case error with
lower PDP, which can be marked in the lower left corner of
the figure. In Figure 9, SARA4 and SARA8 dominate other
designs in average error-PDP tradeoff. For each configuration,
SARA4 and SARA8 have almost the lowest average error
at a certain PDP level. Although SARA1 cannot achieve
superior average error and PDP tradeoff to GDA, it shows
fine-grant tunability in a large range same as PSNR-PDP
tradeoff. Figures 10 depicts the worst case error versus PDP
and confirms the trend observed in the PSNR-PDP tradeoff.
All SARA designs even for SARA1 have lower worst case
error than previous work at the same PDP level. In addition,
the result of SARA working in accurate mode cannot be found
in the plot. That’s because the y-axis is in Logarithmic scale
and zero error will be converted into infinite which cannot be
displayed as a single dot.

EDP is another metric to efficiently evaluate tradeoffs be-
tween circuit level power saving techniques for digital designs.
Figure 11 to 13 illustrate accuracy versus EDP, which have
similar trend in accuracy-PDP tradeoff. Most configurations
of SARA4 and SARA8 have lower EDP than accurate adder
CRA and CLA. At a certain EDP level, SARA4 and SARA8
still dominate GDA and RAP-CLA with larger PSNR, smaller
average error or worst case error. SARA1 in different config-
urations cover the range from lowest to highest EDP, which
provides finest tunability in accuracy-energy tradeoff among
different architectures.

C. Results of Tradeoff for Delay-Adaptive Reconfiguration

This part is to evaluate the SARA-DAR design, where the
configuration decision has already been made. Hence, it makes
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Fig. 11. SARA: PSNR versus energy-delay product.
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Fig. 12. SARA: Average error versus energy-delay product.

0 1 2 3 4 5 6
Energy-Delay Product (ns*nJ) ×10-5

100

102

104

106

108

1010

W
or

st
 C

as
e 

E
rr

or

SARA8
SARA4
SARA1
GDA
RAP-CLA1
RAP-CLA2
RAP-CLA3
RAP-CLA4
CRA
CLA
Behavioral

Best

Fig. 13. SARA: The worst case error versus energy-delay product.

sense to additionally compare with static approximate adders,
where no configuration is needed. Static approximate adder
designs including ETAII [8], FICTS [13] and AFICTS [13]
are implemented in the experiment. In addition, CRA-based
approximate designs CRA-trunci implemented by ignoring
lowest i bits in addends are presented, which is a simple but
good baseline for comparison. Seven SARA4-DAR designs
are obtained based on seven configurations of SARA4 with
detection window of 2 bits, while three SARA8-DAR are
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Fig. 14. SARA-DAR: Error rate versus power-delay product.
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Fig. 15. SARA-DAR: PSNR versus power-delay product.

based on different configurations of SARA8. That is, if a MUX
at bit i is configured to accurate carry in SARA4/SARA8,
bit i of corresponding SARA-DAR is hard-wired to accurate
carry without using MUX. When bit j in SARA4/SARA8 is
in approximation mode, bit j of corresponding SARA-DAR
uses the delay-adaptive reconfiguration.

Figure 14 shows the error rate versus PDP tradeoff. The dot
of SARA4-DAR2 labeled with ‘1’ represents the counterpart
of SARA4 when all the MUXes are controlled by delay-
adaptive reconfiguration. When we remove the MUX at the
highest bit to propagate accurate carry and keep others in
delay-adaptive reconfiguration, another SARA4-DAR2 design
could be obtained (another dot labeled with ‘2’ in the figure).
If we go on to remove more MUXes in MSB, a series of
SARA4-DAR2 designs shown as dots with label ‘3’ to ‘7’
can be obtained. Three SARA8-DAR2 designs are created
in the same way. According to the figure, the error rate
of SARA is mostly lower than RAP-CLA. By using delay-
adaptive reconfiguration, SARA-DAR often has less error rate
and PDP than SARA. SARA-DAR also greatly outperforms
the static approximate adders in both error rate and PDP.
Moreover, in Figure 14 we can observe those dots right on
the x-axis which represent SARA4 and SARA8 working in
accurate mode. Both of them achieve zero error rate. PDP
of accurate SARA8 is about 2 × 10−5ns ·W , while PDP of

0 0.5 1 1.5 2
Energy-Delay Product (ns*nJ) ×10-5

0

10

20

30

40

50

60

70

80

90

100

E
rr

or
 R

at
e 

(%
)

SARA8-DAR2
SARA8
SARA4-DAR2
SARA4
ETAII
FICTS
AFICTS
RAP-CLA1
RAP-CLA2
RAP-CLA3
RAP-CLA4
CRA-trunc4
CRA-trunc8
CRA-trunc12
CRA-trunc16
CRA
CLA
Behavioral

1

2
3

4 5
6

7
1

Best
2

3

Fig. 16. SARA-DAR: Error rate versus energy-delay product.
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Fig. 17. SARA-DAR: PSNR versus energy-delay product.

accurate SARA4 is almost 2.3 × 10−5ns ·W . In Figure 15,
SARA-DAR also demonstrates better PSNR-PDP tradeoff than
other designs, except for comparing with CRA-trunc at some
low-PSNR levels. However, CRA-trunc has almost 100% error
rate since it dismiss lower bits in addends, which is the worst
among all static approximate adders. Figure 16 and 17 show
tradeoff between accuracy and EDP. At a certain EDP level,
SARA-DAR has almost the same PSNR as CRA-trunc, which
is the best among all static approximate adders.

D. Impact of Detection Window in Delay-Adaptive Reconfig-
uration

This part shows the impact of detection window in the trade-
off for delay-adaptive reconfiguration. According to Equa-
tion (23), the error rate of MUX output can be reduced
by delay-adaptive reconfiguration. As the length of detection
window increases, the error rate would decrease because there
are less probability that MUX is configured in approximate
mode. As a result, the overall error rate varies with the size
of detection window. Figure 18 and 19 show the changes
of error rate and PSNR of SARA4-DAR with different de-
tection window. As the size of detection window increases
from 1 to 3, the error rate decreases compared to its SARA
counterpart. However, we can observe that the gap of error
rate between SARA4-DAR2 and SARA4-DAR1 varies with
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Fig. 18. Error rate of SARA4-DAR with different detection window.
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Fig. 19. PSNR of SARA4-DAR with different detection window.

different configuration. Although the change in error rate for
individual MUX of SARA-DAR is proportional to the size of
detection window (as shown in Equation (23)), the overall
error rate in output results might not show linear change.
When the size of detection window increases by 1, PSNR of
SARA4-DAR increases by about 3dB on average. We can also
find that the PDP gap between SARA4-DAR2 and SARA4-
DAR1 varies with different configurations in both figures.
The change of PDP between SARA4-DAR2 and SARA4-
DAR1 in most configurations is very small, while it’s larger
in the first configuration (which is presented as the first
dot of SARA4-DAR in the left of the figures). It is mainly
attributed to unproportioned change in delay between different
configurations.

E. Results of Iso-delay Power and Area

Although power-delay product results have been shown in
Sections VI-B and VI-C, the tradeoff between power and delay
is still unclear. The power-delay tradeoff can be obtained by
different accuracy configurations or varying supply voltages.
Different combinations of configurations and voltages may
lead to overwhelming volume of results, which are difficult
to interpret, especially when implication to accuracy is in-
volved at the same time. Thus, we indicate the tradeoff by
investigating the iso-delay power, which is the power of each
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circuit tuned to the same critical path delay (0.82ns) by
voltage scaling. The results are shown in Figure 20. In general,
SARA4, SARA8 and SARA4-DAR can achieve much lower
power than CRA. Although GDA and RAP-CLA seem to
provide low power, their PSNR is much less than our designs.
Compared at the same iso-delay power level, SARA has more
than 20dB increase in PSNR than RAP-CLA, while GDA
has more than 70dB decrease than SARA designs. SARA1
shows a large range of iso-power tuning which could reach the
lowest and highest power among all adders. We do not have
iso-delay power for approximate adders working in accurate
mode, because the delay of such case is larger than CRA due
to induction of MUXes which cannot provide sufficient room
for reducing supply voltage.

Last but not the least, we compare area of these designs
in Figure 21. Same as our expectation, GDA and RAP-CLA
have greater area than CLA while area of SARA4 or SARA8
is significantly smaller than CLA. SARA1 has almost the same
area as CLA due to MUXes in every bit which aid the accuracy
configuration. On average, the area of SARA is 39% smaller
than that of RAP-CLA and 50% smaller than that of GDA.
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VII. APPLICATIONS

A. Extension to Multiplier

In complicated datapath system, multiplier is considered as
a much bigger component in power consumption. Our carry-
prediction-based approximation uses generate bit to predict
the carry from lower segments. The critical delay can be
restrained to a smaller value with shorter critical path in carry
propagation. Further extension of our technique to multiplier
depends on the multiplication structure used in hardware
implementation. There is a variety of hardware designs for
multiplication, according to the structures of reduction tree.
In this section, we apply our technique on three kinds of
multiplication structures including array multiplier, Wallace
multiplier and Dadda multiplier.

As shown in Figure 22, the basic structure of multiplier
employs a three-step process to multiply two integers.
• Step 1: Generate all partial products by using an AND

gate array.
• Step 2: Combine the partial products in k stages by layers

of half/full adder until the matrix height is reduced to two.
Different types of structures depend on the reduction tree
used to reduce the number of partial products in this step.

• Step 3: Sum the resulting numbers in the final stage by
a conventional adder.

In array multiplier the carry bits in one stage are propagated
diagonally downwards, which follows the basic shift-and-add
multiplication algorithm. Wallace multiplier based on Wallace
tree combines the partial products as early as possible, which
makes it faster than array multiplier [20]. Dadda’s strategy is
to make the combination take place as late as possible, which
leads to simpler reduction tree and wider adder in final stage
[20]. Thus, we can design approximate multipliers by using
our SARA design instead of CRA in the final stage.

Three types of 16 × 16 multipliers (array multiplier, Wal-
lace multiplier and Dadda multiplier) as well as behavioral
multiplier are synthesized and implemented by using Nangate
45nm Open Cell Library. Their error data are obtained from
100K-run Monte Carlo simulation with uniform distribution
of operands. In approximate multiplier the final stage uses
SARA4 which consists of sub-adders with bit-width of 4 bits,
while the accurate one uses CRA. Figure 23 and 24 present
the tradeoff between error and PDP. Most of approximate
multipliers configured in approximate mode have better PDP
compared with the accurate multipliers. The variance of error

between different approximate mode in approximate multiplier
has similar trend as SARA. Total error increases as more
bits are configured in approximate mode. Approximate array
multiplier shows larger error than approximate Wallace/Dadda
multiplier at the same PDP level. It’s because array multiplier
has larger critical delay from internal stages in step 2 than
Wallace/Dadda multiplier.
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Fig. 23. Multiplier: PSNR versus power-delay product.
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Fig. 24. Multiplier: The worst case error versus power-delay product.

Figure 25 and 26 show the error versus EDP for both
accurate and approximate multipliers. As more MUXes are set
to propagate approximate carry, the average error in output
increases to about 107, which as well achieves best EDP.
The worst-case error rate of approximate Dadda multiplier
is about 30%, while it comes to about 17% for approximate
array multiplier and Wallace multiplier. As shown in Figure
26, when approximate multipliers are working in completely
accurate mode (error rate equals 0), EDP is larger than that
of their accurate counterpart. In summary, The experimental
results show that our technique can be successfully extended
to high speed multiplier designs. And due to the simple but
effective structure of SARA it provides an easy way for us to
convert conventional multiplier into approximate design.

B. DCT Computation in Image Processing
The discrete cosine transform (DCT) has been recognized

as the basic in many transform coding methods for image and
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Fig. 25. Multiplier: Average error versus energy-delay product.
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Fig. 26. Multiplier: Error rate versus energy-delay product.

video signal processing. It is used to transform the pixel data
of image or video into corresponding coefficients in frequency
domain. Since human visual system is more sensitive to
the changes in low frequency, the lost of accuracy in high-
frequency components does not heavily degrade the quality
of image processed by DCT. In addition, those components in
different frequency have different tolerances to the degradation
in original data. It is a good example to show the reconfigura-
bility of our design by applying them in VLSI implementation
of DCT computing in JPEG image compression.

The two-dimensional DCT is implemented by the row-
column decomposition technique, which contains two stages
of 1-D DCT [21]–[23]. The 2-D DCT of size N × N could
be defined as

Z = CtXC (24)

where C is a normalized N th-order matrix and X is the data
matrix. Generally the image is divided into several N × N
blocks and each block is transformed by 2-D DCT into
frequency domain components. The VLSI implementation of
DCT computing contains a set of ROM and Accumulator
Components (RACs) which can be implemented by multipliers
and adders [21]–[23]. In this application we use approximate
adders to replace those accurate ones in RCAs to implement
an imprecise but low power circuit for image processing which
contains DCT computing.

TABLE IV
IMAGE QUALITY COMPARISON IN PSNR

lenna cameraman kiel house AVERAGE
Accurate 39.85 38.23 37.68 37.35 38.27
SARA4 38.32 37.50 36.83 36.53 37.30
SARA8 35.33 35.07 34.92 34.81 35.03

SARA4-DAR2 39.45 37.90 37.43 37.00 37.97
GDA 34.53 34.55 34.88 34.20 34.54

RAP-CLA 33.38 33.44 33.51 33.39 33.43

We replace the adders in circuits with different configura-
tions of SARA, SARA-DAR, GDA as well as RAP-CLA. The
results are obtained by numerical simulation in Matlab. As we
know, after DCT process data in different frequency domain
have different level of error tolerance. As shown in Figure
31, matrix components in the upper-left corner correspond
to lower frequency coefficients which are sensitive to human
vision, while those components in lower-right corner might
allow more errors.

To utilize this feature for better energy-accuracy tradeoff,
we make following configuration for different designs.

1) SARA4: SARA4 with 4, 3, 2, 1 consecutive segments
working in accurate mode are used to compute compo-
nents in S1, S2, S3 and S4 respectively.

2) SARA8: SARA8 with 1 segments in accurate mode are
used to compute components in S1, S2, while another
configuration with all segments in approximate mode
are for S3, S4.

3) SARA4-DAR2: DAR counterpart of SARA4 with de-
tection window of 2 bits.

4) GDA: GDA4,1, GDA3,1, GDA2,1, GDA1,1 (same no-
tation as [18]) are used to compute components in
S1, S2, S3 and S4 respectively.

5) RAP-CLA: since RAP-CLA can work in one approxi-
mate mode, we use RAP-CLA with window size of 20,
16, 12, 8 to compute components in S1, S2, S3 and S4.

The image processing results are shown in Table IV. PSNR
in the table is defined via the mean squared error (MSE). Given
an m×n image I and its restored image K, MSE and PSNR
are defined as

MSE =
1

mn

m∑
i=1

n∑
j=1

[I(i, j)−K(i, j)]2 (25)

PSNR = 20 · log(MAXI)− 10 · log(MSE), (26)

where MAXI is the maximum pixel value of the image.
SARA4-DAR2 has the highest PSNR for every image among
all configurable adders, which is close to the quality of
accurate adder. Comparing SARA8 with GDA, they have
similar PSNR and similar delay, but SARA8 has less power
consumption according to the analysis in the previous section.
SARA4-DAR2 achieves better image quality than SARA4,
but might result in more power due to additional logics for
self-configuration. The image quality for different adders in
DCT computing can also be demonstrated in Figure 27 to 30.
According to human vision, SARA and its DAR counterpart
show better image quality than GDA and RAP-CLA in JPEG
compression processing.
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(a) (b) (c) (d) (e) (f)

Fig. 27. Comparison of image lenna: (a) accurate adder; (b) SARA4; (c) SARA8; (d) SARA4-DAR2; (e) GDA; (f) RAP-CLA.

(a) (b) (c) (d) (e) (f)

Fig. 28. Comparison of image cameraman: (a) accurate adder; (b) SARA4; (c) SARA8; (d) SARA4-DAR2; (e) GDA; (f) RAP-CLA.

(a) (b) (c) (d) (e) (f)

Fig. 29. Comparison of image kiel: (a) accurate adder; (b) SARA4; (c) SARA8; (d) SARA4-DAR2; (e) GDA; (f) RAP-CLA.

(a) (b) (c) (d) (e) (f)

Fig. 30. Comparison of image house: (a) accurate adder; (b) SARA4; (c) SARA8; (d) SARA4-DAR2; (e) GDA; (f) RAP-CLA.

X Y=C
t
X Z=C

t
XC

S1

S2
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S1

S2

S3

S4

Fig. 31. 2 dimensional descrete cosine transform.

VIII. CONCLUSION

In this paper, we propse a simple accuracy reconfigurable
adder (SARA) design. It has significantly lower power/energy-
delay product than the latest previous work when comparing at

the same accuracy level. In addition, SARA has considerable
lower area overhead than almost all the previous works.
The accuracy-power-delay efficiency is further improved by a
delay-adaptive reconfiguration technique. We demonstrate the
efficiency of our adder in the applications of multiplication
circuits and DCT computing circuits for image processing.
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