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Abstract— In this paper, we consider exact-repair distributed
storage systems. Characterizing the optimal storage-vs-repair
bandwidth tradeoff for such systems remains an open problem,
in general with results available in the literature for very
specific instances. We characterize the optimal tradeoff between
storage and repair bandwidth if in addition to exact-repair
requirements, an additional requirement of pair-wise symme-
try on the repair process is imposed. The optimal tradeoff
surprisingly consists of only one efficient point, namely the
minimum bandwidth regenerating (MBR) point. These results
are also extended to the case in which the stored data (or repair
data) must be secure from an external wiretapper, and the
correspondingly optimal secure tradeoffs are also characterized.
The main technical tool used in the converse proofs is a use of
Han’s inequality for sub-sets of random variables. Finally, we
also present results in which the pair-wise symmetry constraint
is relaxed and a new converse bound is obtained for the case
of exact repair in which an external adversary can access the
repair data of any one node. This bound improves upon the
existing best known results for the secure and exact repair
problem.

I. INTRODUCTION

Contemporary distributed storage systems store massive
amounts of data over a set of distributed nodes. Besides
the traditional goals of achieving reliability by introducing
redundancy, new aspects such as efficient repair of failed
storage nodes make their design even more challenging. To
overcome these issues, the concept of regenerating codes for
distributed storage systems was introduced by Dimakis et al.
[3]. A distributed storage system (DSS) consists of n storage
nodes each with a storage capacity of « units of data such
that the entire file of size BB can be recovered by accessing
any k£ < n nodes. This is called as the reconstruction property
of the DSS. Whenever a node fails, d nodes (where k < d <
n — 1) participate in the repair process by sending [ units
of data each. This procedure is termed as the regeneration
of a failed node and $ is referred to as the per-node repair
bandwidth.

In [3], by using the concepts of network coding [4], the
authors show that the parameters of a DSS must satisfy

Bmein(a,(d_i)m. (1)

Thus, in order to store a file of size B, there exists a
fundamental tradeoff between « (storage) and df (total repair
bandwidth). However, this tradeoff is in general achievable
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only for the functional-repair case [3]. In functional repair,
a failed node is replaced by a new node such that the
resulting DSS has the same reconstruction and regeneration
capabilities as before. In particular, the contents of the
repaired node may not necessarily be identical to the failed
node even though the desirable properties of the DSS are
preserved.

In contrast to functional repair, exact repair regenera-
tion requires the repair process to replace a failed node
with an identical new node. Exact repair is a practically
appealing property specially when it is desirable that the
stored contents remain intact over time. Furthermore, the
file recovery process is also easier in this case as the recon-
struction procedure need not change whenever a failed node
is replaced. While characterizing the storage-vs-bandwidth
tradeoff for the case of exact repair remains a challenging
open problem in general, two extreme points of this tradeoff
(depending on whether « or 3 is minimized first) namely, the
minimum storage regenerating case (MSR) and the minimum
bandwidth regenerating (MBR) case have been studied ex-
tensively (see [5], [6] and references therein). Beyond these
points, the optimal exact-repair tradeoff for the (4, 3, 3)-DSS
was characterized in [7] where it has been shown that the
optimal tradeoffs for functional and exact repair are different.
There have been several recent works in this regard, namely
new outer bounds (converse results beyond (4, 3, 3)) in [14],
as well as novel achievable schemes in [15] and [16], and
new results for secure and exact repair in [17]-[19]. Even
though these recent advances have brought forth new insights
on the fundamental problem of exact repair, the general
problem of characterizing the optimal tradeoff for the exact
repair problem remains open till date.

Besides the requirements of exact repair, another important
design concern for such systems is that of data security.
Pawar et.al [9] introduced the notion of information theoretic
security for such systems where various models for the
adversary are introduced and investigated. In one of those
models (which we refer to as Type-I model), the adversary
can access the data stored in any ¢ < k£ nodes. In another
model (referred to as the Type-II model), the adversary is
more powerful and can access not only the content of the
nodes but the repair data of any ¢ < k nodes sent by other
nodes to repair. The focus of this paper is on the exact
repair problem with such security constraints and the main
contributions of this paper are two fold:

o For the distributed storage system with an external



adversary, we obtain new outer bounds for the exact
and secure repair problem. In particular, we consider
the general (n,k,d) DSS operating in the presence of
an eavesdropper which can read the repair data of any
¢ nodes. The goal is to find the maximum size of data
which can be stored while being information theoreti-
cally secure from such adversary. An upper bound on
the admissible file size for this general problem was
obtained in [9] together with some optimality results;
however the general problem still remains open. We
develop a new bound for this problem for general
parameters (n,k,d) and for £ = 1 and show that it
outperforms the bounds of [9].

e We also focus on the exact repair problem with an
additional condition of pair-wise symmetric repair. The
pair-wise symmetric repair condition refers to the fol-
lowing: consider any two storage nodes, for example,
nodes ¢ and j and a set of other (d — 1) helper nodes
which we denote collectively as H. Now, consider the
repair of node ¢ from node j and the fixed (d — 1)
helper nodes and denote the repair data send by node
J as Sj_;. Similarly, considering the repair of node j
from node ¢ and the same set of fixed helper nodes, we
define the repair data sent from node ¢ to node j as
Si—;. Then, the pair-wise symmetric repair condition
enforces that S;_,; = S;_;. In other words, it means
that given the fixed set of (d — 1) helper nodes, the
data which node 7 sends to repair node j must be the
same as the data which node j must send to repair
node ¢. Through a novel converse proof, we characterize
the optimal tradeoff of the exact repair problem along
with the pair-wise symmetry condition. Interestingly,
the tradeoff only has one efficient point (namely the
minimum bandwidth regenerating (MBR)) point, the
achievability for which has been established in [11].
The pair-wise symmetry restriction also presents an
operation interpretation of the MBR point and shows
that there exists no other (more efficient) exact repair
point satisfying such a condition.

Notation: We denote the set {1,2,...,m} by [m] for m €
Z™*. For any set A C [n] we define W4 = {W, : i € A}. For
sets A, B C [n], we define Sa_,5 = {S;—;:i € A,j € B}.
Finally we use S 4.5 to denote the union of repair data in
both directions, i.e, (Sa—5,S8-.4)-

II. SYSTEM MODEL

A (n, k,d,£) DSS consists of n storage nodes that store a
file ' of size BB across n nodes, with each node storing up
to « units of data. A data collector connects to any k < n
nodes in order to reconstruct the file F'. This is known as
the MDS property of the DSS [3]. We focus on single node
failures in which at any given point only one node in the
system could fail. For the repair of a failed node, any d out
of the remaining (n — 1) alive nodes send S < « units of
data in order to aid the repair process. The parameter dg is
referred to as the total repair bandwidth. From an information
theoretic perspective, the goal is to store a file F', whose

entropy is B, i.e., H(F) = B. Let W; denote the storage
content at node ¢, for ¢ = 1,2...,n. Hence,

HW)<a, Vi=12...,n. )

Due to the MDS property we also have
H (F|Wk) =0, VK C [n]with |[K|=k. 3)

Let S;_,; denote the data sent by node ¢ to repair node j.
Due to the repair bandwidth constraint, we have

H(Si~j) < B, Vi,jen] @)
and for exact repair of node j from d nodes, we also have
H(W;|Sp;) =0, j¢DcCn,|D=d (5

Since S;—,; is a function of the data stored in node i, we
have H(SZ*)J“/VZ) =0.

Secrecy Constraints: We also have another parameter ¢ <
k, which signifies the number of nodes an adversary can
wiretap. In particular, we consider two types of adversaries:

o Type-I: adversary can wiretap only the stored data on

any ¢ nodes. For any ¢ < k nodes to be secure, we
require

I(F;W;) =0, VLCI[n]with|]<C (6)

where W, is the data stored on nodes whose index
belong to L.

o Type-II: adversary can wiretap the repair data of any ¢
nodes. For the repair of any ¢ < k nodes to be secure,
we require

I(F;SnlaS'rlg"'aS’rLg):Oa (7)

where S, is the repair data downloaded from any
other d nodes to repair node n;. Note that the d nodes
repairing n; might be different from those helping to
repair n;.
We first note that the Type-I adversary is in general weaker
than Type-II adversary since the constraint (7) implies (6) but
not the other way around. Finally, we note that by setting
¢ = 0, we recover the original problem with no security
constraints.

III. MAIN RESULTS & DISCUSSION

Theorem 1 The secrecy capacity of an (n,k,d) storage
system with Type-Il secrecy against an eavesdropper who
observes the repair data for any £ = 1 node is upper bounded
by

k—1 (k—1)(3d — 2k)
1 o+ 1 s. )

The best existing results for the Type-II secrecy problem
with general parameters are in [9] which shows that

B% <

k—1
B <) min(a, (d—i)B). )
1=l

The result of Theorem 1 improves upon the above bound in
general. We next illustrate our bound in (8) together with the
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Fig. 1: Bounds for (n,k,d) = (5,4,4) and £ = 1.

bound in (9) for the case of (n,k,d) = (5,4,4) and £ = 1
in Figure 1.

We strongly believe that even being tighter, the bound in
Theorem 1 is not achievable. We in fact conjecture that the
secrecy capacity for a general (n, k, d, £) system with strong
secrecy constraint is upper bounded by

(k—1)d — ((g) - (5)) ] min (%,,@) (10)

In particular, this conjecture suggests that the MBR point
in the only efficient point on the optimum trade-off for the
strong secrecy capacity of DSSs.

Specific scenarios for which the Type-II secrecy problem
has been completely solved are in [17]-[19], and correspond
to the following cases:

o All (n,k,d,0),d <3

e (nk,d)=(,n—1,n—1)and £ =n — 2.

For all these cases, this conjecture has been proved to be
true.

Even though we are unable to prove this conjecture under
the general setting, we next consider a constrained version of
this problem with a pair-wise symmetric repair condition and
prove that the optimal trade-off for this restricted problem is
indeed given by the above bound.

The pair-wise symmetric repair condition refers to the
following: consider any two storage nodes, for example,
nodes ¢ and j and a set of other (d—1) helper nodes which we
denote collectively as H. Now, consider the repair of node ¢
from node 7 and nodes in H and denote the repair data send
by node j as S;_,;. Similarly, considering the repair of node
7 from node 7 and the same set of fixed helper nodes H, we
define the repair data sent from node i to node j as S;_;.
Then, the pair wise symmetric repair condition enforces that
Si—j = Sj—i. In other words, it means that given the fixed
set of (d — 1) helper nodes, the data which node i sends
to repair node 7 must be the same as the data which node
7 must send to repair node 7 and hence the name pair-wise
symmetric repair.

B% <

Theorem 2 The optimal («, 8) trade-off for an (n,k,d,?)
distributed storage system with exact and pair-wise symmet-
ric repair is given by

(k —1)d — ((g) - (5)) ] min (%,5) (11)

for both Type-I and Type-II secrecy.

B% <

This result shows that with the symmetric pair-wise repair
constraint, the only efficient point in the storage-bandwidth
tradeoff is the MBR point. This also provides another oper-
ational interpretation of the MBR point.

The proofs for Theorems 1 and 2 are presented next.

IV. PROOF OF THEOREM 1

In this section we focus on the case of Type-II secrecy
with ¢ = 1, and present the proof of Theorem 1.

Let A C [d+ 1] be an arbitrary set with | A| = k£ — 1, and
i €[d+ 1]\ A be an index not in 4. We have

B° = H(F) = H(F‘S[dJrl]\{i}ﬁi)
= H(F, Sjay11—i) — H(Sja411-4) (12)
< H(F, W4, Siaq1)—i) — H(Sa11)-4)
= H(Wa, Sa+1)—i) — H(S[a+1]—i)
= H(Wa) + H(Say11-ilWa) — H(S[ay1)-i)
< H(Wa) + H(Siay1)-ilSa—i) — H(Sar1-4)
= H(Wa) — H(Sa-i) (13)

where in (12) we just added S;_,; to what the eavesdropper
observes, and set S;_,; to be a dummy variable with zero
entropy.

In order to bound H(S4-,;) we can write

1

H(Sami) = — > H(Sas) (14)

(651) AC[d+1]\{i}

|Al=k—1
LY HSa) 09)
(d) A’ Cld+1\{i}

|A/|=d

> = Lhow), (16)

where (14) follows from the symmetry of the repair variables,
that is, H (S 4_,;) is invariant w.r.t. the choice of A C [d +
1]\ {¢} provided that |A| = k — 1; (15) follows from Han’s
inequality [13]; and inequality in (16) holds since the content
of node 7 can be reconstructed from repair data downloaded
from nodes in A’ with |A’| = d.

In order to upper bound H (W 4), we can write

N
[

H(W4)

H(W;[W};_y))

ESIES
|l
—

[H(W;) — I(Wg; Wyi—y)]

7)

.
Il



and bound the mutual information above by
I(Wis Wii_qq) > 1(Sis[i—115 Spi—1]—i)

= I(Sz'—>[i]; S[i]—)z’)

= H(Sisp) + H(S—i) —

(18)
H(Sisp@) (19)
where in (18) we just added S;_,; which is a dummy random
variable, with zero entropy.

Next we bound terms in (19) individually. First note that

k—1
Z H(Siop) + H(Sk:dt1)—[1:6—1])
i=1
k=1 k—1d+1
>H U U Sijs U U Sij
i=1 j=1 j=1i=k
k—1k—1 k—1d+1
>H U USi%j,U USi*)j
j=1i=j j=1i=k
k—1d+1
=H| U U S
j=11i=j
k—1d+1
=H ULMHPUW' (20)
j=11i=j
> H(Wa). (21)

Note that in order to get (20) we can argue that W; can
be recovered from U Sj—1. Once Wy is available, we

can construct Si_,o, Wthh together with Uj; Sj2 can
reconstruct Ws. Now, from W3 and W5, we find S;_,3 and
Ss_, 3, respectively, and then with the help of Uji; Sj3 we

recover Ws. Continuing this procedure, all the content of all

discs in [k — 1] can be recovered.
Similarly,
k—1
ZH<S[Z']H¢) + H (St 1) [1:k-1)
i=1
k=1 i k—1d+1
>H U U Sii, U U Si i
i=1j=1 i=1 j=k
-1 k— k—1d+1
-1 (U U S J U Sis
j=1i=j j=1i=k
k=1 k— k—1d+1
~n(U U suUUseUw
j=1i=j+ j=1i=k
H(Wa). (22)

Finally we can bound the last term in (19) using the
following lemma. The proof of lemma is presented in Ap-
pendix I.

Lemma 1 For the (n,k,d) distributed storage system with

exact repair requirements, we have

k—1 k-1
> H(Sion) < H(Sigs1—i) — H(Sar1j-k-1)
i=1 i=1
k—1
<Y H(Spas1—i) — HWa). (23)
=1
Plugging (19), (21), (22), and (23) in (17), we get
k—1
H(W4) < Z H(W:) + 2H (S{p:dt 11— [1:6—1))
i=1
k—1
+Y  H(Siai154) (24)
1=1

which together with (16) imply
1
- Z H(W,

k-1 k-1
+ (4 - d) H(S[4+1]-i)

)+ H(S[k (1) [1:k—1])

,J;

k-1 (k—1)(d+2—-k) (k—1)(d—4)
k=1 (k—1)(3d — 2k)
- 4 o+ 4 57

which is the desired bound. Note that this bound is a valid
one for d > 4. For d < 4, the problem has been completely
solved from the results in [17]-[19].

V. PROOF OF THEOREM 2

We prove the bound for Type-I secrecy. Validity of the
bound for Type-II secrecy is just an immediate consequence
of the fact that Type-II secrecy is stronger than Type-I.

We bound the entropy of the file, F' as follows

B® = H(F)

= H(F|Wh,..., W) (25)

< H(FE, W1, ..., Wi|Wh,...,W))

= HWpgr,...,We|W1,...,Wy)
+H(F|W1,...,Wg,Wg+1,...,Wk)

= HWpgr,...,We|W1,...,Wp) (26)
k

= > HWi|Wi,...,Wi1) (27)
1=0+1

where (25) follows from the Type-1 (weaker) secrecy con-
straint, and (26) follows from the property that the file F'
must be recoverable from the data stored in any k£ nodes.
Next, the rest of the proof is devoted to upper bounding the
terms appearing in the summation. In particular, there are
two ways to upper bound the terms. The first one is rather



straightforward and is as follows:

k
BS < > HWi|Wi,...,
i=0+1

Wi_1)

H(S[441)=ilSji—1)—4)

(28)

to obtain one of the terms in Theorem 2 and has the
dependence on the repair bandwidth, .

We next prove the other bound (which depends on the
storage parameter «). To this end, we rewrite the summation
in (27) as

BS < Z (W;i|[W,...,Wi_1) (29)
=041
k
= > [HOv) - 1w W] G0
i=L+1

In order to further upper bound the above expression, we
state the following Lemma which is central to the proof. We
present the proof of Lemma 2 in Appendix II. Intuitively, this
lemma states that with exact and pair-wise symmetric repair
constraint, the mutual information between the content on a
node Wy, and the data stored at s other nodes is lower
bounded as a fraction of the entropy of the node W ;.

Lemma 2 For the (n,k,d) distributed storage system with
exact and pair-wise symmetric repair requirements, we have

s
I(Ws+1;W17--~7Ws) Z (&) H(Ws-i-l) (31)
forany 1 < s <d.

Using Lemma 2, we further upper bound (30) as follows:

BS — [H I(Wi; Wi 1])}
e
<X o (l‘l)HWiﬂ
= > () o

7

n |
+

1(
<3 ()

3

(32)

+

Hence, from (28) and (32), we arrive at

BS < Z —z+1mln(%7ﬁ)

i=0+1

[ () ()

thus completing the proof of Theorem 2.

VI. CONCLUSIONS

We considered the distributed storage problem with exact
repair and information theoretic secrecy constraints. We
developed a novel outer bound on the storage and repair
bandwidth tradeoff. Our results for the general problem
improve upon the best known outer bounds for this problem
for all (n, k, d) parameters when the eavesdropper can access
the repair data of any one node. Furthermore, under a
more restrictive scenario of pair-wise symmetric repair, we
completely characterize the corresponding tradeoff and show
that it corresponds to the MBR point. The key technical
element in the proofs of these results involves a novel use
of Han’s inequality. Future work includes extensions of this
technique for tightening of the bounds for ¢ > 1.

APPENDIX I
PROOF OF LEMMA 1

We can prove a stronger claim, that is, for any 7 < d, we
have

ZH(S[d+1]~>i) > ZH(SZH[Z']) +H
i=1 i=1

This can be proved by induction on 7. It is clear that for
7 = 1, the summation in the RHS reduces to the entropy of
a dummy variable S7_,1, which is zero. The remaining terms
are just identical, and so the inequality holds with equality.
Now, assume the claim holds for 7 — 1. Then we have

(Sia+11-[)- (34

T T—1
ZH(S[d+1]—>i) = Z H(S[a+1]-i) + H(S{a41)-7)

i=1
T—1
> lz H(Siop) + H(Sa41)——11) | + H(S[a41)—7)
=1
(35)
T—1
=Y H(Siom) + H(Sis1=(r—1s Sir—1]»7)
=1
+ H(Sg+1]=7 Sro[r—1]) (36)
T—1
=Y H(Siom) + H(Sigs1-r—1> Sresir)
=1
+ H(S[d+1]—>ra ST(—)[T]) (37)
T—1
> Z H(Si<—>[i]) + H(STH[T])
i=1
+ H(Sja41]=[r—1]> Sld+1)=7> Srelr]) (38)
> Z H(Sip) + H(Siay1-r)- (39)

i=1
Note that

¢ (35) holds because of the induction assumption for 7—1.

« in (36) we used the fact that for any 1 < j < 7, having
repair data from (d+1) (from d nodes excluding itself)
one can recover W;, and hence S;_,;, for any 4. In
particular, S;_,[;_) is a function of the repair data;



o in (37) we just used the definition of S, and the
fact that S-_,; is a dummy variable;
« and (38) follows from inequality

HXZ)+HYZ)>H(XYZ)+ H(Z).
This completes the proof. ]

APPENDIX IT
PROOF OF LEMMA 2

First note that

H(Ss+1—>[s] |Ws+1) =0 (40)

due to the fact that Ssy1_,; is the repair data sent by the node
s + 1 in the repair of node ¢, for ¢ = 1,...,s. Furthermore,

we also note that

since S;_,s+1 18 the repair data sent by node 7 in the repair of
node s+ 1. We can thus lower bound the mutual information
I(Wey1; Wig) as

I(Ws-i-l; W[s]) > I(Ss+1~>[s]; S[s]%stl)

= I(S[s]%sjtl; S[s]%s%»l) 42)
= H(S[s]—>s+1)~ 43)
In (42), we invoked the pair-wise symmetric repair con-
straint, i.e., S;—; = Sj—; and replaced Sy1-; by Siet1
for + = 1,...,s. To complete the proof of the lemma, we
next show the following
S
H(Sg)—s41) > gH(W€+1)~ (44)
To prove (44), we can write
1
H(Sgosit) === >, H(Sasen) (49
(s) AC[d+1]\{s+1}
|Al=s
s 1
> - Z H(Sa—s+1) (46)
(d) A'Cld+1]\{s+1}
[Al=
s
> gH(Ws-H) (47

where (45) follows from the fact that the system is symmet-
ric, and H(S4_s41) is the same for all A with |A] = s; in
(46) we have used Han’s inequality [13] for random variables
X; = Sissy1, fori € [d+ 1]\ {s+ 1}, which is

1 H(X(A 1 H(X(A
3 (XA) o 3 (X(A))

(@) Tl

() Al Al=s ()

Finally, (47) follows from the fact that W,y; must be
recoverable from the repair data coming in from d nodes.
Substituting (47) in (43) we get the desired bound. [ |
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