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Abstract—A method to synchronize and control a system
of parallel single-phase inverters without communication is
presented. Inspired by the phenomenon of synchronization in
networks of coupled oscillators, we propose that each inverter
be controlled to emulate the dynamics of a nonlinear dead-zone
oscillator. As a consequence of the electrical coupling between
inverters, they synchronize and share the load in proportion
to their ratings. We outline a sufficient condition for global
asymptotic synchronization and formulate a methodology for
controller design such that the inverter terminal voltages oscillate
at the desired frequency, and the load voltage is maintained
within prescribed bounds. We also introduce a technique to
facilitate the seamless addition of inverters controlled with
the proposed approach into an energized system. Experimental
results for a system of three inverters demonstrate power sharing
in proportion to power ratings for both linear and nonlinear
loads.

Index Terms—Distributed ac power systems, inverters, mi-
crogrids, nonlinear control, oscillators, synchronization, uninter-
ruptible power supplies, voltage source inverters.

I. INTRODUCTION

SYSTEMS of parallel inverters are integral elements of
distributed ac power systems in applications such as unin-

terruptible power supplies, microgrids, and renewable energy
systems [1]–[8]. Critical design and control objectives in
such systems include: i) minimizing communication between
inverters, ii) maintaining system stability and synchronization
in spite of load variations, iii) regulating the system voltage
and frequency, and iv) ensuring the inverters share the load in
proportion to their ratings. Focused on these challenges, this
paper presents a method to synchronize and control a system
of parallel single-phase inverters without communication. In-
spired by the phenomenon of synchronization in networks of
coupled oscillators, we propose that each inverter be controlled
to emulate the dynamics of a nonlinear dead-zone oscillator.
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Leveraging the intrinsic electrical coupling between inverters,
global asymptotic synchronization can be guaranteed with no
additional communication. Additionally, the synchronization
condition is demonstrated to be independent of the number
of inverters in the system and the load characteristics. The
proposed control paradigm is therefore robust (independent
of load), resilient (requires no communication), and modular
(independent of the number of inverters). In the remainder of
the manuscript, we refer to the proposed method as virtual
oscillator control (VOC) to emphasize the fact that each
inverter is digitally controlled to emulate the dynamics of a
nonlinear oscillator.

The analytical framework that underlies the proposed con-
trol method was outlined in [12], [13], where sufficient
conditions were derived for synchronization in a system of
identical nonlinear oscillators connected to a common node
through identical branch impedances. Subsequently in [14],
we demonstrated applications of the oscillator-based controller
in three-phase, low-inertia microgrids with a high penetration
of photovoltaic generation. In [12], [14], it was assumed that
all inverters had identical power ratings and that the load
was a passive impedance. Building on our previous efforts,
the main contributions of this paper are the following: i) a
synchronization condition is developed which applies to both
linear and nonlinear loads, ii) the controller and output-filter
design approaches are demonstrated to result in the inverters
sharing the load power in proportion to their power ratings,
iii) a parameter selection methodology is presented such that
the inverter terminal voltages oscillate at the desired frequency
and the load voltage is maintained between prescribed upper
and lower bounds, iv) a technique for adding inverters into an
energized system with minimal transients is introduced, and
v) experimental results demonstrate seamless inverter addition
and power sharing for linear and nonlinear loads.

Control strategies that do not necessitate communication in
systems of parallel inverters have predominantly been inspired
by the idea of droop control [15]–[22]. The premise of this
method is to modulate the voltage and frequency of islanded
inverters such that they mimic the behavior of synchronous
generators in bulk power systems [15]. In particular, the
inverter voltage and frequency are controlled to be inversely
proportional to the real and reactive power output, respec-
tively [23]–[25]. To overcome shortcomings associated with
load-sharing accuracy and system frequency/voltage devia-
tions, recent efforts have focused on the overlay of a communi-
cation network between inverters to implement secondary- and
tertiary-level controls [17], [26]–[28]. In contrast, the experi-
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mental results in this work demonstrate that with the proposed
approach, the system frequency exhibits minimal deviations
with variations in load, and the load voltage can be main-
tained between prescribed bounds without communication.
The ease of controller implementation is an added advantage;
in particular, compared to droop control and related variants,
VOC does not require real and reactive power calculations,
explicit frequency and voltage amplitude commands, or any
trigonometric functions.

Synchronization phenomena in networks of coupled oscilla-
tors have received attention in a variety of disciplines including
cardiology, neural processes, superconductor physics, commu-
nications, and chemistry [29]–[33]. Of particular relevance to
the power engineering community, the Kuramoto oscillator
model was recently applied to study synchronization in bulk
power systems [34] and droop-controlled inverters [35], [36].
Inspirational to this work, the notion of passivity was used
in [37] to analyze synchronization of inverters controlled as
nonlinear oscillators. As described subsequently, the analytical
approach and oscillator model adopted in this work here are
fundamentally different from that in [37]; it is also worth
mentioning that the controller proposed in this work does
not require an additional PI regulator for voltage regulation
as in [37]. In general, passivity-based approaches used to
examine synchronization require the formulation of a storage
function (global Lyapunov function) that is proportional to
signal differences. Conditions for synchronization are then
obtained by requiring the storage function to decay to zero
along system trajectories [38]–[41]. Given that it is difficult
to construct storage functions that monotonically decay to
zero when the network contains energy storage elements (i.e.,
inductors and capacitors), passivity-based approaches are, in
general, difficult to apply in these settings.

Leveraging the theoretical foundations in [42]–[44], we use
the concept of L2 input-output stability to prove synchroniza-
tion. In general, the L2 gain of a system provides a measure
of the maximum possible amplification from input to output.
Systems that have a finite L2 gain are said to be finite-
gain L2 stable [45], [46]. To prove synchronization, we first
construct a coordinate-transformed differential system based
on signal differences. Then, by ensuring the differential system
is finite-gain L2 stable, we can prove that signal differences
decay to zero, congruently demonstrating synchronization in
the original coordinates.

The remainder of this manuscript is organized as follows:
In Section II, we establish notation and present a few essen-
tial mathematical preliminaries. Detailed descriptions of the
nonlinear dead-zone oscillator and the circuit equations that
capture the network dynamics are presented in Section III.
A coordinate transformation is then utilized in Section IV to
analyze the corresponding system based on signal differences.
Methods for controller design, implementation, and inverter
addition are given in Section V, followed by experimental re-
sults in Section VI. Finally, concluding remarks and directions
for future work are outlined in Section VII.

II. PRELIMINARIES

Given the N -tuple {u1, . . . , uN}, denote the corresponding
column vector as u = [u1, . . . , uN ]T, where (·)T denotes
transposition. Denote the N × N identity matrix as I , and
the N -dimensional vectors of all ones and zeros as 1 and 0,
respectively.

The Laplace transform of the continuous-time function u(t)
is denoted as u(s), where s = ρ+ jω ∈ C and j =

√
−1.

The Euclidean norm of a complex vector, u, is denoted as
‖u‖2 and is defined as

‖u‖2 :=
√
u∗u, (1)

where (·)∗ signifies the conjugate transpose. The space of all
piecewise continuous functions such that

‖u‖L2
:=

√√√√√
∞∫

0

u (t)
T
u (t) dt <∞, (2)

is denoted as L2, where ‖u‖L2
is referred to as the L2 norm

of u [46]. If u ∈ L2, then u is said to be bounded.
A causal system, H , with input u and output y is finite-gain

L2 stable if there exist finite, non-negative constants, γ and
η, such that

‖y‖L2
=: ‖H (u)‖L2

≤ γ ‖u‖L2
+ η, ∀u ∈ L2. (3)

The smallest value of γ for which there exists a η such that (3)
is satisfied is called the L2 gain of the system. The L2 gain
of H , denoted as γ (H), provides a measure of the largest
amplification imparted to the input signal, u, as it propagates
through H . If H is linear and can be represented by the
transfer matrix H (s) ∈ CN×N , it can be shown that the L2

gain of H is equal to its H-infinity norm, denoted by ‖H‖∞,
and defined as

γ (H) = ‖H‖∞ := sup
ω∈R

‖H (jω)u (jω)‖2
‖u (jω)‖2

, (4)

where ‖u (jω)‖2 = 1, provided that all poles of H(s) have
strictly negative real parts [45]. Note that if H (s) is a single-
input single-output transfer function such that H (s) ∈ C, then
γ (H) = ‖H‖∞ = sup

ω∈R
‖H (jω)‖2.

A construct we will find particularly useful in assessing
signal differences is the N × N projector matrix [39], [40],
[43], which is denoted by Π, and defined as

Π := I − 1

N
11T. (5)

For a vector u, we define ũ := Πu to be the corresponding
differential vector [39], [40], [42]–[44]. It can be shown that
[43], [44]

ũ (t)
T
ũ (t) = (Πu (t))

T
(Πu (t)) =

1

2N

N∑

j=1

N∑

k=1

(uj(t)− uk(t))
2
,

(6)
which implies that uj = uk for j, k = 1, . . . , N if and only if
ũ = 0.
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A causal system with input u and output y is said to be
differentially finite L2 gain stable if there exist finite, non-
negative constants, γ̃ and η̃, such that

‖ỹ‖L2
≤ γ̃ ‖ũ‖L2

+ η̃, ∀ ũ ∈ L2, (7)

where ỹ = Πy. The smallest value of γ̃ for which there
exists a non-negative value of η̃ such that (7) is satisfied is
referred to as the differential L2 gain of H . In general, the
differential L2 gain of a system provides a measure of the
largest amplification imparted to input signal differences.

Finally, the RMS values of voltages and currents are denoted
by V and I , respectively, and average power is denoted by P .

III. SYSTEM DESCRIPTION

In this section, we first introduce the nonlinear dead-zone
oscillator model that the inverters are controlled to emulate.
Next, we outline the circuit equations that describe the system
of parallel inverters controlled with the proposed approach.

A. The Nonlinear Dead-zone Oscillator

The electrical schematic of the nonlinear dead-zone oscil-
lator is shown in Fig. 1(a). The construction of the proposed
oscillator is inspired by the well-known Van der Pol oscil-
lator [39], [40]. The linear subsystem of the oscillator is a
passive RLC circuit with impedance

zosc(s) = R || sL || (sC)−1 =
1
C s

s2 + 1
RC s+ 1

LC

. (8)

The voltage dependent current source is a static nonlinear
function, g(v) = −ig(v), parameterized by σ, ϕ ∈ R+, and
defined as

g(v) = f(v)− σv, (9)

Li

gi
)v(g

−

+

ϕσ

oscz

R L C v

i

v

(a)

−1

0

0−1 1

1

0.1

2 3−2−3

1

= 3ǫ
v

LC
√

v̇

(b)

Figure 1: (a) Electrical schematic of the dead-zone oscillator. (b)
Phase-plot of steady-state limit-cycles in the proposed nonlinear
oscillator for different values of ε =

√
L/C(σ − 1/R).
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Figure 2: The dead-zone function f(v) in (a) and the nonlinear
voltage-dependent current source g(v) in (b) are illustrated for the
proposed dead-zone oscillator.

where f(v) is a dead-zone function with slope 2σ:

f(v) =





2σ(v − ϕ) v > ϕ
0 |v| ≤ ϕ

2σ(v + ϕ) v < −ϕ
. (10)

Note that with this definition, we have

max
v∈R

∣∣∣∣
d

dv
g(v)

∣∣∣∣ = σ <∞. (11)

The functions f(·) and g(·) are illustrated in Figs. 2(a)
and 2(b), respectively.

The oscillator dynamics are described by the following set
of nonlinear differential equations:

{
dv
dt = 1

C

(
σ − 1

R

)
v − f(v)− iL − i

diL
dt = v

L

. (12)

Applying Liénard’s theorem, it can be shown that the proposed
oscillator with the dynamics described by (12) has a unique
and stable limit cycle if σ > 1/R [12], [45]. We plot the
steady-state limit cycles of the proposed oscillator for different
values of ε :=

√
L/C (σ − 1/R) in Fig. 1(b). It is evident

that for small values of ε, the phase plot resembles a unit
circle, which implies that the voltage oscillation approximates
an ideal sinusoid in the time-domain.

Intuitively, the oscillations result from a periodic energy
exchange between the passive RLC circuit and the nonlinear
current source at (approximately) the resonant frequency of the
LC circuit, 1/

√
LC. As can be inferred from Fig. 2(b), the

nonlinear subsystem acts as a resistor (with resistance 1/σ)
for vg(v) > 0, and as a power source for vg(v) < 0. This
causes the amplitude of small oscillations to increase, while
large oscillations are damped.

B. Fundamentals of System Design

Consider the system of parallel single-phase inverters in
Fig. 3(a). The premise of VOC is to ensure that the invert-
ers emulate the dynamics of dead-zone oscillators when the
differential equations in (12) are programmed onto their digital
controllers. The system of inverters with VOC in Fig. 3(a) can
be modeled as shown in Fig. 3(b), where the controller details
are depicted explicitly and the controllable voltage sources
represent the averaged voltages across each set of H-bridge
terminals. As illustrated in Fig. 3(b), the current sensed at
the output of the jth inverter is scaled by κ−1j ι and extracted
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Figure 3: The system of inverters with virtual oscillator control in (a) can be modeled as the system of coupled oscillators shown in (b).

from its respective virtual oscillator. Congruently, the virtual-
oscillator terminal voltage is scaled by ν to generate the
ac voltage command. Note that ι, ν ∈ R are referred to as
the nominal current and voltage gains, respectively, and they
are integral to controller design as explained in Section V;
additionally, and as explained next, κj ∈ R, j = 1, . . . , N ,
are output-filter scaling parameters selected to promote power
sharing.

The rated system RMS voltage is denoted by Vrated, and
the power rating of the jth inverter is denoted by Pj . The
impedance of the jth output filter will be written as κ−1j zf(s),
where zf(s) is defined as the reference filter impedance. The
former definitions allow us to establish a base impedance,
zbasej = V 2

rated/Pj , such that the per-unitized jth filter
impedance is equal to zf(s)/ (κjzbasej). By selecting the per-
unit filter impedance of each inverter to be identical, it is
straightforward to show that

Pj

κj
=
Pk

κk
, ∀j, k = 1, . . . , N. (13)

We will show subsequently in Section IV-B (Remark 2), that
this filter-design strategy ultimately facilitates power sharing
between the inverters. Additionally, as outlined in [47]–[52],
the proposed filter-design strategy also ensures that the rela-
tive distortion contributions of the individual inverter output
currents are matched, such that the THD of the parallel system
is essentially the same as the THD of each individual inverter.

C. Network Analysis

The vectors of inverter terminal voltages and output currents
are denoted by vo = [vo1, . . . , voN ]

T and io = [io1, . . . , ioN ]
T,

respectively. From Fig. 3(a), we see that the output current of
the jth inverter can be expressed as

ioj(s) = κjz
−1
f (s) (voj(s)− vload(s)) , (14)

where vload denotes the load voltage. The terminal voltages
and output currents of the jth inverter are related to those of
the jth virtual oscillator as follows:

{
voj(s) = (ν)vj(s),
ioj(s) = (κj/ι)ij(s).

(15)

In subsequent analyses, we will find it useful to note that for
the jth inverter–virtual-oscillator pair, these scalings imply that
impedances have to be scaled by (ιν)−1κj when reflected from
the physical domain through to the virtual-oscillator domain.

Substituting the inverter currents and voltages from (15)
into (14), we see that the oscillator output currents and
terminal voltages are related by

ij(s) = z−1f (s) (ινvj(s)− ιvload(s)) . (16)

Solving for vj , we obtain

vj(s) = (ιν)−1 (zf(s)ij(s) + ιvload(s)) . (17)

By defining an equivalent impedance,1

zeq(s) :=
ιvload(s)
N∑

`=1

i`(s)

, (18)

1In general, the definition in (18) captures both linear and nonlinear loads.
For instance, notice that for a passive impedance load, zload(s), we have
zeq(s) = ι× zload(s).
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we can rewrite (17) as follows:

vj(s) = (ιν)−1
(
zf(s)ij(s) + zeq(s)

N∑

`=1

i`(s)

)
. (19)

Collecting all oscillator voltages, we obtain

v(s) = (ιν)−1
(
zf(s)I + zeq(s)11T

)
i(s). (20)

Solving for i(s) in (20), we get

i(s) = Y (s)v(s), (21)

where the network admittance matrix, Y (s) ∈ CN×N , is given
by2

Y (s) = α(s)I + β(s)Γ, (22)

with α(s), β(s) ∈ C defined as
{
α(s) := ιν (zf(s) +Nzeq(s))

−1
,

β(s) := ινzeq(s)(zf(s) (zf(s) +Nzeq(s)))−1,
(23)

and Γ ∈ RN×N is the network Laplacian matrix given by

Γ := NI−11T =




N − 1 −1 . . . −1
−1 N − 1 . . . −1

...
...

. . .
...

−1 −1 . . . N − 1


 . (24)

A few properties of the Laplacian matrix that we will find
useful include: i) rank (Γ) = N − 1, ii) the eigenvalues of Γ
can be written as λ1 < λ2 = · · · = λN , where λ1 = 0 and
λj = N for j = 2, . . . , N , and iii) Γ can be diagonalized as
QΛQT where QQT = I . Additional details are in [43], [53],
[54].

We will now seek a system description where the linear
and nonlinear portions of the system are clearly compartmen-
talized. Towards this end, first note that the virtual oscillator
voltages can be expressed as

v(s) = Zosc(s) (ig(s)− i(s))
= Zosc(s) (ig(s)− Y (s)v(s)) , (25)

where ig(s) = [ig1(s), . . . , igN (s)]
T with igj = −g(vj) (see

Fig. 1), Zosc(s) := zosc(s)I ∈ CN×N , and the second line
follows after substituting (21). Solving for v(s) yields

v(s) = (I + Zosc(s)Y (s))
−1
Zosc(s)ig(s)

=: F (Zosc(s), Y (s)) ig(s), (26)

where F : CN×N × CN×N → CN×N is called the linear
fractional transformation.3

Using (26), the network of virtual oscillators can be
represented using the block diagram in Fig. 4, where the
linear and nonlinear subsystems are compartmentalized in
F (Zosc(s), Y (s)) and g(v) = [g(v1), . . . , g(vN )]

T, respec-
tively.

2An outline of the derivation for Y (s) is given in Appendix B.
3For two systems with transfer matrices denoted by A(s) and B(s) (of

appropriate dimension), the linear fractional transformation is defined as
F (A(s), B(s)) := (I +A(s)B(s))−1 A(s). Notice that F (A(s), B(s))
is the transfer matrix for the equivalent system comprised of the negative
feedback interconnection of A(s) and B(s).

gi v

)v(g−

))s(, Y)s(oscZ(F

Figure 4: Block-diagram representation of the parallel inverter system
with VOC with the linear and nonlinear subsystems clearly compart-
mentalized.

IV. CONDITIONS FOR GLOBAL ASYMPTOTIC
SYNCHRONIZATION

In this section, we first derive a coordinate-transformed
system based on signal differences. Next, we present the main
analytical result of this paper—a condition for synchronization
of the inverter terminal voltages in a system controlled with
VOC. Finally, we examine the asymptotic dynamics of the
synchronized system with a focus on power sharing and
circulating currents.

A. Corresponding Differential System

Global asymptotic synchronization (referred interchange-
ably as synchronization subsequently) in the network of cou-
pled virtual oscillators illustrated in Fig. 3 is defined as the
condition

lim
t→∞

vj(t)− vk(t) = 0, ∀j, k = 1, . . . N. (27)

The derivation of sufficient conditions for synchronization
can be significantly simplified by examining a corresponding
differential system, where all signal vectors are multiplied
by the projector matrix Π (5). Along these lines, it is clear
from (6) that synchronization of the virtual oscillator voltages
implies lim

t→∞
ṽ(t) = Πv(t)→ 0.

Beginning with (25), we show in Appendix C that the
differential vectors of virtual-oscillator terminal voltages and
nonlinear source currents, ṽ and ĩg, respectively, are related
by the same linear fractional transformation in (26), i.e.,

ṽ (s) = F (Zosc(s), Y (s)) ĩg(s). (28)

With (28), the differential system can be represented us-
ing the block diagram in Fig. 5. Notice that the linear
and nonlinear parts of the system are compartmentalized in
F (Zosc(s), Y (s)) and g̃ : ṽ → −ĩg, respectively, where g̃
captures the effect of the nonlinear voltage-dependent current
sources.

B. Sufficient Condition for Global Asymptotic Synchronization

We now present a theorem that establishes a sufficient
condition for the global asymptotic synchronization of the
virtual oscillators as defined in (27). Note that the theorem
leverages results presented in [12].

Theorem 1. Consider the network of N dead-zone oscillators
interfaced to the system of parallel inverters with current and
voltage gains, ι and ν, as shown in Fig. 3. The system of
oscillators synchronizes in the sense of (27), if

sup
ω∈R

∥∥∥∥
(ιν)−1zf(jω)zosc (jω)

(ιν)−1zf(jω) + zosc (jω)

∥∥∥∥
2

σ < 1, (29)
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where zosc(s) is the oscillator linear-subsystem impedance
given in (8), σ is the maximum slope of the function g(·) that
describes the nonlinear voltage-dependent current source (11),
and zf(s) is the reference filter impedance.

Proof: Consider the block-diagram of the differential
system in Fig. 5. Denoting the differential L2 gain of the
linear fractional transformation by γ̃ (F (Zosc(s), Y (s))), we
have for some non-negative η̃,

‖ṽ‖L2
≤ γ̃ (F (Zosc(s), Y (s))) ‖̃ig‖L2

+ η̃

≤ γ̃ (F (Zosc(s), Y (s)))σ ‖ṽ‖L2
+ η̃, (30)

where the first line in (30) follows from the definition of the
differential L2 gain in (7), and the second line results from
the fact that ‖̃ig‖L2 ≤ σ ‖ṽ‖L2

for the nonlinear map g̃ [12].
If we assume that

γ̃ (F (Zosc(s), Y (s)))σ < 1, (31)

then by isolating ‖ṽ‖L2
from (30), we obtain

‖ṽ‖L2
≤ η̃

1− γ̃ (F (Zosc(s), Y (s)))σ
<∞, (32)

which implies that ṽ ∈ L2. Global asymptotic synchronization
in the sense of (27) then follows by invoking Barbalat’s lemma
[42]–[45].

We will now prove that the inequalities in (31) and (29)
are equivalent. First, note that by a simple rearrangement of
terms, the linear fractional transformation defined in (26) can
be expressed equivalently as

F (Zosc(s), Y (s)) = F (ζ(s)I, β(s)Γ) , (33)

where we define

ζ(s) := zosc (s) (1 + α(s)zosc(s))
−1, (34)

with α(s) and β(s) given in (23). From (33), and by definition
of the differential L2 gain of the linear fractional transforma-
tion, we now get

γ̃ (F (Zosc(s), Y (s))) = γ̃ (F (ζ(s)I, β(s)Γ))

= ‖F (ζ(s)I, β(s)Γ)‖∞
= sup

ω∈R

‖ (I + ζ(jω)β(jω)Γ)
−1
ζ(jω)̃ig (jω) ‖2

‖̃ig(jω)‖2

= sup
ω∈R

‖Q (I + ζ(jω)β(jω)Λ)
−1
ζ(jω)QTĩg(jω)‖2

‖QTĩg(jω)‖2
, (35)

where, we have diagonalized Γ = QΛQT and recognized
that QQT = I [12]. Notice that the vector QTĩg(s) can be
expressed as

QTĩg(s) = QTΠig(s) = [0, D(s)]
T
, (36)

where D(s) ∈ CN−1×1 is composed of the non-zero elements
of QTΠig(s). This is because the first column of Q is given
by q1 = 1√

N
1, and the fact that 1TΠ = 0T. Defining ΛN−1 =

NIN−1 ∈ RN−1×N−1 (IN−1 is the N − 1 ×N − 1 identity
matrix) to be the diagonal matrix whose entries constitute the

g−

gĩ=giΠ ṽ=vΠ))s(, Y)s(oscZ(F

Figure 5: Block-diagram representation of the corresponding differ-
ential system.

non-zero eigenvalues of Γ, and substituting (36) in (35), we
get

γ̃ (F (ζ(s)I, β(s)Γ))

= sup
ω∈R

‖ (IN−1 + ζ(jω)β(jω)ΛN−1)
−1
ζ(jω)D(jω)‖2

‖D(jω)‖2
= sup

ω∈R
(1 + ζ(jω)β(jω)N)

−1
ζ(jω)

= ‖F (ζ(s), β (s)N)‖∞ . (37)

Substituting β(s) = (α(s)zeq(s))/zf(s) from (23) into
F (ζ(s), β (s)N), it is straightforward to show

F (ζ(s), β (s)N) =
(ιν)−1zf(s)zosc(s)

(ιν)−1zf(s) + zosc(s)
, (38)

which completes the proof. Notice that the synchronization
condition in (29) is independent of the number of inverters in
the system, N , as well as the load parameters. It depends only
on the impedance of the parallel combination of (ιν)−1zf(s)
and zosc(s).

C. Asymptotic Dynamics

We now consider the implications of voltage synchroniza-
tion on power sharing and circulating currents in the system.

Power Sharing : Synchronization of the virtual oscillators
implies that vj = vk, ∀j, k = 1, . . . , N . Given the relationship
between the terminal voltage of the jth virtual oscillator and
corresponding inverter in (15), we see that synchronization
congruently implies voj = vok, ∀j, k = 1, . . . , N , i.e., all
the inverter terminal voltages oscillate in phase. Additionally,
using (15) and rearranging terms in (14), we obtain

vj(s) = ν−1
(
κ−1j zf(s)ioj(s) + vload(s)

)
. (39)

Synchronization of terminal virtual-oscillator voltages (i.e.,
vj = vk, ∀j, k = 1, . . . , N ) further implies
(
κ−1j zf(s)ioj(s) + vload(s)

)
=
(
κ−1k zf(s)iok(s) + vload(s)

)
.

(40)
Simplifying the above expression yields

ioj(s)

κj
=
iok(s)

κk
, ∀j, k = 1, . . . , N. (41)

Combining (41) with (13), we obtain

ioj(s)

iok(s)
=
Pj

Pk
, ∀j, k = 1, . . . , N. (42)

Equation (42) demonstrates that synchronization of virtual os-
cillator voltages results in current (power) sharing proportional
to the power ratings of the inverters.



IEEE TRANSACTIONS ON POWER ELECTRONICS (ACCEPTED) 7

Elimination of Circulating Currents : We now establish that
circulating currents decay to zero as the terminal voltages
in the system of parallel inverters synchronize. Adopting
the definition of circulating currents proposed in [55], the
circulating component of the jth inverter output current is
denoted by icj(s), and defined as

icj(s) := ioj(s)−
κj
κT1

iload(s), (43)

where κ = [κ1, . . . , κN ]T. Since, iload(s) = ΣN
j=1ioj(s) =

io(s)T1, (43) can be written as

icj(s) = ioj(s)−
io(s)T1

κT1
κj , (44)

and the vector of all circulating currents, ic(s) =
[ic1(s), . . . , icN (s)]T, is given by

ic(s) = io(s)− io(s)T1

κT1
κ. (45)

Since the terminal voltages of the inverters synchronize
asymptotically, in periodic steady state we can write the vector
of terminal inverter voltages as vo(s) = v̂o(s)1, where v̂o(s)
denotes the synchronized terminal voltage of the inverters.
With this notation in place and assuming synchronized op-
eration, we can express the vector of output currents in (14)
as

io(s) =
v̂o(s)− vload(s)

zf(s)
diag {κ1, . . . , κN}1

=
v̂o(s)− vload(s)

zf(s)
κ. (46)

Substituting (46) in (45), we obtain

ic(s) =
v̂o(s)− vload(s)

zf(s)
κ− (v̂o(s)− vload(s))κT1

zf(s)κT1
κ = 0,

(47)
which demonstrates that synchronization of the inverter ter-
minal voltages results in the circulating currents decaying to
zero in periodic steady state.

o1ιi

1v
)1v(g

g1i

o1v

fz

ι

outv

open-circuit
test

rated-load
test

ϕσ

−

+

R L C

ν
1P

min
2V

o1i

1v

Figure 6: The circuit model used to perform the open-circuit and
rated-load tests for parameter selection in inverter 1. The design
variables, R,L,C, σ, ϕ, ι, and ν are highlighted in red.

V. CONTROLLER PARAMETER SELECTION AND
IMPLEMENTATION

In this section, we outline a process for controller parameter
selection and subsequent implementation on a microcontroller.
Additionally, a technique which facilitates the addition of
inverters in an energized system is proposed to improve
dynamic performance.

A. Parameter selection

Without loss of generality and with reference to Fig. 6, we
first outline the design strategy for a single inverter in the
system (assigned a label index 1). We will fix κ1 = 1, which
implies that the reference impedance for the system, zf(s),
is the filter impedance of inverter 1. The design problem can
now be formulated as follows: Given the filter impedance,
zf(s), power rating, P1, and rated system frequency, ωrated,
select the current gain, ι, voltage gain, ν, and virtual oscillator
parameters R, L, C, σ, and ϕ, such that: i) the synchronization
condition in (29) is satisfied, and ii) the load voltage is
maintained within prescribed upper and lower limits across
the complete load range (open circuit to rated load).

Towards this end, we will first pick ν =
√

2Vrated, where
Vrated denotes the rated RMS voltage of the ac system.
With this choice, and in light of (15), notice that the virtual
oscillator voltages equal the per-unitized output voltages of
the corresponding inverters. Oscillations at the rated system
frequency, ωrated, result from selecting R, L, and C such that
ω2
rated = (LC)−1 and σ > 1/R (see Section III-A). Next, two

simulations are performed with the circuit model in Fig. 6 to
ensure the RMS inverter output voltage stays within prescribed
upper and lower bounds, Vmax and Vmin, respectively, for
the entire load range. The first, is an open-circuit test where
the value of ϕ is tuned until the RMS voltage at the output
terminals, Vout, equals Vmax. Subsequently during the rated-
load test, the value of ι is adjusted such that Vout = Vmin

in steady-state conditions. In general, the designer obtains the
desired level of voltage regulation by proper selection of ϕ
and ι. In particular, the open-circuit and full-rated-load tests

jgi

ji

)jv(g

fzj
1−κ

jov

ϕσ

−
+
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+

Virtual Oscillator Control (VOC)

to rest 
of 

system

Digital Control

R L C

PWM

−
+ joi

joi

dcv
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m
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1−κ
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Virtual Oscillator Control (VOC)
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PWM

)jv(g
ϕσ

joi

jv

m

ιj
1−κ
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∗v

jv

×
÷

Figure 7: Digital implementation of virtual oscillator control for the
jth inverter.
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ensure that the values of ϕ and ι are chosen in proportion to
Vmax and (Vmax − Vmin), respectively. Finally, the parameters
are tuned to reduce the value of ε =

√
L/C (σ − 1/R) such

that the synchronization condition in (29) is satisfied.
Inverters with differing power ratings are easily accom-

modated by appropriately selecting the value of κj for j =
2, . . . , N as dictated by (13). Since κ1 = 1, it follows that
κj = Pj/P1. The remaining parameters are identical to those
used in inverter 1.

B. Controller Implementation

After completing the parameter-selection process outlined
above, the resulting controller can be implemented straightfor-
wardly on a standard microcontroller, as shown in Fig. 7, by
discretizing the second-order system in (12) which describes
the dead-zone oscillator dynamics. With reference to the
controller depicted in Fig. 7, the measured output current
of the jth inverter is scaled by κ−1j ι and extracted from
the virtual oscillator. The resulting oscillator voltage, vj , is
multiplied by ν to generate an ac voltage command, denoted
v∗oj . After normalizing the voltage command with respect to
the dc-link voltage, sine-triangle PWM can be applied to the
modulation signal, m, to generate the switching signals. As a
result of this strategy, the average inverter ac voltage follows
the commanded voltage, i.e., voj → v∗oj = νvj . Furthermore,
notice from Fig. 7 that the voltage command, v∗oj , is scaled
by the instantaneously measured dc bus voltage, vdc, thereby
ensuring that the dc link dynamics are decoupled from the
oscillator-based controller. This strategy follows from well-
established methods for decoupling dc-link dynamics from
output ac-control dynamics [56]. Notice that the controller
only requires the output current and dc-link voltage measure-
ments. Furthermore, the proposed control does not require real
and reactive power computations, a phase-locked loop, or any
trigonometric functions.

addt

addt

loadv

loadv

−
+

−+

Digital Control
pre-synchronization circuit

fzj
1−κ

−

+ VOC

PWM

−
+ joi

joi

dcv

jv

m ιj
1−κ

fz
1−)νι(

to rest 
of 

system
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loadv

−+

Digital Control
pre-synchronization circuit

−

+ VOC

PWM joi

jv

m ιj
1−κ

fz
1−)νι(

ν jo
∗v

shuntr

1−ν

seriesr
ji

×
÷

Figure 8: Virtual oscillator controller augmented with a pre-
synchronization circuit for the jth inverter. The inverter is added to
an energized system and the pre-synchronization circuit is removed
at t = tadd.

C. Facilitating Inverter Addition with a Virtual Pre-
Synchronization Circuit

From (29), we see that the condition for global asymptotic
synchronization is independent of the number of inverters.
This implies that inverters can be added and removed from
the system without affecting synchronization in steady state.
Although synchronization is guaranteed, system transients can
be undesirably large when inverters are added. In this section,
we outline a pre-synchronization circuit that can be augmented
with the proposed virtual oscillator controller to facilitate the
seamless addition of inverters into an energized system with
minimal transients.

Assume that for t < tadd, there are N synchronized parallel
inverters operating in the system. At t = tadd, we wish to add
an additional inverter to the system. As shown in Fig. 8, for
t < tadd, the virtual oscillator controller is connected across
a virtual pre-synchronization circuit which consists of: i) a
scaled filter impedance, (ιν)−1zf , ii) a shunt resistor, rshunt,
iii) a series resistor, rseries, and iv) a controlled voltage source
which follows the measured value of vload.

The purpose of the pre-synchronization circuit is to ensure
that the state-variables of the controller associated with the
additional inverter are close to synchrony with those of the
operational inverters. The design of the pre-synchronization
circuit is based on some key observations: i) in steady state,
the current through rseries is approximately zero, and ii) the
voltage across rshunt closely follows the load voltage. In other
words, the pre-synchronization circuit in Fig. 8 ensures that
the output current of the virtual oscillator corresponding to
the inverter to be added closely follows that of the previously
existing virtual oscillators prior to unit addition. To ensure
proper operation, rshunt must be chosen such that the power
it consumes is of the same order of the inverter power rating
given by (ιν)

−1
κj(V

2
rated/Pj), where Pj is the power rating

100V

100V

100V

loadv

fz2
1−κ

−
+

−
+

−
+

−
+ o1i

o2i

o3i

fz1
1−κ

fz3
1−κ

VOC
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VOC

Figure 9: Experimental setup composed of three parallel inverters and
load.
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(a) (b)

(c) (d)

Figure 10: Load voltage and inverter currents during startup with non-identical initial conditions. Waveforms in (a) and (b) demonstrate
system behavior when connected to a resistive load under 1 : 1 : 1 and 2 : 2 : 1 ratios of power sharing, respectively. Waveforms in (c) and
(d) correspond to the case of equal power sharing with RLC and nonlinear diode-bridge rectifier loads, respectively.

of the jth inverter.4 Finally, rseries should be picked sufficiently
small such that a low impedance path exists between the
load following voltage source and rshunt. When the inverter
is added at t = tadd, the pre-synchronization circuit is
disconnected, such that the original VOC controller in Fig. 7
is recovered.

VI. EXPERIMENTAL RESULTS

The experimental prototype consists of three single-phase
inverters connected in parallel. An electrical schematic of the
hardware setup is shown in Fig. 9. Each inverter operates
at a 25 kHz switching frequency and utilizes an independent
virtual oscillator controller implemented on a TMS320F28335
digital signal processor. The differential equations in (12) were
discretized using a 100µs sample step-size. To demonstrate
the versatility of the proposed method and validate the analysis
presented in Section IV, multiple load types and power sharing
ratios are investigated. In particular, we consider resistive,
RLC, and nonlinear diode-bridge rectifier loads. For the
subset of case studies with equal power sharing, it follows
that κ = [1, 1, 1]

T. In cases with non-uniform power sharing,

4Recall that the factor (ιν)−1 κj is used to reflect impedances from the
physical domain to the virtual-oscillator domain for the jth inverter–virtual-
oscillator combination.

κ = [1, 1, 1/2]
T which implies two of the inverters share 40%

of the load, while the third inverter provides 20% of the load
power. Subsequently, we refer to the setup with equal sharing
as the 1 : 1 : 1 case, and the setup with non-uniform power
sharing as the 2 : 2 : 1 case.

The reference filter impedance is given by zf(s) = sLf+Rf ,
where Lf is the output-filter inductance and Rf includes the
winding, interconnection, and MOSFET on-state resistances.
The virtual-oscillator inductance and capacitance, L and C,
respectively, were selected for a 60 Hz ac frequency. The
upper and lower RMS load voltage limits were selected as
1.05 × Vrated and 0.95 × Vrated, respectively, with Vrated =
60 V. Given the allowable load-voltage range and the inverter
power ratings given in Table I, the open-circuit and full-rated
load tests described in Section V-A were conducted to select ϕ
and ι, respectively. The complete list of inverter specifications
and design parameters is summarized in Table I. It should
be mentioned that the experimental results in this section
are a testament to the robustness of the proposed method to
electric component tolerances, uncertainty, and round-off error
in practical applications.

For the particular filter structure employed, it can be shown
that the linear fractional transformation is given by

F
(
zosc(s), (ιν)z−1f (s)

)
=

a2s
2 + a1s

b3s3 + b2s2 + b1s+ b0
, (48)
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(a) (b)

(c) (d)

Figure 11: Waveforms in (a) and (b) demonstrate the system transient response with 2 : 2 : 1 power sharing during a step up and step down
in resistive load. Waveforms in (c) and (d) correspond to load steps with an RLC load. The dashed lines illustrate the change in power
factor after each load transient. In each case, the load transient occurs at the midpoint of the time axis.

where a2 = Lf , a1 = Rf , b3 = LfC, b2 = (Lf/R) + RfC,
b1 = (Lf/L) + (Rf/R) + ιν, and b0 = Rf/L. Evaluating
(29) with the values given in Table I, it can be shown that∥∥F
(
zosc(jω), (ιν)z−1f (jω

)∥∥
∞ σ = 0.77 < 1, which guaran-

tees synchronization.

A. Start up

First, we consider the case when all three inverters are
simultaneously energized from a cold-start. To emulate er-
rors which may exist in a practical system, each inverter is
programmed with non identical initial conditions, i.e., initial
conditions for the three virtual oscillator voltages were se-
lected to be (1/ν) [5 V, 4 V, 3 V]

T. Figs. 10(a)–10(b) show the
inverter currents and load voltage from startup in the presence
of a resistive load under uniform and nonuniform sharing,
respectively. The waveforms in Figs. 10(c)–10(d) illustrate
startup system dynamics with an RLC load and nonlinear
rectifier load, respectively. The RLC load impedance is given
by (Rrlc + sLrlc)||(Rrlc + (sCrlc)

−1); the values of Rrlc, Lrlc,
and Crlc are listed in Table I.

B. Load transients

System responses to load transients are illustrated in Fig. 11.
In particular, Figs. 11(a)–11(b) depict the transient response

to step changes in a resistive load with 2 : 2 : 1 power
sharing. It can be observed that the increase in output current
is nearly instantaneous with changes in the load and that the
load voltage is unperturbed. The waveforms in Figs. 11(c)–
11(d) correspond to an RLC load where the load is changed
from (Rrlc + sLrlc) ‖

(
Rrlc + (sCrlc)

−1) ↔ (Rrlc + sLrlc).
Note that the change in power factor (denoted by dashed lines)
coincides with the instant at which the series RC component
of the RLC load is switched in and out. There are no dc
components in the periodic steady-state waveforms.

C. Inverter addition and removal

Here we investigate the system dynamics as inverters are
removed from and added into an energized system. The
virtual pre-synchronization circuit described in Section V-C,
and illustrated in Fig. 8 was utilized to facilitate inverter
addition. Figs. 12(a) and 12(c) show the transient response as
the third inverter is removed from the system with resistive and
rectifier loads, respectively. Notice that the remaining inverters
abruptly increase their current output when the third inverter
is removed, which ensures that the load voltage continues to
meet specifications. The waveforms in Figs. 12(b) and 12(d)
illustrate system behavior when the third inverter is added into
the system. Despite the sudden inclusion of the third inverter,
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(a) (b)

(c) (d)

Figure 12: Inverter removal and addition transients. Waveforms (a) and (b) correspond to the system with a resistive load and a sharing ratio
of 2 : 2 : 1. Waveforms (c) and (d) show inverter removal and addition dynamics in the presence of a nonlinear rectifier load with 1 : 1 : 1
power sharing. In each case, inverter addition/removal occurs at the midpoint of the time axis.

transients are minimal, and synchronization is achieved in a
few cycles.

D. Robustness to Parameter Variations

Parametric uncertainty in the proposed approach predomi-
nantly arises from two sources: i) small round-off and trun-
cation errors in programming the virtual oscillators within
the microcontroller, and ii) filter impedance variations due
to manufacturing tolerances and degradation. In [12], it was
shown that small errors in the virtual oscillator parameters
result in small and bounded voltage synchronization errors.
Below, we study the impact of filter impedance deviations on
power sharing and circulating currents.

We present a set of comparative experimental results to
illustrate the minimal impact of large deviations in output-
filter impedances (outside of expected tolerances) on power
sharing. As described in Sections III-B and V-A, the per unit
impedance of all output filters should ideally be identical.
This design choice ultimately results in perfect power sharing
between the parallel inverters. The experimental results in
Fig. 13 correspond to a system with 2 : 2 : 1 current
sharing. In Fig. 13(a), we consider the baseline case where
each filter impedance closely matches the nominal required
value. In Fig. 13(b), the filter inductance of inverter 3 was
intentionally decreased by a factor of 2 from the nominal

value. By comparing the RMS values of the inverter-output
currents in the two experiments, it can be confirmed that the
power-sharing error introduced by the large filter impedance
deviation is negligible. In particular, a 50% change in the filter
inductance of inverter 3 only results in a 4% change in the
power delivered by that inverter (see the highlighted red boxes
in Fig. 13).

Next, we consider the impact of filter impedance variations
on circulating currents. Again, the experimental setup with
2 : 2 : 1 power sharing is analyzed. Adopting the definition
in (43), Figs. 14(a) and 14(b) illustrate the circulating com-
ponents for the nominal filter case and for the case with 50%
deviation in the filter inductance of inverter 3. As predicted by
the analysis in Section IV-C for the case with perfect voltage
synchronization, the waveforms in Fig. 14(a) confirm that the
measured circulating components decay to zero. Furthermore,
the measurements in Fig. 14(b) show that the circulating
currents approach zero despite the large deviation in filter
inductance for inverter 3, demonstrating robustness of the
proposed approach.

VII. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

A method for controlling a system of parallel single phase
inverters without communication was introduced. The pro-
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(a)

(b)

Figure 13: Measurements corresponding to three parallel inverters
serving a resistive load with a 2 : 2 : 1 current sharing ratio. The
waveforms in (a) correspond to the ideal case where the filter values
closely match the nominal values and the results in (b) correspond
to the case where the filter inductance of inverter 3 is intentionally
reduced by 50% from the nominal value. Despite the large deviation
of filter impedance in (b), the impact on current sharing accuracy is
negligible. Comparing the two experiments, a modest 4% change in
the power delivered by inverter 3 is observed.

posed technique, referred to as virtual oscillator control, relies
on programming the controller of each inverter such that the
inverter emulates the dynamics of a dead-zone oscillator cir-
cuit. It was shown that the system of N inverters synchronize
their ac outputs and share the load in proportion to their power
rating without communication. In addition, a method which
facilitates the addition of inverters into an energized system
was developed. A sufficient condition for virtual oscillator
synchronization was derived and the result was shown to be
independent of the load and the number of inverters. Experi-
mental results validated the proposed control approach with
uniform and non-uniform power sharing between inverters
while connected to both linear and nonlinear loads.

Compelling avenues for future work include developing
similar virtual-oscillator based controllers for grid connected
applications. Furthermore, although there are no practical
barriers to the use of LC and LCL filters, the analytical
framework should be extended to accommodate these addi-
tional filter structures. Furthermore, although it was experi-
mentally shown that the proposed method exhibits robustness
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Figure 14: Measured circulating currents during startup under 2 : 2 :
1 sharing with a resistive load. Nominal filter values were used in (a).
In (b), filter inductance 3 was deliberately halved from the nominal
design value. In both cases, the circulating currents, ic1, ic2, and ic3,
approach zero with asymptotic voltage synchronization.

to filter parameter deviations, future efforts could be focused
on analytically quantifying robustness margins. Finally, while
the analysis and experiments in this paper are focused on
controller-time-scale synchronization phenomena, it is impor-
tant to analyze switch-level dynamic phenomena of interest
with VOC. It would be of interest to determine whether there
are benefits associated with PWM carrier synchronization or
dc bus coordination, even though experimental results have
shown that these are not required.

APPENDIX

A. Experimental parameters

The inverter hardware specifications and control parameters
are listed below in Table I. The virtual oscillator parameters are
R, L, C, σ, and ϕ. The voltage and current scaling gains are
denoted as ν and ι, respectively. System voltage and frequency
ratings are ωrated and Vrated, respectively. Using the design
procedure in Section V-A, the upper and lower voltage limits
are Vmax and Vmin, respectively. The nominal inverter filter
impedance is zf(s) = Rf + sLf . The jth inverter power
rating is denoted as Pj and the accompanying power rating
scaling factors are denoted as κ1, κ2, and κ3. The maximum
rated RMS output current of the nominal inverter design is
denoted as Imax. The pre-synchronization circuit parameters,
as described in Section V-C, are denoted as rseriesj and rshuntj .
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The RLC load parameters are denoted by Rrlc, Lrlc, and
Crlc. The resulting voltage regulation curve for the selected
paramaters is given in Fig. 15.

Table I: Experimental hardware and controller parameters.

ωrated = 2π60 rad s−1 Rf = 1 Ω
Vrated = 60 V Lf = 6 mH

Vmax = 1.05× Vrated κ1, κ2 = 1

Vmin = 0.95× Vrated κ3 = 1, 1
2

R = 10 Ω Imax = 2−
1
2 0.8 A

L = 500µH Pj = κjImaxVmin

C = 1/
(
Lω2

rated

)
rseriesj = 100

κj

ιν
Ω

σ = 1 S rshuntj = 2
Pj

I2max

κj

ιν

ϕ = 0.4695 V Rrlc = 50 Ω
ι = 0.1125 Lrlc = 37 mH

ν =
√

2Vrated Crlc = 48µF

B. Derivation of Y (s)

From (20), we see that the inverse of the admittance matrix
is given by

Y −1(s) =
zf(s)

ιν

(
I +

zeq(s)

zf(s)
11T

)
. (49)

For an invertible square matrix A, and vectors x, y, the
Sherman-Morrison-Woodbury formula [57] states

(A+ xyT)−1 = A−1 − A−1xyTA−1

1 + yTA−1x
. (50)

Applying this to invert (49), we get

Y (s) =
ιν

zf(s)

(
I − (zeq(s)/zf(s))11

T

1 + (zeq(s)/zf(s))1T1

)
. (51)

Recognizing that 1T1 = N , and the fact that 11T = NI −Γ,
we can simplify (51) to obtain

Y (s) =
ιν

zf(s)(zf(s) +Nzeq(s))
(zf(s)I + zeq(s)Γ) , (52)

which is of the form Y (s) = α(s)I + β(s)Γ, with α(s) and
β(s) given in (23).

ratedP
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Figure 15: The voltage regulation curve corresponding to the ex-
perimental setup. Using the open-circuit and full-rated-load tests, the
values of ϕ and ι were tuned such that the load voltage is maintained
between ±5% of the rated value of the entire load range.

C. Derivation of (28)
Begin by pre-multiplying both sides of (25) by the projector

matrix, Π, to obtain

Πv(s) = ΠZosc(s) (ig(s)− i(s))
= Zosc(s)

(
ĩg(s)−ΠY (s)v(s)

)
. (53)

The second line in (53) follows from recognizing that
ΠZosc(s) = Πzosc(s)I = zosc(s)IΠ = Zosc(s)Π, and
substituting for i(s) from (21). Next, it is straightforward to
show that the projector and admittance matrices commute:

ΠY (s) = Π (α(s)I + β(s)Γ)

= α(s)Π + β(s)ΠΓ

= α(s)Π + β(s)

(
I − 1

N
11T

)
Γ

= α(s)Π + β(s)

(
ΓI − 1

N
Γ11T

)

= (α(s)I + β(s)Γ) Π = Y (s)Π, (54)

where we have used 11TΓ = 00T = Γ11T (which follows
from the fact that the row and column sums of Γ are zero).
Using ΠY (s) = Y (s)Π in (53), we get

ṽ(s) = Zosc(s)
(
ĩg(s)− Y (s)ṽ(s)

)
. (55)

Isolating ṽ(s), we can then write

ṽ(s) = (I + Zosc(s)Y (s))
−1
Zosc(s)̃ig

= F (Zosc(s), Y (s)) ĩg(s). (56)
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