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Synchronization of Nonlinear Circuits in Dynamic
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Abstract—Sufficient conditions are derived for global asymp-
totic synchronization in a system of identical nonlinear electrical
circuits coupled through linear time-invariant (LTI) electrical
networks. In particular, the conditions we derive apply to settings
where: i) the nonlinear circuits are composed of a parallel
combination of passive LTI circuit elements and a nonlinear
voltage-dependent current source with finite gain; and ii) a
collection of these circuits are coupled through either uniform
or homogeneous LTI electrical networks. Uniform electrical net-
works have identical per-unit-length impedances. Homogeneous
electrical networks are characterized by having the same effective
impedance between any two terminals with the others open
circuited. Synchronization in these networks is guaranteed by
ensuring the stability of an equivalent coordinate-transformed
differential system that emphasizes signal differences. The ap-
plicability of the synchronization conditions to this broad class
of networks follows from leveraging recent results on structural
and spectral properties of Kron reduction—a model-reduction
procedure that isolates the interactions of the nonlinear circuits in
the network. The validity of the analytical results is demonstrated
with simulations in networks of coupled Chua’s circuits.

Index Terms—Kron reduction, Nonlinear circuits, Synchro-
nization.

I. INTRODUCTION

SYNCHRONIZATION of nonlinear electrical circuits cou-
pled through complex networks is integral to modeling,

analysis, and control in application areas such as the ac
electrical grid, solid-state circuit oscillators, semiconductor
laser arrays, secure communications, and microwave oscillator
arrays [1], [2]. This paper focuses on the global asymptotic
synchronization of terminal voltages in a class of nonlinear
circuits coupled through passive LTI electrical networks. We
assume that the nonlinear circuits are composed of a parallel
combination of a passive LTI circuit and a nonlinear voltage-
dependent current source with finite gain. A collection of such
identical circuits are coupled through uniform or homogeneous
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passive LTI electrical networks. Uniform networks have iden-
tical per-unit-length impedances and include purely resistive
and lossless networks as special cases. Homogeneous electrical
networks are characterized by identical effective impedances
between the terminals (essentially, the impedance between
any two terminals with the others open circuited). Section V
provides precise definitions of these network types.

The motivation for this work stems from developing con-
trol paradigms for power electronics inverters in low-inertia
microgrids based on the emergence of synchronization in
complex networks of coupled heterogeneous oscillators. The
key idea pertains to controlling power electronic inverters to
emulate the dynamics of nonlinear limit-cycle oscillators [3],
[4]. Our previous work in [4]–[6] considered the problem
of controlling parallel-connected power electronics inverters
to emulate the dynamics of Liénard-type oscillators. The
oscillators (inverters) are coupled (connected) through the
existing microgrid electrical network, and synchrony emerges
in this system with no external forcing in the form of a
utility grid or any communication beyond the existing physical
electrical network. This paper generalizes the results in [4]–[6]
by establishing synchronization conditions for a much wider
class of nonlinear electrical circuits and networks.

The nonlinear-circuit models, and the uniform and homo-
geneous networks examined in this work offer a broad level
of generality and ensure a wide applicability of the analytical
results to many settings. For instance, a variety of chaotic
and hyperchaotic circuits as well as nonlinear oscillators [3],
[4], [7]–[12] can be modeled as a parallel connection of a
linear subsystem and a nonlinear voltage-dependent current
source with finite gain. Similarly, the types of networks that
our results accommodate, facilitate the analysis of varied
interconnections between the nonlinear circuits. In general,
we study interconnecting networks that are dynamic, i.e., the
network can contain capacitive or inductive storage elements.

We consider two broad classes of LTI electrical networks.
For uniform networks, the per-unit-length line impedances can
be complex (i.e., not exclusively resistive or reactive) and the
network topology can be arbitrary. With regard to resistive
(lossless) networks, we allow the branch resistances (respec-
tively, reactances) and the network topology to be arbitrary.
Finally, homogeneous networks are frequently encountered in
engineered setups (e.g., power grid monitoring and impedance
tomography), in large random networks or regular lattices, as
well as in idealized settings where all terminals are electrically
uniformly distributed with respect to each other [13].

The analytical approach adopted in this paper builds on
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previous work in [4], [14]–[16], where L2 methods were used
to analyze synchronization of dynamicaly coupled feedback
systems. Our L2 approach offers an alternate perspective
compared to a rich body of literature that has examined syn-
chronization problems predominantly in memoryless networks
through Lyapunov- and passivity-based methods [3], [17]–
[25]. To investigate synchronization, the linear and nonlinear
subsystems in the network of coupled nonlinear electrical
circuits are compartmentalized, and a coordinate transforma-
tion is applied to recover an equivalent differential system
that emphasizes signal differences. Once the differential L2

gains of the linear and nonlinear subsystems are identified,
synchronization can be guaranteed by ensuring the stability of
the coordinate-transformed differential system with a small-
gain argument.

The suite of synchronization conditions presented in this
paper generalize our previous efforts in [4] (which were
limited to electrical networks with a star topology) to arbitrary
network topologies. Integral to the analysis that allows us to
investigate varied topologies is a model-reduction procedure
called Kron reduction [26]. This procedure explicitly uncovers
the interactions between the nonlinear electrical circuits, while
systematically eliminating exogenous nodes in the network.

To summarize, the main contributions of this work are
as follows. We analyze synchronization of coupled nonlinear
circuits based on L2 methods. Our L2 approach readily applies
to static and dynamic networks, and it offers an alternative
generalized analysis path to synchronization phenomena that
have been previously studied with Lyapunov- and passivity-
based methods and appropriately constructed energy functions.
Moreover, we leverage recent results on structural and spectral
properties of Kron reduction [13] to derive synchronization
conditions for complex networks of electrical circuits. A
related contribution is that some key lemmas from [13] are
extended from the real-valued and symmetric to the complex-
symmetric (and not necessarily Hermitian) case, and we also
offer converse results to some statements in [13].

The remainder of this manuscript is organized as follows.
Section II establishes some mathematical preliminaries and
notation. In Section III, we describe the nonlinear electrical
circuits, and describe their network interactions by construct-
ing the electrical admittance matrix that couples them. In
Section IV, we formulate the problem statement, and derive the
differential system. Synchronization conditions for networks
with and without shunt elements are then derived in Sections V
and VI, respectively. Simulations-based case studies are pro-
vided in Section VII to validate the approach. We conclude the
paper in Section VIII by highlighting a few pertinent directions
for future work.

II. NOTATION AND PRELIMINARIES

Given a complex-valued N -tuple {u1, . . . , uN}, denote the
corresponding column vector as u = [u1, . . . , uN ]T, where
(·)T denotes transposition (without conjugation). The Eu-
clidean norm of a complex vector, u, is defined as ‖u‖2 :=√
u∗u, where (·)∗ signifies the conjugate transpose.
Denote the N × N identity matrix as I , and the N -

dimensional vectors of all ones and zeros as 1 and 0, respec-

tively. The Moore-Penrose pseudo inverse of a matrix U is
denoted by U†. Let j =

√
−1 be the imaginary unit. We denote

the Laplace transform of a continuous-time function f(t) by
f . Further, we denote transfer matrices by capital letters such
as F . The cardinality of a finite set N is denoted by |N |.

The space of all piecewise continuous functions such that

‖u‖L2
:=

√√√√√
∞∫

0

u (t)
T
u (t) dt <∞, (1)

is denoted as L2. We refer to ‖u‖L2
as the L2 norm of u [27].

A causal system, G, with input u and output y is finite-gain
L2 stable if there exist finite and non-negative constants γ and
η such that

‖y‖L2
=: ‖G (u)‖L2

≤ γ ‖u‖L2
+ η, ∀u ∈ L2. (2)

For linear systems represented by the transfer matrix G :
C → CN×N , it can be shown that the L2 gain of G is equal
to the H∞ norm, denoted by ‖G‖∞, and defined as

γ (G) = ‖G‖∞ := sup
ω∈R

‖G (jω)u (jω)‖2
‖u (jω)‖2

, (3)

where ‖u (jω)‖2 = 1, provided that all poles of H have
strictly negative real parts [28]. For a single-input single-output
transfer function g : C→ C, γ (G) = ‖G‖∞ = sup

ω∈R
‖g (jω)‖2.

A construct we will find particularly useful in assessing
signal differences is the N × N projector matrix [15], [20],
[23], which is denoted by Π, and defined as

Π := I − 1

N
11T. (4)

For a vector u, we define ũ := Πu to be the corresponding
differential vector [14]–[16], [20], [23].

A causal system with input u and output y is said to be
differentially finite L2 gain stable if there exist finite, non-
negative constants, γ̃ and η̃, such that

‖ỹ‖L2
≤ γ̃ ‖ũ‖L2

+ η̃, ∀ ũ ∈ L2, (5)

where ỹ = Πy. The differential L2 gain of a system provides a
measure of the largest amplification of input signal differences.

The linear fractional transformation is the transfer matrix
of the negative-feedback interconnection of two linear systems
modeled by transfer matrices A and B, and it is given by [29]

F (A(s), B(s)) := (I +A(s)B(s))
−1
A(s). (6)

Consider a symmetric and nonnegative matrix A ∈ RN×N .
Further, consider an undirected and weighted graph, with the
Laplacian matrix L defined component-wise as: lmn = −anm
(for off-diagonal terms) and lnn =

∑N
m=1 anm (for diagonal

terms). The Laplacian matrix has zero row and column sums, it
is symmetric and positive semidefinite, and its zero eigenvalue
is simple if and only if the graph is connected [15]. The
Laplacian of a complete graph with unit weights is denoted
by Γ and defined as:

Γ = NI − 11T = NΠ. (7)
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For an electrical network with admittance matrix Y , the
effective impedance znm between nodes n and m is the
potential difference between nodes n and m, when a unit
current is injected in node n and extracted from node m. In
this case, the current-balance equations are en − em = Y υ,
where en is the canonical vector of all zeros except with a 1
in the nth position, and υ is the vector of the resulting nodal
voltages. The effective impedance is then

znm = (en − em)Tυ = (en − em)TY †(en − em) . (8)

The effective impedance is an electric and graph-theoretic
distance measure, see [13] for details and further references.

III. SYSTEM OF COUPLED NONLINEAR ELECTRICAL
CIRCUITS

We begin this section with a brief description of the type
of nonlinear electrical circuits for which we derive sufficient
synchronization conditions. Next, we describe the electrical
network that couples the nonlinear electrical circuits.

A. Nonlinear Circuit Model

An electrical schematic of the nonlinear circuits studied in
this work is depicted in Fig. 1. Each circuit has a linear subsys-
tem composed of an arbitrary connection of passive elements
described by the impedance, zckt ∈ C, and a nonlinear voltage-
dependent current source ig = −g(v). We require that the
maximum slope of the function g(·) is bounded:

σ := sup
v∈R

∣∣∣∣
d

dv
g(v)

∣∣∣∣ <∞. (9)

A wide class of electrical circuits can be described within
these constructs. An example is Chua’s circuit [9], [30], for
which the impedance zckt and nonlinear function g(·) are il-
lustrated in Fig. 2(a). The function g(·) is piecewise linear, and
satisfies (9). In previous work on voltage synchronization of
voltage source inverters in small-scale power systems [3]–[6],
we introduced a nonlinear Liénard-type dead-zone oscillator
for which zckt and g(·) are illustrated in Fig. 2(b). In this
case, the function g(·) is constructed with a negative resistance
and a dead-zone function with finite slope. Some families of
hyperchaotic circuits and negative-resistance oscillators can
also be described by the model above, see [8], [10]–[12].

A notable example of a well-known circuit that cannot be
described within the above framework is the Van der Pol
oscillator [28]. While the linear subsystem of the Van der Pol
oscillator is the same as the nonlinear dead-zone oscillator, the
nonlinear voltage-dependent current source, g(v) ∝ v3, which
does not satisfy the slope requirement in (9) (see Fig. 2(c)).

B. Electrical Network Model

The nonlinear circuits are coupled through a passive, con-
nected, LTI electrical network. The nodes of the electrical
network are collected in the set A, and branches of the
electrical network are represented by the set of edges E :=
{(m,n)} ⊂ A × A. Let N := {1, . . . , N} ⊆ A collect
boundary nodes that the nonlinear circuits are connected to,

and let I = A \ N be the set of interior nodes where
the current injections are zero since they are not connected
to the nonlinear electrical circuits. The series admittance
corresponding to the (m,n) ∈ E branch is given by ymn ∈ C,
and the shunt admittance connected between the mth node and
electrical ground is given by ym ∈ C. We will assume that the
boundary nodes in the set N are not connected to any passive
shunt elements, which implies ym = 0 for all m ∈ N .

Denote the vectors that collect the nodal current injections
and node voltages in the network by iA and vA, respectively.
The coupling between the circuits can be described by Kirch-
hoff’s and Ohm’s laws, which read in matrix-vector form as

iA = YAvA. (10)

In (10), YA ∈ C|A|×|A| is the admittance matrix defined as

[YA]mn :=





ym +
∑

(m,k)∈E ymk, if m = n,

−ymn, if (m,n) ∈ E ,
0, otherwise,

(11)

where ym denotes the shunt admittance at node m and ymn =
ynm denotes the line admittance of branch (m,n). Notice that
if the electrical network has no shunt elements, then YA is a
singular matrix with zero row and column sums.

Let i= [i1, . . . , iN ]T and v= [v1, . . . , vN ]T be the vectors
collecting the current injections and terminal voltages of the
nonlinear circuits, and let iI and vI be the vectors collecting
the current injections and nodal voltages for the interior
nodes.1 With this notation in place, we can rewrite (10) as

[
i
iI

]
=

[
YNN YNI
Y T
NI YII

] [
v
vI

]
. (12)

Since the internal nodes are only connected to passive LTI
circuit elements, all the entries of iI are equal to zero in (12).

In the following, we assume that the submatrix YII is
nonsingular such that the second set of equations in (12) can be
uniquely solved for the interior voltages as vI = −Y −1

II Y
T
NIv.

For RLC networks without shunt elements, the matrix YA
is irreducibly block diagonally dominant (due to connectivity
of the network), and YII is always nonsingular [31, Corol-
lary 6.2.27]. For RLC networks with shunt elements, it is
possible to construct pathological cases where YII is singular,
and the interior voltages vI are not uniquely determined.
In this paper, we assume that all principal submatrices are

1To be consistent with notation, we would have to include the subscript
N when referring to the current and voltage vectors corresponding to the
nonlinear circuits. However, we drop this subscript to ease exposition.

cktz

−

+

≡
gi

)v(g v

−

+

v

i i

Figure 1: Electrical schematic of the nonlinear circuit studied in this
work. Each circuit is composed of a linear subsystem modeled by a
passive impedance, zckt, and a nonlinear voltage-dependent current
source, g(·). The associated circuit symbol is shown on the right.
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Figure 2: The linear-subsystem impedance, zckt, and the nonlinear voltage-dependent current source, g(·), illustrated for (a) Chua’s circuit,
(b) the Dead-zone oscillator, and (c) the Van der Pol oscillator.

nonsingular and such pathological cases do not occur. In this
case, we obtain the following equations relating the nonlinear-
circuit current injections and terminal voltages:

i =
(
YNN − YNIY −1

II Y
T
NI
)
v =: Y v. (13)

This model reduction through a Schur complement [32] of
the admittance matrix is known as Kron reduction [13]. We
refer to the matrix Y in (13) as the Kron-reduced admittance
matrix. From a control-theoretic perspective, (13) is a minimal
realization of the circuit (12) [33]. We remark that, even
though the Kron-reduced admittance matrix Y is well-defined,
it is not necessarily the admittance matrix of a passive circuit.
Figure 3 depicts an illustrative electrical network and its Kron-
reduced counterpart for a system of N = 3 nonlinear circuits.

The results in this paper apply to Kron-reduced admittance
matrices that satisfy the following two properties:
(P1) The Kron-reduced admittance matrix, Y , commutes with

the projector matrix, Π, that is, ΠY = YΠ.
(P2) The Kron-reduced admittance matrix, Y , is normal, that

is, Y Y ∗ = Y ∗Y . Consequently, Y can be diagonalized
by a unitary matrix, that is, we can write Y = QΛQ∗,
where QQ∗ = I and Λ is a diagonal matrix with diagonal
entries composed of the eigenvalues of Y .

We will find (P1) useful in Section IV-B to derive a system
description that compartementalizes the linear and nonlinear
subsystems in the network. Similarly, (P2) will be leveraged
in the proof of Theorem 2 in Section V-B. We will identify
classes of networks with and without shunt elements that
satisfy properties (P1) and (P2) in Sections V and VI.

IV. PROBLEM STATEMENT AND SYSTEM
COMPARTMENTALIZATION

In this section, we first formulate the problem statement re-
lating to global asymptotic synchronization. Next, we system-
atically compartmentalize the linear and nonlinear subsystems
in the electrical network. The differential L2 gains of the linear
and nonlinear electrical subsystems will be used in subsequent
sections to establish sufficient synchronization conditions.

A. Global Asymptotic Synchronization

We are interested in global asymptotic synchronization of
the terminal voltages of the nonlinear circuits coupled through
the electrical LTI network described in Section III-B. In
particular, we seek sufficient conditions that ensure

lim
t→∞

vj(t)− vk(t) = 0 ∀j, k = 1, . . . , N. (14)

For ease of analysis, we find it useful to implement a coordi-
nate transformation by employing the projector matrix, Π, to
obtain the corresponding differential system emphasizing sig-
nal differences. To highlight the analytical advantages afforded
by this coordinate transformation, note that:

ṽ(t)Tṽ(t) = (Πv(t))
T

(Πv(t)) =
1

2N

N∑

j,k=1

(vj(t)− vk(t))
2
.

(15)
Hence, condition (14) equivalently reads as limt→∞ ṽ(t) =
limt→∞Πv(t) = 0. The coordinate transformation with the
projector matrix allows us to cast the synchronization problem
as a stability problem in the differential system.

Certainly, different metrics and differential coordinates other
than Πv can be employed in a synchronization analysis.
Our main motivation for using the projector matrix is that
it naturally commutes with a particular class of admittance
matrices, see property (P1).

B. Compartmentalization of Linear and Nonlinear Subsystems

In order to establish synchronization conditions, we seek a
system description where the linear and nonlinear subsystems
(zckt and g(·), respectively) in the network of coupled non-
linear circuits are clearly compartmentalized. In light of the
importance of differential signals in facilitating the derivation
of synchronization conditions, the compartmentalization is
carried out in the corresponding differential system.

14z

24z
Kron

reduction4
z

34
z

3

3

2

2

3i 2i

−
+

4

3v
−

+
2
v

1 11i

2i1i

3i

−
+
1
v

−
+
1v −

+
2v

−
+3v

13z

12z1z

23
z

2z

3z

Figure 3: Kron reduction illustrated for a representative system
comprising N = 3 nonlinear circuits, where A = {1, 2, 3, 4},
N = {1, 2, 3}, and I = {4}. The original electrical network
described by the admittance matrix, YA, is shaded. In this setup Kron
reduction is equivalent to the well-known star-delta transformation.
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Towards this end, recall that the vectors i and v collect the
current injections and terminal voltages of the nonlinear cir-
cuits. Let ig := [ig1, . . . , igN ]T be the vector that collects the
currents sourced by the nonlinear voltage-dependent current
sources. From Fig. 1, we see that the terminal voltage of the
jth nonlinear circuit, vj , can be expressed as

vj = zckt (igj − ij) , ∀j = 1, . . . , N. (16)

By collecting all vj’s, we can write

v = Zckt (ig − i) = Zcktig − ZcktY v, (17)

where Zckt := zcktI ∈ CN×N , and we substituted i = Y v
from (13). A multiplication of both sides of (17) by the pro-
jector matrix Π yields the differential terminal-voltage vector

ṽ = Πv = Π (Zckt (ig − Y v)) = Zckt

(
ĩg − Y ṽ

)
, (18)

where we utilized ΠZckt = ΠzcktI = zcktIΠ = ZcktΠ, and
leveraged the commutativity property (P1).

We can now isolate ṽ in (18) as follows:

ṽ = (I + ZcktY )
−1
Zckt̃ig = F (Zckt, Y ) ĩg, (19)

where F (Zckt, Y ) is the linear fractional transformation that
captures the negative feedback interconnection of Zckt and Y
(see (6) for a formal definition). Using (19), we see that the
corresponding differential system admits the compact block-
diagram representation in Fig. 4. The linear and nonlinear
portions of the system are clearly compartmentalized by
F (Zckt, Y ) and the map g̃ : ṽ → −ĩg, respectively.

V. GLOBAL ASYMPTOTIC SYNCHRONIZATION IN
NETWORKS WITHOUT SHUNT ELEMENTS

This section focuses exclusively on synchronization in elec-
trical networks that have no shunt elements. We begin this
section by describing the class of electrical networks without
shunt elements that satisfy (P1)-(P2), and then present suffi-
cient conditions for global asymptotic synchronization of the
nonlinear-circuit terminal voltages in such networks.

First, we present a result which helps us to establish that
Kron-reduced admittance matrices satisfy (P1) if the originat-
ing electrical networks have no shunt elements. The following
result also offers a converse statement to [13, Lemma 3.1].

Theorem 1. The following statements are equivalent:
(i) The original electrical network has no shunt elements.

(ii) The Kron-reduced network has no shunt elements.

Proof: Let us first prove the sufficiency (i) =⇒ (ii). In
the absence of shunt elements, the admittance matrix YA has

gi=giΠ v=vΠ))s(, Y)s(cktZ(F

Figure 4: Block-diagram representation of the corresponding differ-
ential system. The linear and nonlinear portions of the system are
compartmentalized in F (·, ·) and g̃, respectively.

zero row sums by construction (see (11)), that is,
[
0
0

]
=

[
YNN YNI
Y T
NI YII

] [
1
1

]
. (20)

An elimination of the second set of equations in (20) results
in
(
YNN − YNIY −1

II Y
T
NI
)
1 = Y 1 = 0, that is, Y has zero

row sums (and zero column sums due to closure of symmetry
under the Schur complement [32]). By construction of the
admittance matrix in (11), it follows that the Kron-reduced
electrical network corresponding to Y has no shunt elements.

We now prove the converse statement (ii) =⇒ (i) by proving
its negation ¬(i) =⇒ ¬(ii), that is, an original network with
shunt elements always leads to a Kron-reduced network with
shunt elements. Consider the augmented matrix ŶA associated
with YA, which is obtained by modeling the ground as an
additional node i with index |A|+ 1 and fixed (zero) voltage
(see Appendix A for more details on the augmentation). Then
ŶA is the admittance matrix associated to a network without
shunt elements and ŶA1 = 0. By the reasoning (i) =⇒ (ii)
above, the associated Kron-reduced matrix Ŷ has no shunt
elements and Ŷ 1 = 0. Since Kron-reduction and augmentation
commute (see Lemma 5 in Appendix A), the reduced network
with admittance matrix Y obtained by removing the grounded
node (that is removing the column and row with index N + 1
from Ŷ ) does not have zero row sums. Equivalently, the Kron-
reduced network has shunt elements.

Corollary 1. If the original electrical network has no shunt el-
ements, then property (P1) holds, that is, Y commutes with Π.

Proof: If the original network has no shunt elements, then
the Kron-reduced network has no shunt elements. Thus, Y has
zero row and column sums, and Y commutes with Π.

A. Identifying Electrical Networks that Satisfy (P1)-(P2)

The synchronization criteria we develop within this section
apply to the following classes of networks:

(i) networks with uniform line characteristics [34], in which
the branch admittances are given ynm = yseriesanm for all
(n,m) ∈ E , where anm ∈ R is real-valued and yseries ∈
C \ {0} is identical for every branch (see Figs. 5(a)-(c));

(ii) homogeneous networks [13], in which the effective
impedances are identical for all boundary nodes:, znm =:
zeff = r + jx, r, x ∈ R,∀n,m ∈ N (see Fig. 5(d)).

For these networks, we next derive the Kron-reduced admit-
tance matrices and demonstrate compliance to (P2).

We first focus on networks with uniform line characteris-
tics, which physically correspond to networks for which all
branches are made of the same material [34], i.e., the admit-
tance of each branch (n,m) depends on its constant per-unit-
length admittance, yseries ∈ C, and its length, anm > 0 (see
Fig. 5(a)). Notice that these networks include as special cases
resistive networks (Fig. 5(b)) and lossless networks (Fig. 5(c))
for which yseries is real-valued or purely imaginary, respec-
tively. For these networks, we can express YA = yseries · LA,
where LA is a symmetric, positive semidefinite, and real-
valued Laplacian matrix. We have the following result:
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Figure 5: Illustrating electrical networks with no passive shunt elements that are: (a) uniform, (b) resistive, (c) lossless (inductive in this
particular example), and (d) homogeneous. Uniform networks have identical per-unit-length impedances, zseries, such that the value of the
(n,m) line impedance is expressed as the product of zseries and anm, the line length, which corresponds to the nonnegative weight from the
underlying weighted Laplacian, L. As special cases, we recover resistive and lossless networks with arbitrary resistive (respectively lossless)
line impedances. Finally, in homogeneous networks, the effective impedance between any two nodes is the same.

Lemma 1. Consider a network with uniform line character-
istics, that is, YA = yseries · LA, where LA ∈ R|A|×|A| is
a real-valued Laplacian matrix and yseries ∈ C. Then, the
Kron-reduced network has uniform line characteristics with
the Kron-reduced admittance matrix given by

Y = yseriesL (21)

where L = LNN − LNIL−1
IIL

T
NI .

The proof of Lemma 1 follows by direct construction of
the Kron-reduced matrix and due to the closure properties of
Kron reduction [13, Lemma 3.1]. Due to the special form of
the Kron-reduced admittance matrix in (21), it follows that Y
is diagonalizable with a unitary matrix. We conclude that (P2)
is satisfied by Kron-reduced matrices for which the original
electrical network has uniform line characteristics.

To address homogeneous networks, we recall from [13,
Theorem III.4] that (in the purely resistive case) a sparse
electrical network becomes denser under Kron reduction and
even complete under mild connectivity assumptions. However,
the branch admittances in the reduced network are still hetero-
geneous and reflect the topology and electrical properties of
the original network. In the following result, we show that for
a homogeneous original network, the associated Kron-reduced
network is characterized by identical branch admittances.

Lemma 2. The following statements are equivalent:
(i) The original network is homogeneous: for all bound-

ary nodes n,m ∈ {1, . . . , N}, the pairwise effective
impedances take the uniform value znm = zeff ∈ C\{0}.

(ii) The Kron-reduced network is complete and the branch
admittances take the uniform value yseries ∈ C \ {0}.
Equivalently, the Kron-reduced admittance matrix is

Y = yseriesΓ , (22)

where Γ = NI − 11T is the Laplacian matrix of the
complete graph.

If statements (i) and (ii) are true, then zeff = 2
Nyseries

.

Lemma 2 is obtained as a direct corollary to Theorem 4
in Appendix A. Since the Laplacian of the complete graph is

Γ = NΠ, it commutes with the projector matrix Π. Finally,
notice that since the Kron-reduced admittance matrix Y in
the homogeneous case (22) is a special case of the Kron-
reduced admittance matrix for the network with uniform line
characteristics (21), it follows that Kron-reduced admittance
matrices for homogeneous electrical networks satisfy (P2).

B. Sufficient Condition for Global Asymptotic Synchronization

This subsection derives sufficient conditions to ensure
global asymptotic synchronization in the network of coupled
nonlinear circuits described in Section V-A.

We remark that principally any Lp norm can be used in the
subsequent derivations, so long as the corresponding induced
norm can be explicitly calculated for the linear fractional trans-
formation. Two options that have readily calculable induced
norms are the L2 norm (with the H∞ norm serving as the
induced norm) and the L∞ norm (with the H1 norm serving
as the induced norm). Our choice of the L2 norm is motivated
by the fact that we can ensure the difference between the
terminal voltages asymptotically tends to zero, hence implying
synchronization. On the contrary, the L∞ norm would imply
that there is a finite bound on the maximal difference between
the terminal voltages, which is not sufficient to ensure syn-
chronization.

First, we present a lemma that establishes an upper bound
on the differential L2 gain of the function g(·), that governs
the nonlinear voltage-dependent current sources.

Lemma 3. ( [4, Lemma 1]) The differential L2 gain of g(·)
is finite, and upper bounded by σ:

γ̃ (g) :=
‖̃ig‖L2

‖ṽ‖L2

≤ σ := sup
v∈R

∣∣∣∣
d

dv
g(v)

∣∣∣∣ <∞. (23)

We now provide a sufficient synchronization condition for
the case where the nonlinear circuits are connected in networks
with uniform line characteristics. Homogeneous networks fol-
low as a special case.

Theorem 2. Suppose the electrical network that couples the
system of N identical nonlinear circuits has no shunt elements,
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and has uniform line characteristics. Let the Kron-reduced
admittance matrix be of the form Y = yseriesL as in (21). The
terminal voltages of the nonlinear circuits synchronize in the
sense of (14) if for all j ∈ {2, . . . , N}

‖F(zckt(jω), yseries(jω)λj)‖∞σ < 1 , (24)

where λj , j ∈ {2, . . . , N}, are the nonzero eigenvalues of the
Laplacian matrix L.

For a homogeneous network without shunt elements, the
Kron-reduced matrix is Y = yseriesΓ. Since the eigenvalues
of the complete Laplacian Γ, are λ1 = 0 and λ2 = · · · =
λN = N , the synchronization condition (24) reduces to

‖F(zckt(jω), yseries(jω)N)‖∞σ < 1. (25)

For purely resistive networks the synchronization condi-
tion (24) has to be evaluated only for λ2. The second-
smallest eigenvalue λ2 of the Laplacian matrix is known as
the algebraic connectivity, and it is a spectral connectivity
measure [35]. It can be shown that the algebraic connec-
tivity in a resistive Kron-reduced network upper-bounds the
algebraic connectivity in the original network [13, Theorem
III.5]. Hence, condition (24) implies that the nonlinear circuits
should be sufficiently strongly connected, which is aligned
with synchronization results in complex oscillator networks
with a static interconnection topology (i.e., with only resistive
elements) and without unstable internal oscillator dynamics
(e.g., passive oscillator subsystems) [2]. On the other hand,
if the interconnecting network is dynamic, e.g., if it contains
capacitive or inductive storage elements, then the synchro-
nization condition (24) needs to be evaluated for all nonzero
network modes λj , j ∈ {2, . . . , N}.

Proof of Theorem 2: Consider the block-diagram of the
differential system in Fig. 4. From Lemma 3, we have

‖̃ig‖L2
≤ σ‖ṽ‖L2

. (26)

For the linear fractional transformation, we can write

‖ṽ‖L2
≤ γ̃ (F (Zckt, Y )) ‖̃ig‖L2

+ η, (27)

for some non-negative η, where γ̃ (F (Zckt, Y )) denotes the
differential L2 gain of the linear fractional transformation. By
combining (26) and (27), we arrive at

‖ṽ‖L2 ≤ γ̃ (F (Zckt, Y ))σ‖ṽ‖L2 + η. (28)

By isolating ‖ṽ‖L2
from (28), we can write

‖ṽ‖L2
≤ η

1− γ̃ (F (Zckt, Y ))σ
, (29)

provided that the following condition holds

γ̃ (F (Zckt, Y ))σ < 1. (30)

If (30) holds true, then we have ṽ ∈ L2. It follows from
Barbalat’s lemma [14]–[16] that limt→∞ ṽ(t) = 0. Hence, if
the network of nonlinear circuits satisfies the condition (30),
global asymptotic synchronization can be guaranteed.

In the remainder of the proof, we establish an equivalent
condition for (30). By definition of the differential L2 gain of
the linear fractional transformation, we can express

γ̃ (F (Zckt, Y )) = γ̃ (F (zcktI, Y )) (31)

= sup
ω∈R

∥∥∥F (zckt (jω) I, Y (jω)) ĩg (jω)
∥∥∥

2∥∥∥̃ig(jω)
∥∥∥

2

= sup
ω∈R

∥∥∥(I + zckt(jω)Y (jω))
−1
zckt(jω)̃ig (jω)

∥∥∥
2∥∥∥̃ig(jω)

∥∥∥
2

= sup
ω∈R

∥∥∥Q (I + zckt(jω)yseries(jω)Λ)
−1
zckt(jω)QTĩg(jω)

∥∥∥
2∥∥∥QTĩg(jω)

∥∥∥
2

,

where we made use of property (P2) to diagonalize the
admittance matrix as Y = yseriesL = yseriesQΛQT, where Q is
unitary and Λ is a diagonal matrix containing the real-valued
and nonnegative eigenvalues of the Laplacian matrixL.

Since the Kron-reduced network has no shunt elements
connected to ground, the row and column sums of Y are zero.
Furthermore, since the Kron-reduced network is connected,
Y has a single zero eigenvalue. Analogous comments apply
to L and we obtain λ1 = 0 with corresponding eigenvector
q1 = (1/

√
N)1. Finally, since 1TΠ = 0T, we can express

QTĩg = QTΠig = [0, p]
T
, (32)

where p ∈ CN−1 is made of the non-zero elements of QTΠig.
Using the observation in (32) and denoting the diagonal

matrix with entries composed of the non-zero eigenvalues of
Y by ΛN−1, we can simplify (31) as follows:

γ̃ (F (zcktI, Y ))

= sup
ω∈R

∥∥∥(IN−1 + zckt(jω)yseries(jω)ΛN−1)
−1
zckt(jω)p(jω)

∥∥∥
2

‖p(jω)‖2
= max
j=2,...,N

sup
ω∈R

∣∣∣∣
zckt(jω)

1 + zckt(jω)yseries(jω)λj

∣∣∣∣ . (33)

By combining (33) and (30), we arrive at condition (24).

VI. GLOBAL ASYMPTOTIC SYNCHRONIZATION IN
NETWORKS WITH SHUNT ELEMENTS

In this section, we explore the family of electrical networks
with shunt elements for which sufficient synchronization con-
ditions similar to (24) can be derived.

A. Identifying Electrical Networks that Satisfy (P1)-(P2)

Consider the case of a Kron-reduced network, where—in
addition to a single nonlinear circuit—each node m ∈ N in the
network is connected to an identical shunt admittance ym =
yshunt. In this case, the Kron-reduced admittance matrix is

Y = yshuntI + Y ′, (34)

where Y ′ corresponds to the admittance matrix that captures
the coupling between the nonlinear circuits. By construction
Y ′ does not include shunt elements and its row and column
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sums are zero. If the network modeled by such a Y ′ has
uniform line characteristics (as in Subsection V-A), we obtain

Y = yshuntI + yseriesL, (35)

where L is the associated real-valued, symmetric Laplacian
matrix. Clearly, Y as in (35) satisfies properties (P1) and (P2).

In general, it is difficult to identify networks that admit
Kron-reduced admittance matrices of the form in (34) or even
(35). However, we can identify a family of electrical networks
that admit Kron-reduced admittance matrices of the same form
as (35). Towards this end, we first present a result on Kron
reduction of homogeneous networks with shunt elements.

Lemma 4. The following statements are equivalent:
(i) The original network is homogeneous: for all bound-

ary nodes n,m ∈ {1, . . . , N}, the pairwise effective
impedances take the uniform value znm = zeff–series ∈
C\{0} and the effective impedances to electrical ground
(denoted by the node, N + 1) take the uniform value
zn(N+1) = zeff–shunt ∈ C \ {0}, with zeff–series

zeff–shunt
6= 2N

N−1 .
(ii) The branch and shunt admittances in the Kron-reduced

network are uniform, that is, there are yseries ∈ C \ {0}
and yshunt ∈ C \ {0}, with yshunt 6= −Nyseries, such that

Y = yshuntI + yseriesΓ. (36)

If statements (i) and (ii) are true, then

yseries =
2

2Nzeff–shunt − (N − 1)zeff–series
,

yshunt =
2(zeff–series − 2zeff–shunt)

zeff–series((N − 1)zeff–series − 2Nzeff–shunt)
. (37)

Lemma 4 is obtained as a direct corollary to Theorem 4 in
Appendix A, by inverting the constitutive relations between
admittances and effective impedances. The parametric as-
sumption yshunt 6= −Nyseries (respectively, zeff–series/zeff–shunt 6=
2N/(N − 1)) is practically not restrictive: it is violated only
in pathological cases, e.g., when a capacitive (respectively
inductive) shunt load compensates exactly for N inductive
(respectively capacitive) line flows.

The admittance matrix Y in (36) satisfies (P1) and (P2),
and it is clearly a special case of (34), with Y ′ = yseriesΓ.
While the formulation in (36) is more restrictive, Lemma 4
identifies the unique class of electrical networks that admit
Kron-reduced matrices of the form (36). An illustration of a
Kron-reduced electrical network recovered from a homoge-
neous originating electrical network is depicted in Fig. 6.

B. Sufficient Condition for Global Asymptotic Synchronization

We now present sufficient conditions for global asymptotic
synchronization for the cases where the Kron-reduced admit-
tance matrices are given by (35), or as a special case, by (36).

Corollary 2. Suppose the electrical network that couples
the system of N identical nonlinear circuits admits a Kron-
reduced admittance matrix given by (35), where the network
corresponding to L has uniform line characteristics and no
shunt elements connected to ground. The terminal voltages of

the nonlinear circuits synchronize in the sense of (14) if for
all j ∈ {2, . . . , N}

‖F(zeq(jω), yseries(jω)λj)‖∞σ < 1 , (38)

where λj , j ∈ {2, . . . , N}, are the nonzero eigenvalues of the
Laplacian matrix L, and zeq is the equivalent impedance of
the parallel combination of zshunt := y−1

shunt and zckt given by

zeq :=
zshuntzckt

zshunt + zckt
. (39)

Proof: The proof for this corollary follows along the same
lines as that for Theorem 2. In particular, if (30) holds, then
synchronization is guaranteed. Now, consider that with Y =
yshuntI + yseriesL, we have that

F (Zckt, Y ) = (I + ZcktY )
−1
Zckt

= (I + Zckt (yshuntI + yseriesL))
−1
Zckt

=

(
I +

zshuntzckt

zshunt + zckt
yseriesL

)−1
zshuntzckt

zshunt + zckt
I

= F (zeqI, yseriesL) , (40)

where the last line in (40) follows from the definition of
the linear fractional transformation (6), and the definition of
zeq in (39). By repeating the reasoning as in the proof of
Theorem 2, we obtain

γ̃ (F (Zckt, Y )) = γ̃ (F (zeqI, yseriesL))

= max
j=2,...,N

sup
ω∈R

∣∣∣∣
zeq(jω)

1 + zeq(jω)yseries(jω)λj

∣∣∣∣ . (41)

The claimed synchronization condition (38) then follows by
combining (30) and (41).

If the original electrical network coupling the N identical
nonlinear circuits admits a Kron-reduced admittance matrix of
the form (36), the synchronization condition (38) simplifies to

‖F(zeq(jω), yseries(jω)N)‖∞σ < 1. (42)

This follows from the fact that the eigenvalues of the complete
Laplacian Γ are given by λ1 = 0 and λ2 = · · · = λN = N .

22
i

− +2
v

1

1i −
+ 1v

shunt

z

sh
un
t

z

Ni

−

+ Nv sh
u
n
t

z

seriesz

se
ri
es

z

se
ri
es

z

N

Figure 6: Kron-reduced electrical network recovered from a homo-
geneous originating network. The shaded region captures the inter-
circuit interactions through identical line impedances that are equal
to zseries. All the shunt impedances are equal to zshunt.
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VII. CASE STUDIES

We now present three simulation case studies to validate the
synchronization conditions in some illustrative LTI electrical
networks. In the first two case studies, we consider networks of
Chua’s circuits [30]. The nonlinear voltage-dependent current
source in Chua’s circuit is illustrated in Fig. 2(a), and the
impedance of the linear subsystem is given by

zckt(s) =
RLCaCbs

3 + LCas
2 +RCas

RLCaCbs3 + (C2
a + LCb + LCa)s2 +RCas+ 1

.

(43)
The parameters of the constituent linear-circuit elements in
Chua’s circuit utilized in both case studies are adopted
from [30], and listed in Appendix B. With the choice of circuit
parameters, it follows that σ = supv∈R

∣∣ d
dv g(v)

∣∣ = σ2.
In the third case study, we examine the impact of the

underlying network topology and the number of nodes in
the network on the feasibility of guaranteeing the asymptotic
synchronization of periodic waveforms for a collection of
dead-zone oscillators [4]. The nonlinear voltage-dependent
current source in the dead-zone oscillator circuit is illustrated
in Fig. 2(b), and the linear subsystem is given by

zckt(s) =
RLs

RLCs2 + Ls+R
. (44)

The parameters of the constituent linear-circuit elements in the
dead-zone oscillator circuit are listed in Appendix D.

A. Lossless Inductive Network without Shunt Elements

The network topology examined here is illustrated in Fig. 7.
This is an example of a network with uniform line charac-
teristics (see Section V-A). Following Lemma 1, we obtain
the Kron-reduced network (also illustrated in Fig. 7) with
admittance matrix given by Y = yseriesL, where L is a
weighted, real-valued, symmetric Laplacian matrix. The suffi-
cient synchronization condition for this case is given by (24).

For the first set of network parameters in Appendix C, we
get ||F

(
zckt(jω), y−1

series(jω
)
λj ||∞σ < 1, j = 2, 3, 4, which

implies that the terminal voltages of the Chua’s circuits are
guaranteed to synchronize. We confirm this with time-domain
simulations. Figure 8(a) illustrates the terminal voltages and
the voltage synchronization error, with the inset capturing a
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Figure 7: Schematic of lossless inductive network and the Kron-
reduced counterpart examined in Section VII-A. This is an example of
a network with uniform line characteristics (see Section V), in that the
Kron-reduced admittance matrix can be expressed as Y = yseriesL,
where L is a weighted, real-valued, symmetric Laplacian matrix.
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Figure 8: Synchronization of terminal voltages in Chua’s circuits.
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when condition (24) fails, ||F(zckt(jω), y−1

series(jω)λj ||∞σ ≮ 1, j =
2, 3, 4, and synchronization is not guaranteed.

close-up during startup with nonidentical initial conditions as
the voltages begin to pull into phase. Figure 8(b) depicts a
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three-dimensional view of the internal states of the Chua’s
circuits as a function of time, and clearly demonstrates the
chaotic double-scroll attractor [30] in the asymptotic limit.

Now consider the second set of network parameters in
Appendix C. Here, the inductances in the network are in-
creased by a factor of four, which implies that the non-
linear circuits are coupled more weakly as compared to
the previous case. For this set of parameters, we obtain
||F
(
zckt(jω), y−1

series(jω
)
λj ||∞σ ≮ 1, j = 2, 3, 4, and the

sufficient condition (24) is violated. While this is not an
indication that the terminal voltages cannot synchronize, it
turns out that in this case, the terminal voltages indeed do
not synchronize. With the same set of initial conditions as
before, we plot the the terminal voltages and the voltage
synchronization error in Fig. 9 for this network.

B. Homogeneous Network with Shunt Load

The network topology examined here is illustrated in
Fig. 10. The network branch impedance is given by znet (s) =
sLnet +Rnet. The impedance of the shunt load connected to
the internal node is denoted by zload (s). This is an example
of a homogeneous network since the effective impedances
between any two nonlinear circuits are identical, and the effec-
tive impedances between the nonlinear circuits and electrical
ground are also identical (see Section VI-A). In particular

zeff−series = 2znet, zeff−shunt = znet + zload. (45)

Following Lemma 4, we obtain the Kron-reduced network
(also illustrated in Fig. 10) with admittance matrix given by
Y = yshuntI + yseriesΓ. By applying (37), we obtain

yshunt = (znet + 4zload)
−1
,

yseries = zload

(
znet (znet + 4zload)

−1
)−1

. (46)

Substituting yshunt and yseries in (42), we obtain the following
sufficient condition for synchronization in this network:
∥∥F(zckt, z

−1
net)
∥∥
∞ σ =

∥∥∥∥
zckt(jω)znet(jω)

zckt(jω) + znet(jω)

∥∥∥∥
∞
σ < 1. (47)
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Figure 10: Network composed of nonlinear electrical circuits con-
nected to a common load through identical branch impedances, and
the corresponding Kron-reduced circuit. Homogeneity of the original
electrical network implies that the admittance matrix of the Kron-
reduced network is given by Y = yshuntI + yseriesΓ.
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It is instructive to explore the impact of the network parameters
Rnet and Lnet on the synchronization condition (47). Fig. 11
shows ξ(Rnet, Lnet) := ‖F(zckt, z

−1
net)‖∞σ for a range of

parameter values. For sufficiently low values of Rnet and Lnet,
ξ(Rnet, Lnet) < 1 and synchronization is guaranteed.

Consider now, the asymptotic behavior of ξ(Rnet, Lnet).
Particularly, we will focus on two points [a] and [b] that
are marked in Fig. 11. Figure 12 depicts the magnitude of
F(zckt(jω), z−1

net(jω))σ as a function of frequency, ω, for
two representative values of Rnet, Lnet; corresponding to the
asymptotes [a] and [b]. The effect of reducing the values of
Rnet, Lnet (which increases the coupling between the circuits)
also translates to damping the peak of the magnitude response.
Synchronization is guaranteed when the peak is less than unity.

C. Impact of Network Size and Topology on Synchronization

In general, it is difficult to study the impact of the network
size or topology on the feasibility of our synchronization
conditions since closed-form solutions for the H∞ norm may
not be available. However, for resistive networks a complete
analytic treatment is possible.
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As a particular example, consider a set of N dead-zone os-
cillators as in Fig. 2(b) connected through a resistive network.
The linear subsystem impedances zckt(jω) of the oscillators
are given in (44) and the parameter values are listed in
Appendix D. To ensure periodic oscillations in steady-state,
it is necessary to pick (see [4] for details):

σ = sup
v∈R
|g′(v)| > 1/R. (48)

The dead-zone oscillators are connected through a resis-
tive electrical network with identical branch conductances
yseries(jω) =: r−1, no internal nodes, and a topology to be
specified later. In the resistive case, the relevant synchroniza-
tion conditions from Theorem 2 then reduce to

||F (zckt(jω), λ2(N)/r) ||∞σ < 1, (49)

where λ2(N) is the algebraic connectivity of the underlying
network parameterized by the number of nodes N . After
substituting zckt(jω) in the definition of the linear fractional
transformation, we obtain

F (·, ·) =

(
1

R
+
λ2(N)

r
+ j

(
ωC − 1

ωL

))−1

. (50)

For the H∞-norm, it follows that

||F (zckt(jω), yseries(jω)λ2(N)) ||∞ =

(
1

R
+
λ2(N)

r

)−1

.

(51)
Therefore, the conditions in (49) reduce to:

(
1

R
+
λ2(N)

r

)−1

σ < 1. (52)

Condition (48) provides a lower bound on σ to ensure periodic
oscillations, and (52) provides an upper bound on σ to ensure
synchronization in steady state. Taken together, to ensure
periodic oscillations and synchronized waveforms, the gain
σ must be picked such that

1

R
< σ <

1

R
+
λ2(N)

r
. (53)

Notice that the range of permitted values for σ patently
depends on the network topology as well as the size of the
network. As a case study, consider the all-to-all and ring
topologies, for which the algebraic connectivities satisfy

λ2(N) =

{
N all-to-all,
2− 2 cos

(
2π
N

)
ring.

(54)

For the ring topology, it is clear that λ2 is a decreasing function
of N , while for the all-to-all topology, λ2 is an increasing
function of N . Since the upper bound (52) is affine in λ2(N),
these scaling laws are directly reflected in the feasibility of
the bounds in (53) for the two topologies, see Figures 13(a)
and (b) for an illustration.
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Figure 13: Upper and lower bounds on σ to guarantee asymptotic
synchronization of periodic waveforms as a function of the number
of dead-zone oscillators interconnected in a (a) ring and (b) all-to-all
graph topology. Shaded region denotes feasible values of σ.

VIII. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

We derived a synchronization condition for a class of
nonlinear electrical circuits coupled through passive LTI elec-
trical networks. We considered particular classes of networks,
where perfect synchronization of the terminal voltages can
be achieved. These classes included homogeneous networks
and networks with uniform line characteristics—both with and
without shunt elements. Whereas these classes of networks
seem to be restrictive at first, it is the belief of the authors
that—with the present setup—perfect synchronization cannot
be achieved for more general and heterogeneous networks,
where the nonlinear circuits are possibly non-identical and
support different loads. In this case, the subsystems have no
common asymptotic dynamics to synchronize on [36].

In ongoing and future work, we plan to address the prob-
lems of synchronization in heterogeneous networks and the
regulation of the asymptotic synchronized dynamics. Further
topics of interest include the analysis of Kron reduction of
general RLC circuits (including pathological cases) and syn-
chronization through directed and possibly nonlinear electrical
networks. Note also, that the bounds for synchrony that we
obtain will not always be tight since the small gain theorem
condition that we employ is sufficient to synchronize a wide
range of systems. In future work, we aim to reduce the
degree of conservatism even further through the use of integral
quadratic constraints. In addition, a compelling direction for
further work relates to investigating the impact of the number
of nodes, type of interconnecting impedances, type of non-
linear circuits, and graph topology on the ease with which
synchronization protocols can be formulated (the case study in
Section VII-C provided a motivating example in this regard).

APPENDIX

A. Kron Reduction of Complex-Symmetric Matrices

In this appendix, we discuss the Kron reduction of complex-
valued admittance matrices and the properties of the effec-
tive impedances. The following results are extensions from
the real-valued and symmetric cases considered in [13], to
complex-symmetric (and not necessarily Hermitian) settings
relevant in this work. Since only a subset of results in



12

[13] directly carries over to the complex-symmetric case, we
present self-contained statements with brief proof sketches.
These results directly lead up to Lemmas 2 and 4 in this paper.

First, notice that an admittance matrix YA without shunt
elements is singular due to zero row and column sums, and
an admittance matrix with at least one shunt element is
invertible due to irreducibly block diagonally dominance [31,
Corollary 6.2.27]. To analyze regular and singular admittance
matrices simultaneously, we associate an augmented admit-
tance matrix ŶA to a regular admittance matrix YA:

ŶA :=




−y1

YA ...
−y|A|

−y1 · · · −y|A|
∑|A|
m=1 ym



, (55)

The augmented admittance matrix ŶA corresponds to the
case when the ground is modeled as an additional node with
index |A|+1 and zero voltage. Notice that ŶA is singular with
zero row and column sums. Likewise, a singular admittance
matrix resulting from a network without shunt elements can
be regularized by grounding an arbitrary node. We denote the
Kron-reduced matrix associated to ŶA by Ŷ . As it turns out,
the augmentation process and the Kron reduction commute.

Lemma 5. Consider a singular admittance matrix YA, its
augmented matrix ŶA, and their associated Kron-reduced
matrices Y and Ŷ , respectively. The following diagram com-
mutes:

YA

Y bY

bYA
augmentation

augmentation

Kron
reduction

Kron
reduction

Proof: The proof is analogous to the proof of [13, Lemma
III.1, Property 3]. The result in [13] relies on the Quotient
Formula [32, Theorem 1.4] which extends to complex-valued
matrices, as well as the closure of symmetry and zero row
(column) sums under Kron reduction (shown in Theorem 1).

As the next key property, we establish that the effective
impedances znm among the boundary nodes n,m ∈ N are
invariant under Kron reduction and augmentation.

Theorem 3. Consider the admittance matrix YA and the Kron-
reduced matrix Y . The following statements hold:

1) Invariance under Kron reduction: the effective impedance
between any two boundary nodes is equal when computed
from Y or YA, that is, for any n,m ∈ {1, . . . , N}

znm = (en − em)TY †(en − em)

≡ (en − em)TY †A(en − em). (56)

2) Invariance under augmentation: if YA is a nonsingular
matrix, then the effective impedance is equal when com-
puted from YA or ŶA, that is, for any n,m ∈ {1, . . . , |A|}

znm = (en − em)TY −1
A (en − em)

≡ (en − em)TŶ †A(en − em). (57)

Equivalently, statements 1) and 2) imply that, if YA is a regular
admittance matrix, then the following diagram commutes:

YA

Y bY

bYA
augmentation

augmentation

Kron
reduction

Kron
reduction

znm

n, m 2 {1, . . . , N}

Proof: To prove Theorem 3, we first establish some
matrix identities. We need the following identity for a singular
admittance matrix Y ∈ CN×N and a real nonzero number δ:

(
Y + (δ/N)11T

)−1
= Y † + (1/δN)11T . (58)

Using the projector formula (for a singular admittance matrix)
Y Y † = Y †Y = Π, the identity (58) can be verified since the
product of the left-hand and the right-hand side of (58) equal
the identity matrix. If a singular admittance matrix Y ∈ CN×N
is of dimension N ≥ 3, then by taking the N th node as a
reference and deleting the associated N th column and N th

row, we obtain the nonsingular matrix Y ∈ C(N−1)×(N−1).
As suggested by physical intuition, the effective impedance
among the nodes n,m ∈ {1, . . . , N − 1} is not affected by
grounding the N th node, that is, for all n,m ∈ {1, . . . , N−1}

znm = (en − em)TY
−1

(en − em)

≡ (en − em)TY †(en − em). (59)

The identity (59) can be verified by using the formula Y
−1

nm =
Y †nm − Y †nN − Y †mN + Y †NN [37, Appendix B, formula (17)]
whose derivation extends to the complex-valued case.

To prove statement 1), consider first the case when YA is
invertible due to presence of shunt admittances. Recall that
we are interested in the effective impedances only among the
boundary nodes, that is, the leading principal (N×N)-block of
Y †A = Y −1

A . The Schur complement formula [32, Theorem 1.2]
gives the leading (N ×N)-block of Y −1

A as the inverse Schur
complement Y −1. It follows that, for all n,m ∈ {1, . . . , N},

znm = (en − em)TY −1(en − em)

≡ (en − em)TY −1
A (en − em). (60)

On the other hand, if YA is singular due to absence of shunt
admittances, an analogous reasoning applies on the image of
Y and using the identity (58), or after grounding an arbitrary
interior node (i.e., regularizing YA) and using the identity (59),
see the proof of [13, Theorem III.8, Property 1] for details.

To prove statement 2), notice that the regular admittance
matrix YA with shunt elements is the leading principal (|A|×
|A|)-block of the augmented singular admittance matrix ŶA.
Statement 2) follows then directly from identity (59) after
replacing N , Y , and Y with N + 1, ŶA, and YA.

Theorem 4. Consider an admittance matrix YA and its Kron-
reduced matrix Y . Consider the following two cases:

1) No shunt elements: Assume that YA is singular due to the
absence of shunt elements. Let Z ∈ CN×N be the matrix of
effective impedances. The following statements are equivalent:
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(i) The effective impedances among the boundary nodes
{1, . . . , N} are uniform, that is, there is zeff ∈ C \ {0}
such that znm = zeff for all distinct n,m ∈ {1, . . . , N};

(ii) The branch admittances in the Kron-reduced network take
the uniform value yseries ∈ C \ {0}, that is, Y = yseriesΓ.

If statements (i) and (ii) are true, then zeff = 2
Nyseries

.

2) Shunt elements: Assume that YA is regular due to the
presence of shunt elements. Consider the grounded node |A|+
1 and the augmented admittance matrices ŶA and Ŷ . Let Z ∈
R(|A|+1)×(|A|+1) be the matrix of effective impedances in the
augmented network. The following statements are equivalent:
(iii) The effective impedances both among the boundary nodes
{1, . . . , N} and between all boundary nodes {1, . . . , N}
and the grounded node |A|+1 are uniform, that is, there
are zeff–series ∈ C \ {0} and zeff–shunt ∈ C \ {0} satisfying
zeff–series/zeff–shunt 6= 2N/N − 1 such that zij = zeff–series
for all distinct n,m ∈ {1, . . . , N} and zn,|A|+1 =
zeff–shunt for all n ∈ {1, . . . , N}.

(iv) The branch and shunt admittances in the Kron-reduced
network are uniform, that is, there are yseries ∈ C \ {0}
and yshunt ∈ C \ {0} satisfying yshunt 6= −Nyseries such
that Y = yshuntI + yseriesΓ.

If statements (iii) and (iv) are true, then

zeff–series =
2

Nyseries + yshunt
, (61)

zeff–shunt =
yshunt + yseries

yshunt(Nyseries + yshunt)
. (62)

The admittance assumption yshunt 6= −Nyseries (and the
equivalent assumption zeff–series/zeff–shunt 6= 2N/N − 1 for
the effective impedances) guarantees regularity (respectively a
single zero eigenvalue) of the admittance matrix. As discussed
in Section VI-A, this assumption is practically not restrictive.

Proof of Theorem 4: Here, we present the proof strategy
for case 1). Due to the invariance of the effective impedance
(and Kron reduction) under the augmentation process (see
Lemma 5 and Theorem 3), an analogous reasoning and similar
formulae apply to case 2), see [13].

We first prove the statement (i) =⇒ (ii): Notice that
Z = ZT has zero diagonal elements and Y † is symmetric with
zero row and column sums. Hence, both matrices have N(N−
1)/2 independent elements, and the linear formula relating the
elements znm and Y †nm can be inverted [13, identity (34)]:

Y †nm = −1

2

(
znm−

1

N

N∑

k=1

(znk+zmk)+
1

N2

N∑

k,`=1

zk`

)
. (63)

From the above formula, it can be readily verified that a
uniform effective impedance matrix, Z = zeff (11T − I),
yields a uniform inverse matrix Y † = zeff/(2N) Γ. It is worth
mentioning that for an admittance matrix with uniform branch
admittances, Y = yseries Γ, the pseudo inverse Y † is again an
admittance matrix with uniform branch admittances given by

Y † = (yseries Γ)
†

= 1/(N2yseries) Γ . (64)

Identity (64) can be verified since Y and Y † satisfy the
Penrose equations. According to (64), this uniform inverse

matrix Y † = zeff/(2N) Γ yields the uniform admittance matrix
Y = 2/(Nzeff) Γ.

Now we consider the converse implication (ii) =⇒ (i).
Due to Theorem 3 the effective impedance is invariant under
Kron reduction. In this case, substituting Y † from (64) in (8),
we see that the effective impedances are given by

znm =
1

(N2yseries)
(en − em)T(NI − 11T)(en − em)

=
2

Nyseries
= zeff,∀n,m ∈ {1, . . . , N}. (65)

Hence, the N(N − 1)/2 pairwise effective impedances znm
between the boundary nodes are uniform.

B. Parameters of Chua’s Circuits

Linear subsystem parameters [30]: R = 10/7 Ω, L = 1/7 H,
Ca = 1/9 F, Cb = 1 F.

Nonlinear-subsystem parameters: σ0 = −0.8 S, σ1 =
−0.5 S, σ2 = 0.8 S, ϕ0 = 1 V, ϕ1 = 14 V.

C. Lossless network parameters

Guaranteed Synchronization: L12 = 0.834 H, L15 =
0.671 H, L26 = 0.277 H, L56 = 1.0575 H, L45 = 0.3655 H,
L46 = 1.0245 H, L36 = 0.3240 H, L67 = 0.4735 H, L37 =
0.1875 H, L47 = 0.74 H.

No Guarantee on Synchronization: L12 = 3.336 H, L15 =
2.684 H, L26 = 1.108 H, L56 = 4.23 H, L45 = 1.462 H,
L46 = 4.098 H, L36 = 1.296 H, L67 = 1.894 H, L37 =
0.75 H, L47 = 2.96 H.

D. Parameters of Dead-zone Oscillators

Linear subsystem parameters: R = 1 Ω, L = 1 H, C = 1 F.
Network-branch impedance: r = 10−3 Ω (ring topology), r =
1 Ω (all-to-all topology).
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