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Abstract—Virtual Oscillator Control (VOC) is a decentralized
control strategy for islanded microgrids where inverters are
regulated to emulate the dynamics of weakly nonlinear oscil-
lators. Compared to droop control, which is only well defined in
sinusoidal steady-state, VOC is a time-domain controller that
enables interconnected inverters to stabilize arbitrary initial
conditions to a synchronized sinusoidal limit-cycle. However,
the nonlinear oscillators that are elemental to VOC cannot be
designed with conventional linear-control design methods. We
address this challenge by applying averaging- and perturbation-
based nonlinear analysis methods to extract the sinusoidal steady-
state and harmonic behavior of such oscillators. The averaged
models reveal conclusive links between real- and reactive-power
outputs and the terminal-voltage dynamics. Similarly, the per-
turbation methods aid in quantifying higher-order harmonics.
The resultant models are then leveraged to formulate a design
procedure for VOC such that the inverter satisfies standard
ac performance specifications related to voltage regulation, fre-
quency regulation, dynamic response, and harmonic content.
Experimental results for a single-phase 750 VA, 120 V laboratory
prototype demonstrate the validity of the design approach.
They also demonstrate that droop laws are, in fact, embedded
within the equilibria of the nonlinear-oscillator dynamics. This
establishes the backward compatibility of VOC in that, while
acting on time-domain waveforms, it subsumes droop control in
sinusoidal steady state.

Index Terms—Averaging, Droop control, Microgrids, Nonlin-
ear oscillator circuits, Synchronization, Van der Pol oscillators.

I. INTRODUCTION

M ICROGRIDS are a collection of heterogeneous energy
sources, e.g., photovoltaic arrays, fuel cells, and energy-

storage devices, interfaced to an ac electric distribution net-
work that can be islanded and operated independently from
the bulk ac system. Energy conversion is often performed by
power-electronic inverters, and in islanded settings, the control
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challenge is to regulate the amplitude and frequency of the
inverters’ terminal voltage such that high power quality can be
guaranteed to the loads in the network. The ubiquitous control
strategy in this domain is droop control, which linearly trades
off the inverter-voltage amplitude and frequency with real- and
reactive-power output [1]. Departing from droop control, in
the spirit of pioneering time-domain control methods first pro-
posed in [2], [3], and building further on our prior work [4], we
focus on a nonlinear control strategy where islanded inverters
are controlled to emulate the dynamics of weakly nonlinear
limit-cycle oscillators. We have termed this strategy Virtual
Oscillator Control (VOC) since the nonlinear oscillators are
programmed on a digital controller. VOC presents appealing
circuit- (inverter) and system- (microgrid electrical network)
level advantages. From a system-level perspective, synchro-
nization emerges in connected electrical networks of inverters
with VOC without any communication, and primary-level
voltage- and frequency-regulation objectives are ensured in a
decentralized fashion [5]. At the circuit level, each inverter
is able to rapidly stabilize arbitrary initial conditions and
load transients to a stable limit cycle. As such, VOC is
fundamentally different compared to droop control. While
VOC acts on instantaneous time-domain signals, droop control
is based on phasorial electrical quantities and the notion of an
electrical frequency that are only well defined on slow ac-
cycle time scales. It however emerges that the sinusoidal state
behavior of VOC can be engineered to correspond to droop
laws [5]. (We comment further on this aspect shortly.)

This paper focuses on the design of virtual oscillators that
underpin the control strategy; we refer to this as the oscillator
synthesis problem. Inverter ac performance requirements (volt-
age and frequency regulation, harmonics, dynamic response)
are typically specified with the aid of phasor quantities that
are only valid in the quasi-stationary sinusoidal steady state.
As such, given the intractability of obtaining closed-form
solutions to the oscillator dynamic trajectories, from the outset
it is unclear how to design the nonlinear oscillators such
that the controlled inverters meet prescribed specifications. We
address the oscillator synthesis problem with averaging- and
perturbation-based nonlinear-systems analysis methods [6]–
[8]. Leveraging our previous work in [5], we focus on an
averaged dynamical model for the nonlinear oscillators that
couples the real- and reactive-power outputs to the terminal-
voltage dynamics of the inverter. Analyzing this averaged
model in the sinusoidal steady state uncovers the voltage-
and frequency-regulation characteristics of virtual-oscillator-
controlled inverters. In addition, we develop perturbation-
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based methods that, in general, enable approximating solu-
tions to periodic nonlinear dynamical systems when analytical
closed-form solutions cannot be found. In the present setting,
this analysis parameterizes the higher-order harmonic content
in the inverter output as a function of the oscillator param-
eters, further aiding in oscillator design. The design strategy
developed in this paper is summarized and illustrated in Fig. 1.

The contributions of this work are threefold. First, we
present a systematic design strategy to synthesize nonlinear
oscillators for inverter control. The design strategy aids in
sculpting a desirable sinusoidal limit cycle that meets per-
formance requirements specified in the lexicon of ac power
systems. The proposed strategy can be conveniently applied to
design controllers for inverters with different power, voltage,
and current ratings; in fact, for a system of parallel-connected
inverters, the proposed design strategy natively ensures power
sharing in proportion to the inverter power ratings. Second,
in addition to demonstrating the validity of our design strat-
egy, our experimental results also validate the accuracy of
averaging- and perturbation-based nonlinear-systems analysis
methods that are ubiquitous in modeling, analysis, and control
of weakly nonlinear periodic systems in application areas such
as electrical power systems, circadian rhythms, and bipedal
walking machines [6], [9]. With regard to power-electronics
based systems, averaging methods at switching-frequency time
scales have been successfully applied in prior works to extract
analytically tractable models for simulation and controller
design [10]–[15]. Finally, our previous work has demonstrated
that droop laws are embedded within a slower time scale in the
nonlinear dynamics of a family of weakly nonlinear limit-cycle
oscillators [5]. In this work, we provide experimental evidence
to substantiate this—rather surprising and bold—claim.

Tangentially related to our work are previous efforts in
the design of droop-controlled inverters. Particularly, there
exists a wide body of literature that attempts to identify
droop-control parameters that ensure inverters satisfy steady-
state performance metrics and constraints such as voltage
regulation, maximum frequency deviation, and proportional
power sharing [16]–[20]. For our previous efforts in realizing
VOC, we relied on an iterative design procedure involving
simulation-based open-circuit and full-rated-load tests to de-
sign the virtual oscillators [4], [21], [22]. These ad-hoc design
methods relied on repeated time-domain simulations to tune
parameters and were not affirmed by a rigorous nonlinear-
systems analysis approach. Through developing a unified and
formal design methodology for VOC, we expect this paper
to particularly benefit practicing engineers who would be
interested in implementation aspects.

While this paper focuses on inverter-level design, our
previous work has analyzed the system-level attributes of
VOC. Particularly, in [4], we consider a parallel-connected
system of VO-controlled inverters, and provide: i) analyti-
cal conditions for global asymptotic synchronization, and ii)
experimental results that demonstrate power sharing, ability
to serve linear and nonlinear loads, robustness to parameter
variations, and asymptotic decay of circulating currents. We
have also extended our analytical approach to cover arbitrary
resistive networks in [5], where we establish the existence
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Figure 1: Nonlinear-systems analysis methods enable the for-
mulation of a design strategy that relates inverter performance
criteria to the oscillator circuit parameters (indicated in red).

of well-defined equilibria of the system dynamics, as well as
local exponential stability of linearized amplitude and phase
dynamics.

A Van der Pol oscillator constitutes the virtual oscillator in
this work. We remark that the techniques outlined here can be
applied to a family of weakly nonlinear limit-cycle oscillators.
Subsequently, where we reference VOC, we imply the control
strategy is implemented with Van der Pol oscillators [6], [23];
also, inverters controlled with this approach are termed virtual-
oscillator controlled (VO-controlled) inverters.

The remainder of this manuscript is organized as follows.
Averaging and perturbation techniques are developed in Sec-
tion II. A design procedure which accounts for multiple
design objectives is described in Section III, and the proposed
design framework is experimentally validated in Section IV.
Concluding remarks and directions for future work are given
in Section V. The reader who is mainly interested in practical
application can skip the analysis in Section II and go directly
to Sections III–IV where we outline a straightforward design
procedure and comment on how the controller could be
discretized for digital implementation.

II. INVERTER TERMINAL-VOLTAGE DYNAMICS:
REGULATION, DYNAMIC RESPONSE, AND HARMONICS

In this section, we outline the dynamical model that captures
the ac time-scale behavior of the inverter terminal voltage.
The model conclusively establishes a link between the inverter
terminal-voltage amplitude and frequency with the average
real- and reactive-power output. This is leveraged to derive
the voltage- and frequency-regulation characteristics of VO-
controlled inverters. Furthermore, the averaged model also
enables a characterization of the dynamic response of VO-
controlled inverters. Finally, we also analyze higher-order
harmonics in the voltage waveforms. The models and anal-
yses outlined in this section are leveraged for system design
subsequently in Section III. We begin with a brief overview
of the controller implementation.
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Figure 2: Implementation of VOC on a single-phase H-bridge
inverter with an LCL output filter. The closed-loop controller
is a discrete realization of the nonlinear dynamics of a Van der
Pol oscillator programmed on a microcontroller. The current
and voltage scalings, κv and κi, interface the virtual oscillator
to the inverter.

A. Controller Implementation

Figure 2 illustrates the Van der Pol VOC implementation for
a single-phase inverter. The hardware also includes an LCL
filter which is utilized to reduce high-order harmonics in the
inverter terminal voltage. Filter elements include the inverter-
side inductor, Lf , the ac filter capacitor, Cf , and the grid-
side inductor, Lg. The closed-loop controller is a discretized
version of the Van der Pol oscillator dynamics programmed
onto a digital microcontroller.

The circuit model of the Van der Pol oscillator is composed
of the parallel connection of: i) a harmonic oscillator with
inductance, L, and capacitance, C (yielding a resonant fre-
quency, ω∗ = 1/

√
LC), ii) a negative-conductance element,

−σ, and iii) a cubic voltage-dependent current source. The
virtual capacitor voltage is denoted by vC and the inductor
current is denoted by iL. The current consumed by the cubic
voltage-dependent current source is given by αv3

C , where α is
a positive constant.

The virtual oscillator is coupled to physical electrical signals
in the inverter through the voltage- and current-scaling gains,
κv and κi, respectively. The inverter output current i is
processed by an analog-to-digital converter (ADC), multiplied
by κi, and is extracted from the Van der Pol oscillator circuit.
The resulting value of the VO capacitor voltage, vC , is scaled
by κv to produce the signal v, and this is used to construct
the pulse width modulation (PWM) signal which drives the H-
bridge inverter. For the single-phase inverter topology depicted
in Fig. 2, the PWM signal, m(t), is constructed as follows

m(t) =
v(t)

vdc
, (1)

where vdc is the dc-bus voltage. The switching period, Tsw, is
much smaller than the period of the modulation signal, which
in this setting is approximately 2π/ω∗, where ω∗ is the reso-
nant frequency of the LC harmonic oscillator. Consequently,
the switch-cycle average of the instantaneous inverter-terminal
voltage—denoted by ṽ in Fig. 2—is approximately equal to

the scaled virtual capacitor voltage, v [24]:

1

Tsw

∫ t

s=t−Tsw

ṽ(s)ds = m(t)vdc = v(t). (2)

We subsequently assume that the switch-cycle-average inverter
terminal voltage is equal to v and we refer to this as the
inverter terminal voltage.

With the controller description in place, we next present an
analysis of the terminal-voltage dynamics of a VO-controlled
inverter. The dynamic model is leveraged to synthesize the
underlying Van der Pol oscillator such that the inverter meets
ac performance specifications. Without loss of generality,
we focus on real- and reactive-power ratings, voltage limits,
output-current ratings, maximum frequency deviation, dy-
namic response, and higher-order harmonics. A key challenge
is to connect these performance specifications to the inherently
nonlinear Van der Pol oscillator dynamics. The modeling
approaches to establish these connections are presented next.

B. Averaged Dynamics of a VO-controlled Inverter

We begin with a derivation of the voltage- and frequency-
regulation characteristics of the VO-controlled inverter. The
derivation is based on an averaging analysis of the Van der
Pol oscillator dynamics.

The dynamics of the virtual-oscillator inductor current, iL,
and inverter terminal voltage, v, are given by (see Fig. 2)

L
diL
dt

=
v

κv
,

C
dv

dt
= −αv

3

κ2
v

+ σv − κviL − κvκii .

(3)

The inverter terminal voltage is parameterized in one of the
two forms below

v(t) =
√

2V (t) cos(ωt+ θ(t)) =
√

2V (t) cos(φ(t)), (4)

where ω is the electrical frequency, θ(t) represents the phase
offset with respect to ω, and φ(t) is the instantaneous phase
angle. We are interested in obtaining the dynamical equations
that govern the evolution of the RMS-voltage, V (t), and phase
offset, θ(t), (or equivalently, the instantaneous phase angle,
φ(t)); together these would completely specify the terminal
voltage at any instant. To this end, we begin with the following
definitions that help us simplify notation subsequently:

ε :=

√
L

C
, g(y) := y − β

3
y3, β :=

3α

κ2
vσ
. (5)

A state-space model of the VO-controlled inverter in Cartesian
coordinates aimed at recovering the RMS-voltage amplitude
and instantaneous phase dynamics can be formulated with a
scaled version of the inductor current and the inverter terminal
voltage selected as states, x := κvεiL, and y := v. With the
aid of the g(·) and ε defined in (5), (3) can be rewritten in the
time coordinates τ = ω∗t = (1/

√
LC)t as follows:

ẋ =
dx

dτ
= y, (6)

ẏ =
dy

dτ
= −x+ εσg(y)− εκvκii. (7)
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Next, with the coordinate transformation

√
2V =

√
x2 + y2, φ = tan−1

(
x

y

)
, (8)

applied to (6)-(7), we recover the following dynamical model
for the RMS terminal-voltage amplitude, V , and the instanta-
neous phase angle, φ:

V̇ =
dV

dτ
=

ε√
2

(
σg
(√

2V cos(φ)
)
− κvκii

)
cos(φ),

φ̇ =
dφ

dτ
= 1− ε√

2V

(
σg
(√

2V cos(φ)
)
− κvκii

)
sin(φ).

(9)

As ε ↘ 0, we transition to the so-called quasi-harmonic
limit, where the (unloaded) oscillator exhibits near-sinusoidal
oscillations at the resonant frequency of the LC harmonic
oscillator [23]:

ω∗ =
1√
LC

. (10)

In subsequent sections of the manuscript focused on system
design, we will demonstrate how ε is a key design parameter
that has bearing on the dynamic response and the harmonics
of the system—in particular, a small value of ε ensures near
sinusoidal oscillations, at the expense of a sluggish dynamic
response.

Since we will be focused on the parametric regime char-
acterized by ε ↘ 0, we can leverage notions of periodic
averaging to further simplify and analyze the weakly nonlinear
periodic dynamics in (9). As a primer, consider a time-varying
dynamical system ẋ = εf(x, τ, ε) with time-periodic vector
field

f(x, τ, ε) = f(x, τ + T, ε), (11)

with period T > 0 and a small parameter ε > 0. We define
the associated time-averaged dynamical system [7] as

˙̄x = εfavg(x̄) =
ε

T

∫ T

τ=0

f(x̄, τ, 0)dτ. (12)

The averaged system, favg(x), is autonomous and in general,
more amenable to analysis compared to the original non-
averaged system f(x, τ, ε). Furthermore, for ε ↘ 0, we do
not compromise accuracy by analyzing the averaged system,
since it follows that the difference in the state variables
corresponding to the original and averaged systems is of
O(ε) [7] (see also Fig. 3). In particular, we have

x(τ, ε)− x(ετ) = O(ε). (13)

Subsequently we will denote the time average of a periodic
signal x(t) with period T > 0 by x, and define it as follows:

x :=
1

T

∫ T

s=0

x(s)ds. (14)

With these preliminaries in place, the dynamics in (9) aver-
aged over one ac cycle, 2π/ω∗, under the implicit assumption

ēqV2
√

original nonlinear 

averaged

v

Lεivκ

eqω

Figure 3: Superimposed steady-state limit cycles of the orig-
inal nonlinear oscillator dynamics and the corresponding av-
eraged model. The limit cycle of the averaged model can be
described with a circle of fixed radius,

√
2V eq, and constant

rotational frequency, ωeq, in quasistationary sinusoidal steady
state; V eq and ωeq depend on the real and reactive power
delivered by the oscillator, respectively (see (19) and (23)).

that ε =
√
L/C ↘ 0 are given by the following set of coupled

nonlinear differential equations:

d

dt
V =

σ

2C

(
V − β

2
V

3
)
− κvκi

2CV
P , (15)

d

dt
θ = ω∗ − ω +

κvκi

2CV
2Q, (16)

where P and Q are the average real- and reactive-power
outputs of the VO-controlled inverter (measured with respect
to the nominal frequency, ω∗), respectively. See Appendix A
for a brief derivation of (15)-(16), and [5] for more details.
Figure 3 plots limit cycles recovered from: i) the original
nonlinear dynamics, and ii) the averaged model for a Van der
Pol oscillator.

Remarkably, with this nonlinear control strategy, it emerges
that close to the sinusoidal steady state (recovered in the
quasi-harmonic limit ε↘ 0), the voltage-amplitude and phase
dynamics are directly linked to the average real- and reactive-
power outputs of the inverter, respectively. Consequently, these
averaged dynamics can be leveraged for synthesizing virtual
oscillators so that the inverter satisfies voltage- and frequency-
regulation specifications in sinusoidal steady state. To this end,
we will find the equilibrium solutions corresponding to (15)-
(16) useful, since they establish the voltage- and frequency-
regulation characteristics of the VO-controlled inverter.

Voltage-regulation Characteristic: The equilibria of (15)
can be recovered from the solutions of the nonlinear equation:

0 =
σ

2C

(
V eq −

β

2
V

3

eq

)
− κvκi

2CV eq

P eq, (17)

where V eq and P eq represent the equilibrium steady-state
RMS-voltage amplitude and average real-power output, re-
spectively. Rearranging terms in (17), we get the following
power-balance condition for the VO-controlled inverter:

σβ

2
V

4

eq − σV
2

eq + κvκiP eq = 0. (18)

The positive roots of (18) are given by

V eq = κv

σ ±
√
σ2 − 6α(κi/κv)P eq

3α


1
2

, (19)
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where we have used the fact that σβ = 3α/κ2
v (see (5)).

Notice that (19) has two roots. Both roots are real valued if
the equilibrium real-power output satisfies

0 < P eq < P cr :=
σ2

6α(κi/κv)
, (20)

where P cr is referred to as the critical value for real power.
The corresponding critical value of the terminal voltage is
given by

V cr := κv

√
σ

3α
. (21)

Under a set of mild power-flow decoupling approximations,
the high-voltage solution in (19) is locally asymptotically
stable (see Appendix B for details). Subsequently, we will refer
to the high-voltage solution of (19) by V eq with a slight abuse
of notation. It is worth mentioning that the high-voltage root
is a decreasing function of P eq over the range 0 ≤ P eq ≤ P cr

(that is, steady-state voltage “droops” with increasing real
power output). Finally, note that the open-circuit voltage of the
VO-controlled inverter, V oc, can be obtained by substituting
P eq = 0 into the high-voltage root in (19):

V oc = κv

√
2σ

3α
. (22)

Frequency-regulation Characteristic: Consider the phasor-
angle dynamics in (16). The equilibrium of (16) returns the
frequency of the VO-controlled inverter:

ωeq = ω∗ +
κvκi

2CV
2

eq

Qeq, (23)

where V eq is the stable high-voltage equilibrium obtained
from (19), and Qeq is the average reactive-power output of
the VO-controlled inverter.

C. Dynamic Response

In this section, we focus on the dynamic response of the
VO-controlled inverter. We are interested in how quickly the
terminal voltage of an unloaded inverter builds up to the open-
circuit voltage. The voltage dynamics of interest are recovered
from (15) by setting P = 0:

d

dt
V =

σ

2C

(
V − β 1

2
V

3
)
. (24)

Since (24) is a variable-separable ordinary differential equa-
tion, we integrate both sides, setting the limits from 0.1V oc

to 0.9V oc (without loss of generality). The time taken for this
excursion is defined as the rise time; it is denoted by trise, and
given by the solution of:

trise =
2

εσ

[
log V − 1

2
log

∣∣∣∣1− β

2
V

2
∣∣∣∣]0.9V oc

0.1V oc

.

Evaluating the limits above, we recover [5]

trise ≈
6

ω∗εσ
. (25)

The approximation in (25) indicates that the rise time, trise, is
inversely proportional to ε. This aspect will be leveraged in

the design of the oscillator capacitance, C, in Section III-C.
(Recall from (5) that ε =

√
L/C.)

Without loss of generality, we present the above analysis
for an unloaded inverter. For an inverter loaded to its rated
real power rating with a resistive load, Rrated, the rise time
is given by trise ≈ 6

ω∗εσ′ , where σ′ =
(
σ − κvκi

Rrated

)
. The

subsequent analysis on inverter design can be performed with
this specification of rise time if need be.

D. Harmonics Analysis

In this section, we derive a closed-form analytical expres-
sion for the amplitude of the third harmonic of an unloaded
VO-controlled inverter. In particular, we will investigate the
effect of the nonlinear forcing term in (3), as executed within
the digital controller, on the low-order harmonic content of the
ac output. Our analysis is aimed at parameter selection with
the aim of bounding the ratio of the amplitude of the third
harmonic to the fundamental. To this end, we rely on pertur-
bation methods and the method of multiple scales [25], that
seek approximate analytical solutions to nonlinear dynamical
systems where exact solutions cannot be found.

Consider the non-averaged dynamics of the terminal-voltage
magnitude in an unloaded VO-controlled inverter:

v̈ − εσ
(
1− βv2

)
v̇ + v = 0, (26)

where ε and β are defined in (5), and as before, we operate
in the quasi-harmonic limit, ε↘ 0. This model follows from
expressing (6) and (7) as a second-order system with the input
current i = 0. We seek an approximate solution to (26) that
can be expressed as:

v(τ, ε) ≈ v0(τ, τ̃) + εv1(τ, τ̃). (27)

The solution is written with respect to two time scales: the
original time scale τ , and a slower time scale, τ̃ := ετ .
While higher-order time scales, i.e, ε2τ, ε3τ , can be analyzed
in a similar fashion to obtain approximate solutions correct
to higher-order terms, our analysis is: i) valid up to O(ε),
ii) yields an approximate amplitude for the third harmonic, and
iii) provides error terms of O(ε2). Substituting (27) in (26),
and retaining only O(ε) terms we get:(
∂2v0

∂τ2
+ v0

)
+ε

(
∂2v1

∂τ2
+v1+2

∂2v0

∂τ∂τ̃
−σ(1−βv2

0)
∂v0

∂τ

)
= 0.

(28)
Note that (28) must hold for any small parameter ε; this can
be ensured if:

∂2v0

∂τ2
+ v0 = 0, (29)

∂2v1

∂τ2
+ v1 + 2

∂2v0

∂τ∂τ̃
− σ(1− βv2

0)
∂v0

∂τ
= 0. (30)

Since (29) represents the dynamics of a simple harmonic oscil-
lator, the corresponding closed-form solution can be expressed
as:

v0(τ, τ̃) = a0(τ̃) cos(τ + ρ0(τ̃)), (31)

where a0(τ̃) and ρ0(τ̃) are amplitude and phase terms that
vary in the slow time scale specified by τ̃ . For notational
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convenience, define the orthogonal signal v⊥0 (τ, τ̃) associated
with v0(τ, τ̃) in (31) as follows:

v⊥0 (τ, τ̃) := a0(τ̃) sin(τ + ρ0(τ̃)). (32)

Substituting for v0 from (31) into (30):

∂2v1

∂τ2
+ v1 = −2

∂2v0

∂τ∂τ̃
+ σ(1− βv2

0)
∂v0

∂τ

= 2
∂v⊥0
∂τ̃
− σv⊥0 + σβv2

0v
⊥
0

= 2
∂a0

∂τ̃
sin(τ + ρ0) + 2v0

∂ρ0

∂τ̃
− σv⊥0 + σβa3

0

(
sin(τ + ρ0)− sin3(τ + ρ0)

)
= 2

∂a0

∂τ̃
sin(τ + ρ0) + 2v0

∂ρ0

∂τ̃

− σv⊥0 +
σβ

4
a3

0 (sin(3τ + 3ρ0) + sin(τ + ρ0)) , (33)

where in the last line of (33), we have used the trigonometric
identity sin 3θ = 3 sin θ − 4 sin3 θ. Grouping together the
coefficients that multiply the sin(τ+ρ0) and cos(τ+ρ0) terms,
we can rewrite the last line of (33) as follows:

∂2v1

∂τ2
+ v1 =

(
2
∂a0

∂τ̃
− σa0 +

σβ

4
a3

0

)
sin(τ + ρ0)

+

(
2a0

∂ρ0

∂τ̃

)
cos(τ + ρ0)

+
σβ

4
a3

0 sin(3τ + 3ρ0). (34)

The coefficients that multiply the sin(τ +ρ0) and cos(τ +ρ0)
terms have to be forced to zero to ensure that unbounded terms
of the form τ sin(τ + ρ0) and τ cos(τ + ρ0), do not appear in
the solution for v1.1 Consequently, we recover the following:

2
∂a0(τ̃)

∂τ̃
− σa0(τ̃) +

σβ

4
a0(τ̃)3 = 0, (35)

2a0(τ̃)
∂ρ0(τ̃)

∂τ̃
= 0. (36)

Solving (36) with initial condition a0(0), we get the following
expression for a0(τ̃):

a0(τ̃) =

(
β

4
+ e−η−στ̃

)− 1
2

, eη =
a2

0(0)

1− β
4 a

2
0(0)

. (37)

It follows that the peak amplitude of the first harmonic in
sinusoidal steady state is given by:

lim
τ̃→∞

a0(τ̃) =: a0 =
2√
β
. (38)

Note that the RMS value corresponding to the peak amplitude
in (38) matches the expression for the open-circuit voltage
in (22). From (37), it can also be inferred that a0(τ̃) 6= 0 if
a0(0) 6= 0. Therefore we see from (35) that ρ0(τ̃) = ρ0, i.e.,
ρ0 is independent of τ̃ .

1Functions τ sin(τ + ρ0) and τ cos(τ + ρ0) grow without bound, and
their existence would suggest that v is unbounded (see (27)). However, this
contradicts the fact that the unforced Van der Pol oscillator has a stable limit
cycle with finite radius.

With these observations in place, we finally recover the
following equation that governs the evolution of v1(τ, τ̃)
from (34)

∂2v1

∂τ2
+ v1 =

2σ√
β

sin(3τ + 3ρ0). (39)

The particular solution to (39) is given by the general form:

v1(τ) = − σ

4
√
β

sin(3τ + 3ρ0). (40)

From (31), (38), (40), and (27), we see that the ratio of the
amplitude of the third harmonic to the fundamental, a quantity
we denote by δ3:1, is given by

δ3:1 =
εσ

8
. (41)

If initial conditions for v1 are taken into account while solv-
ing (39), (41) is correct up to O(ε). Moreover, the expression
in (41) indicates that the undesirable third-order harmonic is
directly proportional to ε. This aspect will also be leveraged
in the design of the oscillator capacitance, C, in Section III-C.

III. DESIGN SPECIFICATIONS AND PARAMETER
SELECTION FOR VO-CONTROLLED INVERTERS

In this section, we outline a procedure to determine the
Van der Pol oscillator parameters such that the VO-controlled
inverter satisfies a set of ac performance specifications. The
virtual-oscillator parameters to be determined are summarized
in Table I below. We divide the parameters into: i) scaling
factors κv and κi (addressed in Section III-A); ii) voltage-
regulation parameters σ and α (addressed in Section III-B),
and iii) harmonic-oscillator parameters L and C (addressed
in Section III-C). The performance specifications which the
parameters are designed to satisfy include: the open-circuit
voltage, V oc; rated real-power output and corresponding
voltage, P rated and V min, respectively; rated reactive-power
output, |Qrated|; maximum-permissible frequency deviation,
rise time, and ratio of the amplitude of the third harmonic to
the fundamental, |∆ω|max, tmax

rise , and δmax
3:1 , respectively.

Candidate design [specifications]. Accompanying the design
strategy to pick system parameters, we present a running
example corresponding to the set of performance specifications
in Table II. The specifications result in voltage-regulation of
±5% around a nominal voltage of 120 V, and frequency-
regulation of ±0.5 Hz around a nominal frequency of 60 Hz.
The design is subsequently implemented in the hardware
prototype discussed in Section IV. �

A. Design of Scaling Factors, κv and κi

Notice from Fig. 2 that the parameters κv and κi re-
spectively determine the voltage and current scaling between
the physical-inverter terminal voltage and output current, and
those of the virtual-oscillator circuit. To standardize design,
we choose κv such that when the VO capacitor voltage is 1 V
RMS, the inverter-terminal voltage is equal to the open-circuit
voltage, V oc. Furthermore, we pick κi such that when the
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Table I: VOC Parameters

Symbol Description Value Units
κv Voltage-scaling factor 126 V/V

κi Current-scaling factor 0.15 A/A

σ Conductance 6.09 Ω−1

α Coefficient of cubic current source 4.06 A/V3

C Harmonic-oscillator capacitance 0.18 F

L Harmonic-oscillator inductance 3.99× 10−5 H

Table II: AC Performance Specifications

Symbol Description Value Units

V oc Open-circuit voltage 126 V (RMS)

P rated Rated real power 750 W

V min Voltage at rated power 114 V (RMS)

|Qrated| Rated reactive power 750 VARs

ω∗ Nominal system frequency 2π60 rad/sec

|∆ω|max Maximum frequency offset 2π0.5 rad/sec

tmax
rise Rise time (25) 0.2 sec

δmax
3:1 Ratio of third-to-first harmonic (41) 2 %

VO output current is 1 A, the inverter is loaded to full rated
capacity, P rated. The values of κv and κi that ensure this are

κv := V oc, κi :=
V min

P rated

. (42)

A system of inverters with different power ratings connected
in parallel share the load power in proportion to their ratings
if the current gains are chosen as suggested by (42) [4],
[5]. This directly follows as a consequence of (19) since
κiP eq is constant in the parallel configuration and therefore,
P eq/P rated is the same for each inverter with identical
voltage drops across each output impedance.

Candidate design [scaling factors]. The specifications call
for an open-circuit voltage, V oc = 126 V. This translates to a
voltage-scaling factor, κv = 126 V/V. From the rated power
and corresponding voltage, P rated = 750 W and V min =
114 V, we get the current-scaling factor κi = 114/750 =
0.152 A/A. �

B. Design of Voltage-regulation Parameters, σ and α

Here, we use the closed-form expression for the voltage-
regulation characteristic in (19) to design the VO conductance,
σ, and the cubic coefficient of the nonlinear voltage-dependent
current source, α. Effectively, the design strategy suggested
below ensures that the equilibrium RMS terminal voltage of
the inverter, V eq, is bounded between the limits: V oc ≥ V eq ≥
V min, as the average real-power output, P eq, is varied between
the limits: 0 ≤ P eq ≤ P rated.

First, notice from (22) that the choice of κv in (42) implies
that α is related to σ through:

α =
2σ

3
. (43)

V
e
q
,
[V

]

P eq, [W]

P crP rated

V min

0 250 500 750 1000 1250
0

50

100

150
ocV

crV

Figure 4: Equilibrium terminal voltage, V eq, as a function of
the real-power output, P eq, for the oscillator parameters listed
in Table I.

Next, substituting P eq = P rated and V eq = V min into the
high-voltage solution of (19), we have:

V min = κv

σ +
√
σ2 − 6α(κi/κv)P rated

3α


1
2

. (44)

Substituting for κv and κi from (42), and for α from (43):

V min = V oc

σ +
√
σ2 − 4σ(V min/V oc)

2σ


1
2

. (45)

Solving for σ above, we get:

σ =
V oc

V min

V
2

oc

V
2

oc − V
2

min

. (46)

The choice of α and σ in (43) and (46), respectively,
inherently establish the critical power value, P cr in (20). The
design has to be iterated if the margin of difference between
the rated and critical power values is insufficient.

Candidate design [voltage-regulation parameters]. From the
RMS open-circuit and rated-voltage values, V oc = 126 V and
V min = 114 V, applying (46) we get σ = 6.09 Ω−1, and
from (43), we have α = 4.06 A/V3. The resulting voltage-
regulation curve for these design specifications is illustrated
in Fig. 4. The inverter is designed to operate in the voltage
regime, V oc ≥ V eq ≥ V min; in Appendix B we show that
equilibria corresponding to V eq > V cr are locally exponen-
tially stable. �

C. Design of Harmonic-oscillator Parameters, C and L

Here, we leverage expressions for: i) the frequency-
regulation characteristic (23), ii) the rise time (25), and iii) the
ratio of amplitudes of the third harmonic to the fundamen-
tal (41) to obtain a set of design constraints for the harmonic-
oscillator parameters, i.e., the capacitance, C, and inductance,
L.

Begin with the equilibrium frequency analysis in Sec-
tion II-B and the frequency-regulation characteristic in (23).
The maximum permissible frequency deviation, denoted by
|∆ω|max, is a design input. Substituting for κv and κi

from (42) in (23), and considering the worst-case operating
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condition for the terminal voltage,2 we get the following lower
bound on the capacitance, C:

C ≥ 1

2|∆ω|max

V oc

V min

|Qrated|
P rated

=: Cmin
|∆ω|max

, (47)

where Qrated is the maximum average reactive power that can
be sourced or consumed by the VO-controlled inverter.

Next, consider the analysis of the (open-circuit) voltage
amplitude dynamics in Section II-C, and the expression for
the rise time in (25). With the maximum-permissible rise time,
tmax
rise , serving as a design input, from (25) and (46), we get

the following upper bound for the capacitance, C:

C ≤ tmax
rise

6

V oc

V min

V
2

oc

V
2

oc − V
2

min

=: Cmax
trise . (48)

Finally, consider the harmonics analysis in Section II-D,
and the expression for the ratio of the amplitudes of the third
harmonic to the fundamental in (41). With the maximum-
permissible ratio, δmax

3:1 , serving as a design input, from (41)
and (46) we get an additional lower bound on the capacitance,
C:

C ≥
(

1

8ω∗δmax
3:1

)
V oc

V min

V
2

oc

V
2

oc − V
2

min

=: Cmin
δ3:1 . (49)

Once a value of capacitance satisfying (47), (48), and (49) is
selected, the inductance, L, follows from rearranging terms
in (10):

L =
1

C(ω∗)2
. (50)

Combining (47), (48), and (49), we get the following range
in which C must be selected to meet the performance speci-
fications of frequency regulation, rise time, and harmonics:

max
{
Cmin
|∆ω|max

, Cmin
δ3:1

}
≤ C ≤ Cmax

trise . (51)

If Cmax
trise < max

{
Cmin
|∆ω|max

, Cmin
δ3:1

}
, then it is not possible

to simultaneously meet the specifications of frequency
regulation, rise time, and harmonics. Therefore, (51) reveals a
fundamental trade-off in specifying performance requirements
and designing VO-controlled inverters. In particular, a VO-
controlled inverter that offers a short rise time will necessarily
have a larger frequency offset and harmonic distortion, while
a tightly regulated VO-controlled inverter (smaller frequency
offset and harmonic distortion) will necessarily have a longer
rise time.

Candidate design [harmonic-oscillator parameters]. For
our example VO-controlled inverter, we have selected the ac
performance specifications |∆ω|max = 2π0.5 rad/sec,
tmax
rise = 0.2 sec, and δmax

3:1 = 2% (see Table II).
Substituting these into (47), (48), and (49), we find
that Cmin

|∆ω|max
= 0.1759 F, Cmax

trise = 0.2031 F, and
Cmin
δ3:1

= 0.1010 F. Therefore, to meet the performance
specifications, we must select the harmonic-oscillator
capacitance, C, in the range 0.1759 F ≤ C ≤ 0.2031 F.

2This corresponds to consuming or sourcing the maximum reactive power
at the minimum permissible terminal voltage, V min, which is defined in (45).

Without loss of generality, prioritizing the rise-time
specification, we will select C at the lower bound of the
specified range, i.e., C = 0.1759 F. Since ω∗ = 2π60 rad/sec,
it then follows from (50) that L = 39.99µH.

In closing, we remark that the voltage- and frequency-
regulation specifications for the inverter are given here in terms
of worst-case limits. Given the ubiquity of droop control in this
domain, they could be specified in terms of the active- and
reactive-power droop coefficients, mP and mQ, respectively.
Leveraging the correspondences in (54)-(55), we comment
next on how the design procedure above (for the scaling,
voltage-regulation, and harmonic-oscillator parameters) can be
modified to ensure the VO-controlled inverter mimics a droop-
controlled inverter with the specified mP and mQ.

D. Comparison with Droop Control

For resistive distribution lines, droop control linearly trades
off the inverter terminal-voltage amplitude versus active
power; and inverter frequency versus reactive power. In the
context of the notation established above, these linear laws
can be expressed as:

V eq = V oc +mPP eq, (52)

ωeq = ω∗ +mQQeq, (53)

where mP < 0 is the active-power droop coefficient and mQ >
0 is the reactive-power droop coefficient [26]. In fact, it is
shown in [27] that the relations in (52)–(53) provide robust
performance for various types of line impedances and are thus
referred to as universal droop laws. In our previous work [5],
we observed that the equilibria of the averaged VOC dynamics
in (15)–(16) can be engineered to be in close correspondence
with the droop laws in (52)–(53). For instance, a first-order
expansion of V eq (as a function of P eq) around the open-
circuit voltage, V oc, is of the form (52) with the following
choice of mP:

mP =
κvκi

2σ

(
V oc − βV

3

oc

)−1

. (54)

This expression can be derived by evaluating dV eq/dP eq

from (18) at the open-circuit voltage, V oc. Similarly, by
inspecting (23), we see that ωeq as a function of Qeq around
the open-circuit voltage, V oc, is of the form (53) with the
following choice of mQ:

mQ =
κvκi

2CV
2

oc

. (55)

With the design strategy proposed in Section III for the
parameters C, κv, κi, α, and σ, it emerges that the voltage-
regulation characteristic in (19) and the frequency-regulation
characteristic in (23) are close to linear over a wide load
range. The experimental results in Section IV (see Figs. 8
and 9) validate this claim; conclusively demonstrating that
droop laws are embedded within the equilibria of the nonlinear
VOC dynamics. This establishes the backward compatibility
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of VOC, in that it subsumes droop control in sinusoidal steady
state.3

We also consider the converse scenario where droop coeffi-
cients, mP and mQ, are translated into VOC parameters. The
choice of κv, κi (as given by (42)), and α (as given by (43))
would remain unchanged. With regard to σ, from (54) and
with β given in (5), we get

σ = −m−1
P

κi

2
. (56)

Furthermore, from (55), we see that the choice of capacitance,
C would be given by

C = m−1
Q

κi

2V oc

, (57)

while the inductance, L, would still be specified by (50).
Limits on C can be considered in a similar fashion as before,
if the specification on mQ is in terms of an upper bound.

Although correspondences between the quasi-steady-state
behavior of VOC and droop control exist as outlined above,
their time-domain performance is markedly different. The
main advantage of VOC is that it is a time-domain controller
which acts directly on unprocessed ac measurements when
controlling the inverter terminal voltage, as evident in (3).
This is unlike droop control which processes ac measurements
to compute phasor-based quantities, namely real and reactive
power, which are then used to update the inverter voltage
amplitude and frequency setpoints. Since phasor quantities are
not well-defined in real-time, droop controllers must necessar-
ily employ a combination of low-pass filters, cycle averaging,
coordinate transformations, or π/2 delays to compute P eq and
Qeq in (52)–(53) (see [17], [29]–[31]). These filters, which
typically have a cutoff frequency in the range of 1 Hz to 15 Hz
[17], [29], [31], act as a bottleneck to control responsiveness
which in turn cause a sluggish response. In contrast, VO-
controlled inverters operate on real-time measurements and
respond to disturbances as they occur. To illustrate these
concepts, we present a simple case study that demonstrates
the time-domain performance of VOC and its power-sharing
capabilities.

Simulation Case Study: We consider two identical single-
phase inverters connected in parallel through resistors to a
parallel R-L load and simulate the time-domain behavior of
VOC. For comparison, we also illustrate the performance of
droop control. For the droop controller implementation, we
leverage the droop laws in resistive networks (52)-(53) and the
control architecture is adopted from [30]. The virtual oscillator
that emulates the regulation characteristics is then derived by
using the aforementioned analysis (equations (56)-(57)).

Figure 5 depicts the time it takes for two inverters to
synchronize starting from arbitrary initial conditions. We make
use of a metric ||Πv||2, where v = [v1, v2]> collects terminal
voltages at the inverter. The matrix Π := I2 − 1

2121>2 (I2×2

3In addition to the droop laws highlighted in (52)–(53), there are other droop
laws for different network types. VOC can accommodate arbitrary network
impedances by expressing the inverter terminal voltage as v = x sinϕ +
y cosϕ, where x = κvεiL, y = κvvC , and ϕ can be interpreted as an
angular rotation in the polar plane [28]. With this setting, it can be shown
that ϕ = π/2 yields the droop laws for inductive networks. For the remainder
of the manuscript, we focus on the case where ϕ = 0.
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v
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Figure 5: Synchronization error, captured from the deviation of
the inverter terminal voltages from the average, as a function of
time for VOC and droop control. The waveforms are obtained
from switching-level simulations.
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Figure 6: Active- and Reactive-power sharing for the 2-inverter
case for VOC and droop control.

is the 2 × 2 identity, and 12×1 is the 2 × 1 vector with all
entries equal to one) is the so-called projector matrix, and by
construction, we see that Πv returns a vector where the entries
capture deviations from the average of the vector v. From
the figure, we see that with VOC, the inverters synchronize
by around t = 0.1 s, while with droop control, the inverters
synchronize by t = 0.6 s. Furthermore, Figs. 6 (a)-(b) show
that identical active-and reactive- power sharing is achieved
with both control strategies; it is worth noting, however, VOC
reaches steady-state faster than droop. The R-L load consid-
ered in this particular setup has values of Rload = 20 Ω and
Lload = 0.1 H with interconnecting conductance gload= 5 Ω−1.
Readers are referred to [28] for other simulation parameters.

IV. EXPERIMENTAL VALIDATION

We have built a laboratory-scale hardware prototype of a
VO-controlled inverter with design specifications in Table II. A
picture of the experimental setup is shown in Fig. 7. The scal-
ing, voltage-regulation, and harmonic-oscillator parameters—
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Figure 7: Picture of laboratory prototype of VO-controlled
inverter and load.

that completely characterize the virtual oscillator and ensure
the VO-controlled inverter satisfies the design specifications—
were computed in the running example in Section III, and
they are listed in Table I. The inverter LCL filter components
have values Lf = 600µH, Cf = 24µF, and Lg = 44µH,
where Lf , Cf , and Lg are the inverter-side inductor, ac-filter
capacitor, and grid-side inductor, respectively (see Fig. 2). The
switching frequency of the inverter is T−1

sw = 15 kHz, the dead
time is 200 ns, and three-level unipolar sine-triangle PWM is
utilized. The nonlinear dynamics of the virtual-oscillator cir-
cuit are programmed on a Texas Instruments TMS320F28335
microcontroller. A short note on the discretization is provided
next.

A. Digital Controller Implementation

Denote the sampling time utilized in the numerical in-
tegration by Ts. In this particular implementation, we pick
T−1

s = 15 kHz. To discretize the virtual-oscillator dynam-
ics (3), we adopt the trapezoidal rule of integration and recover
the following difference equations:

v[k] =

(
1− Tsσ

2C
+

T 2
s

4LC

)−1 [(
1 +

Tsσ

2C
− T 2

s

4LC

)
v[k − 1]

− Ts

C
κviL[k − 1]− Ts

2C
κvκi(i[k] + i[k − 1])

− αTs

2Cκ2
v

(v3[k] + v3[k − 1])

]
,

iL[k] = iL[k − 1] +
Ts

2Lκv
(v[k] + v[k − 1]), (58)

where k ∈ Z≥0 denotes the kth sampling instance, i[k] is
the sampled inverter-output current, iL[k] is the sampled Van
der Pol oscillator inductor current, and v[k] is the sampled
inverter-terminal voltage. The difference equations (58) cannot
be directly implemented on a digital controller, since they con-
tain an algebraic loop through the cubic term v3[k]. Therefore,
it is necessary to make a simplifying assumption to eliminate

,
[V

]
e
q

V

, [W]eqP

ratedP

minV

ocV
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108

114
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132

Figure 8: Measured versus analytically computed values for
steady-state RMS voltage, V eq, versus output real power, P eq.

the algebraic loop. While there are many approaches to ac-
complish this, one option is to simply make the assumption
v3[k] ≈ v3[k − 1], allowing (58) to be approximated as:

v[k] =

(
1− Tsσ

2C
+

T 2
s

4LC

)−1 [(
1 +

Tsσ

2C
− T 2

s

4LC

)
v[k − 1]

− Ts

C
κviL[k − 1]− Ts

2C
κvκi(i[k] + i[k − 1])

− αTs

Cκ2
v

v3[k − 1]

]
,

iL[k] = iL[k − 1] +
Ts

2Lκv
(v[k] + v[k − 1]). (59)

The difference equations (59) yield realizable—albeit
approximate—dynamics of the virtual oscillator circuit in
Fig. 2, and they can be implemented directly on the digital
controller. The inverter PWM modulation signal, m, can then
be constructed as:

m[k] :=
v[k]

vdc[k]
, (60)

where vdc[k] is the measured value of the inverter dc-bus
voltage at the kth sampling instance.

The experimental results that are outlined next focus on
validating: i) the steady-state voltage-regulation characteristic
in (19), ii) the steady-state frequency-regulation characteristic
in (23), iii) the expression for the rise time in (25), and iv) the
expression for the ratio of the amplitudes of the third and first
harmonics in (41). Results are summarized in Figs. 8-11; in
each case, the analytical results are plotted as solid lines, while
results from experimental studies are plotted as ×’s.

B. Steady-state Voltage Regulation

This experiment is performed with the VO-controlled in-
verter connected to a variable resistive load at the output termi-
nals. The experimental results reported in Fig. 8 are obtained
by varying the load resistance in discrete steps between open-
circuit and 16.7 Ω, and in each case, recording the steady-
state RMS terminal voltage. The measured data (plotted as
×’s) match the analytical voltage-regulation characteristic (19)
(plotted as a solid line). Note that the inverter RMS voltage
stays within the prescribed upper and lower bounds, V oc and
V min, respectively, across the entire rated load-power range.
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Figure 9: Measured versus analytically computed values for
steady-state frequency, ωeq, versus output reactive power, Qeq.

Comparison with voltage-amplitude droop control: The
best-fit linear model (in a least-squares sense) to the experi-
mentally collected values {V eq, P eq} plotted in Fig. 8 is given
by:

V eq = 126.5449− 0.0171P eq. (61)

The coefficient of determination—a metric that reveals the
quality of a statistical model [32]—for this linear model is
99.59 %. These findings conclusively demonstrate that the
voltage-amplitude real-power droop law is embedded within
the sinusoidal steady-state of VO-controlled inverters; validat-
ing our theoretical analysis in [5].

C. Steady-state Frequency Regulation

The frequency-regulation characteristic in (23) is validated
by connecting a variable reactive load to the inverter-output
terminals and adjusting it in incremental steps such that
the inverter is delivering purely reactive power into either a
capacitive or inductive load. The load was varied such that the
total reactive power delivered into the LCL filter and external
load was between ±Qrated where |Qrated| = 750 VAR.
In particular, purely inductive loads were varied discretely
between 46.9 mH and 442 mH and capacitive loads were
adjusted between 14.9µF and 92.7µF. In Fig. 9, we plot the
measured steady-state reactive power delivered into the filter
and load, Qeq, and the frequency at the inverter terminals. The
solid curve corresponds to the analytically derived expression
in (23) when evaluated at V eq = V oc (since P eq ≈ 0 for this
particular experiment).

Comparison with frequency droop control: The best-fit
linear model to the experimentally collected values {ωeq, Qeq}
plotted in Fig. 9 is given by:

ωeq = 376.8013 + 0.0035Qeq. (62)

The coefficient of determination for this linear model is
99.98 %. Again, these observations demonstrate that the
frequency-reactive power droop law is intrinsically embedded
in the sinusoidal steady-state behavior of VO-controlled in-
verters; further validating our theoretical analysis in [5].

D. Harmonics

We now validate the expression for the ratio of the ampli-
tude of the third harmonic to the fundamental, δ3:1, in (41).
In this experiment, the parameters L and C of the inverter

δ 3
:1
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nharmonic order,

Figure 10: Measured versus analytically computed values of
the ratio of the third harmonic amplitude and the fundamental
amplitude, δ3:1, as a function of ε. Inset depicts higher-order
harmonics for a particular value of ε.

VOC controller were adjusted so that ε =
√
L/C varies while

ω∗ = 1/
√
LC remains constant at 2π60 rad/sec. All other

parameters are held fixed to the nominal values in Table I.
The ×’s in Fig. 10 represent experimentally collected values
of δ3:1 as a function of ε, while the solid line follows from
the expression in (41). The inset for a particular measurement
confirms that the 3rd harmonic is dominant over all others.

E. Rise time

Finally, we validate the expression for the rise time, trise,
in (25) (recall this is the time for the open-circuit inverter
terminal-voltage magnitude to rise from 10% to 90% of its
steady-state value V eq = V oc). The same sweep of the VOC
parameters L and C as in Section IV-D is used here, with all
other parameters fixed to the nominal values in Table I. The
×’s in Fig. 11 represent measured values of the rise time for
each value of ε, while the solid line follows from the analytic
expression (25).
Remark: The harmonics and rise-time experiments in Sec-
tions IV-D and IV-E report voltage measurements collected at
the filter capacitor, Cf , i.e., the voltage vf in Fig. 2. Since the
LfCf filter is solely designed to attenuate switching harmonics,
in effect, the low-frequency and slow-time-scale behavior of
the voltage, vf , matches that of the inverter terminal voltage,
v, for which the harmonics and rise-time analysis is performed
in Section II-D and II-C. In particular, since the corner
frequency of the LfCf low-pass filter, 1/

√
LfCf = 8.33 ×

103 rad/s � ω∗ = 377 rad/s, and the open-circuit voltage
builds up over multiple ac cycles, the rise-time of vf closely
mirrors that of the inverter terminal voltage, v. Furthermore,
since |vf(jω)|/|ṽ(jω)| =

∥∥(jωCf)
−1/((jωCf)

−1 + jωLf)
∥∥

2
evaluated at ω∗ and 3ω∗ is approximately equal to 1.0021
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Figure 11: Measured versus analytically computed values of
rise time, trise, as a function of ε. Insets depict time-domain
waveforms of the inverter terminal voltage for two different
values of ε.

and 1.0018, δ3:1 can be computed from measurements of vf

without compromising accuracy.

V. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

In this paper, we considered the performance and design
of VO-controlled inverters. Leveraging notions from peri-
odic averaging of weakly nonlinear systems, we derived
the phasor-domain amplitude and phase dynamics of VO-
controlled inverters. These were used to obtain steady-state
voltage- and frequency-regulation characteristics. Furthermore,
we also quantified the dynamic response and harmonics in VO-
controlled inverters. The analytical approach was leveraged to
develop a design procedure through which a VO-controlled
inverter can be guaranteed to meet a specified set of ac
performance specifications. The analytical expressions were
validated by experiments. As part of future work, we plan
to further explore correspondences with droop control laws
and expand on the set of performance specifications that VO-
controlled inverters can be designed for. We also plan to
analyze the interoperability of a heterogenous collection of
droop- and VO-controlled inverters connected in a microgrid
network from dynamic and steady-state standpoints. The ana-
lytical approach to compute the rise time and harmonic content
is performed with an unloaded inverter. Including detailed load
dynamics in these analyses is also a key direction for future
work. Finally, while our experimental results and analyses
demonstrate that the steady state behavior of VOC can be
engineered to be in close concert with droop control, similar
comparative studies from the perspective of transient behaviors
are part of ongoing investigations.

APPENDIX

A. Derivation of Averaged Model in (15)–(16)
In the forthcoming analysis, we will find the following

definition of the angular dynamics of the inverter terminal

voltage useful

d

dt
φ = ω∗ +

d

dt
θ∗ = ω +

d

dt
θ, (63)

where φ is the instantaneous phase angle corresponding to
the inverter sinusoidal output, ω∗ is the nominal (open-circuit)
frequency of the inverter ac output, and ω represents the (load-
dependent) system frequency in quasi-stationary sinusoidal
steady state. The angles θ∗ and θ represent phase offsets with
respect to the rotating reference frames established by ω∗ and
ω, respectively. With the definition established in (63) the
inverter terminal voltage in (4) can be equivalently written
as:

v(t) =
√

2V (t) cos(ω∗t+ θ∗(t)). (64)

Recalling that the inverter output current is denoted by i(t),
we define the instantaneous real- and reactive-power injections
[33], [34] as

P (t) = v(t)i(t), Q(t) = v
(
t− π

2

)
i(t). (65)

The average real and reactive power over an ac cycle of period
2π/ω∗ are then given by:

P =
ω∗

2π

∫ 2π/ω∗

s=0

P (s)ds, Q =
ω∗

2π

∫ 2π/ω∗

s=0

Q(s)ds. (66)

To obtain (15)-(16) from (9), begin by expressing (9) with
respect to θ∗:

V̇ =
ε√
2

(
σg
(√

2V cos(τ + θ∗)
)
− κvκii

)
cos(τ + θ∗),

θ̇∗ = − ε√
2V

(
σg
(√

2V cos(τ + θ∗)
)
− κvκii

)
sin(τ + θ∗).

(67)

The dynamical systems above are 2π-periodic functions in τ .
In the quasi-harmonic limit ε↘ 0, following (12), we obtain
the averaged dynamics:[
V̇
˙
θ
∗

]
=

εσ

2π
√

2

∫ 2π

0

g
(√

2V cos(τ + θ
∗
)
)[ cos(τ + θ

∗
)

−1
V

sin(τ + θ
∗
)

]
dτ

− εκvκi

2π
√

2

∫ 2π

0

i

[
cos(τ + θ

∗
)

−1
V

sin(τ + θ
∗
)

]
dτ , (68)

=
εσ

2

[
V − β

2V
3

0

]
− εκvκi

2π
√

2

∫ 2π

0

i

[
cos(τ + θ

∗
)

− 1
V

sin(τ + θ
∗
)

]
dτ.

Transitioning (68) from τ to t coordinates and retaining only
O(ε) terms, we get

d

dt

[
V

θ
∗

]
=

σ

2C

[
V − β

2V
3

0

]
− κvκiω

∗

2π
√

2C

∫ 2π
ω∗

0

i(t)

[
cos(ω∗t+ θ

∗
)

− 1
V

sin(ω∗t+ θ
∗
)

]
dt,

=
σ

2C

[
V − β

2V
3

0

]
+
κvκiω

∗

4πC

∫ 2π
ω∗

0

[
− 1
V

√
2V (t)i(t) cos(ω∗t+ θ∗)

1

V
2

√
2V (t)i(t) sin(ω∗t+ θ∗)

]
dt . (69)
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Recalling the definitions of the instantaneous real- and
reactive-power in (65), we get:

d

dt

[
V

θ
∗

]
=

σ

2C

[
V − β

2V
3

0

]
+
κvκiω

∗

4πC

∫ 2π
ω∗

0

[
−P (t)

V
Q(t)

V
2

]
dt ,

(70)

from which we recover the averaged dynamics in (15)-(16).
For further details on the derivation above, refer to [5].

B. Stability of High-voltage Solution to (18)

The voltage- and frequency-regulation characteristics out-
lined in Section II-B help quantify the large-signal sensitivity
of the approach to load variations. From a small-signal per-
spective, we show next, that the high-voltage root in (19) is
locally asymptotically stable. Consider the averaged amplitude
and phase dynamics in (15) and (16). We can capture the
voltage-amplitude and phase dependence of the real- and
reactive-power output by describing them as P := p(V , θ) and
Q := q(V , θ), respectively. Linearizing (15) and (16) around
an equilibrium point, (V eq, θeq), we get the following entries
for the Jacobian matrix, J ∈ R2×2, of the linearized system:

[J ]1,1 =
σ

2C

(
1− 3β

2
V

2

eq

)
+

κvκi

2CV
2

eq

p(V eq, θeq)

− κvκi

2CV eq

∂p(V eq, θeq)

∂V

[J ]1,2 = − κvκi

2CV eq

∂p(V eq, θeq)

∂θ

[J ]2,1 = −κvκi

V
3

eq

+
κvκi

2CV
2

eq

∂q(V eq, θeq)

∂V

[J ]2,2 =
κvκi

2CV
2

eq

∂q(V eq, θeq)

∂θ
. (71)

To analyze stability of a nonzero amplitude equilibrium, we
assume the following to decouple the linearized amplitude
dynamics from the phase dynamics:

∂p(V eq, θeq)

∂θ
= 0. (72)

Notice this is a standard decoupling power-flow approxima-
tion widely used in resistive networks. With the decoupling
assumption, the stability of the averaged amplitude dynamics
can be guaranteed if we ensure

[J ]1,1 =
σ

2C

(
1− 3β

2
V

2

eq

)
+

κvκi

2CV
2

eq

p(V eq, θeq)

− κvκi

2CV eq

∂p(V eq, θeq)

∂V
< 0. (73)

Now consider a particular load for which the average power
over a cycle is constant, i.e.,

P = p(V , θ) = P eq. (74)

Notice that this load satisfies the decoupling requirement
in (72). Recall that we have two possible equilibrium voltage

solutions to (18), given by:

V
low

eq = κv

σ −
√
σ2 − 6α(κi/κv)P eq

3α


1
2

, (75)

V
high

eq = κv

σ +
√
σ2 − 6α(κi/κv)P eq

3α


1
2

. (76)

The stability condition from (73) suggests that the stable
equilibrium RMS voltage satisfies:

3σβ

2
V

4

eq − σV
2

eq − κvκiP eq > 0 . (77)

For P eq > 0, (77) holds for all values of V eq that satisfy

V eq >

σ +
√
σ2 + 6κvκiσβP eq

3σβ


1
2

= κv

σ +
√
σ2 + 18(κi/κv)αP eq

9α


1
2

=: V lim, (78)

where in the last line in (78), β is substituted in terms of α
using (5). The stable equilibrium is the one that satisfies (78).
Since we assume the existence of solutions a priori, this im-
plies that P eq < P cr, with P cr specified in (20). Subsequently,
we can bound V lim as follows

V lim < κv

(
σ +
√
σ2 + 3σ2

9α

) 1
2

= κv

√
σ

3α
= V cr. (79)

Finally, note that among the possible equilibria in (75)
and (76), V

high

eq > V cr; and from (79) it follows that V
high

eq >

V lim. Thus, the high-voltage solution is locally asymptotically
stable.
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