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Abstract—The exact-repair problem for distributed storage
systems is considered. Characterizing the optimal storage-vs-
repair bandwidth tradeoff for such systems remains an open
problem for more than four storage nodes. A new family of
information theoretic bounds is provided for the storage-vs-repair
bandwidth tradeoff for all (n, k, d) systems. The proposed bound
readily recovers Tian’s result for the (4,3, 3) system, and hence
suffices for exact characterization for this system. In addition, the
bound improves upon the existing bounds for the (5, 4,4) system.
More generally, it is shown that this bound characterizes the
optimal boundary of the exact repair tradeoff for all distributed
storage systems, with (n,k,d) = (n,n—1,n—1) when 3 < 2a/k.

Index Terms—Distributed storage system, Exact repair, New
outer bounds

I. INTRODUCTION

Contemporary distributed storage systems store massive
amounts of data over a set of distributed nodes. Besides
the traditional goals of achieving reliability by introducing
redundancy, new aspects such as efficient repair of failed
storage nodes are becoming increasingly important. To address
these issues, the concept of regenerating codes for distributed
storage systems (DSS) was introduced by Dimakis et al.
[1]. A DSS consists of n storage nodes each with a storage
capacity of « units, such that the entire file of size F' can
be recovered by accessing any k£ < n nodes. This is called
as the reconstruction property of the DSS. Whenever a node
fails, d nodes (where k < d < n — 1) participate in the repair
process by sending [ units of data each. This procedure is
termed as the regeneration of a failed node and [ is referred
to as the per-node repair bandwidth. In [1], it was shown that
the maximum amount of data, F', that any regenerating code
can store satisfies

F< 3 min (o (d—i)5). 1)

Thus, in order to store data of size F’, there exists a fun-
damental tradeoff between « (storage) and df (total repair
bandwidth). It was also shown in [1] that the above tradeoff
is achievable for functional repair, which does not require the
contents of the repaired node to be the same as the original
node. In contrast to functional repair, exact repair requires that
the contents of the failed node must match with those stored
in the original node. Exact repair is a practically appealing
property specially when it is desirable that the stored contents
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remain intact over time. Furthermore, the file recovery process
is also easier in this case as the reconstruction procedure
need not change whenever a failed node is replaced. While
characterizing the storage-vs-bandwidth tradeoff for the case
of exact repair remains a challenging open problem in general,
two extreme points of this tradeoff namely, the minimum
storage regenerating case (MSR) and the minimum bandwidth
regenerating (MBR) case have been studied extensively (see
[3], [4] and references therein). Other notable works on code
constructions beyond MSR and MBR points include [8], [9].

Tian has recently characterized the exact repair tradeoff
for the (4,3,3)-DSS [5]. This result, which is based on a
novel computer-aided approach showed that functional and
exact repair problems are fundamentally different. Despite its
originality, the solution involved solving an optimization prob-
lem with a large number of variables and constraints. More
importantly, the number of variables/constraints grow (at least)
exponentially, and hence, it is not clear whether this approach
can be generalized for larger system parameters. Moreover,
such a computer-aided approach does not necessarily lead to
intuition and insights which could be used to understand the
exact repair problem for a general set of parameters. Notably,
Sasidharan et.al in [7] brought some intuition in this regard
and presented a simpler proof for the (4,3,3) problem and
also presented new bounds for the (5, 4,4)-DSS.

In this paper, we present a new and general approach for
obtaining information theoretic upper bounds on F' for the
exact repair problem. This approach is used to develop a
family of bounds which hold for any (n,k,d)-DSS. Using
these bounds, together with the code constructions in [9],
we characterize the partial boundary of the optimal exact
repair tradeoff for (n,n — 1,n — 1)-DSS in the regime when
B < 2a/k. We also show that the proposed bound yields a new
and simple proof for the (4,3, 3)-DSS. For the (5,4, 4)-DSS,
our bounds improve upon the ones obtain in [7].

II. PROBLEM STATEMENT AND RESULT

Notation: We use [i : j] = {i,i+1,...,j} to denote the set of
positive integers between (and including) 7 and 7. If 1 = 1, we
drop it, and simply use [j] to denote set {1,2,...,;}, hence
[n] = {1,2,...,n} denotes the set of all node indices. We
use W; to denote the content stored in node 7, and extend



this definition to W4 = {W;;i € A} for any A C [n]. In the
rest of this paper, unless otherwise mentioned, we focus on a
subset of the nodes indexed by N = {1,2,...,d + 1}. Note
that any upper bound for this sub-system of (d + 1) nodes
holds for the original system with n nodes as well.

In this sub-system, the repair data from 7 to j is denoted
by S/. Note that since |[N| = d + 1, there is a unique way
of choosing d helper nodes to repair any failed node within
N. Therefore, the dependence of S} on the remaining (d — 1)
helper nodes, that is N\ {i, j}, is clear due to their uniqueness
and is hence dropped from the notation for simplicity. We
also set S¢, to be a dummy variable with zero entropy, for
consistency. Moreover, S§ = {S? :i € A,j € B}.

Next we describe the exact repair problem and the asso-
ciated constraints. An exact repair distributed storage system
with parameters (n, k,d) and («, ) is defined as follows. A
DSS consists of n storage devices, each with capacity «, which
is used to store some Data in a distributed fashion, such that
the following properties hold:

o MDS Property (data recovery): Data can be recovered

from the content of any k nodes: H(Data|W,4) = 0 for
any A C N satisfying |A| > k.
o Repairability Requirements: The content of any failed
node can be exactly recovered (repaired) by receiving
no more that 8 units of repair data from any other d
nodes, that is, H(W;|S%) = 0 for any A C N\ {i}, with
|A| > d, where H(S?) < 3 and H(S]|W;) = 0.
We next present the main result of this paper which is a new
set of lower bounds on the exact repair tradeoff for the (n, k, d)
distributed storage system.

Theorem 1. The exact repair capacity of an (n,k,d) dis-
tributed storage system with per node storage o and total
repair bandwidth df is upper bounded by a family of bounds,
namely,

2d — 2k 1
SF < (3% — 2m)a + ™ 2+m+ )
+ (d—k+ 1) min(a, kB),

form=0,1,... k.

B

The following corollary is an immediate consequence of this
theorem together with the code construction in [9].

Corollary 1. The exact repair capacity of an (n,k,d) =

(n,n—1,n—1) DSS for < 2a/k is given by

kel k(A1) k(k+1)
6 2

Fgmin{ B,

5} - @
Proof of Corollary 1. The first bound in the minimum above
follows by setting d = m = k in Theorem 1, while the second
one, i.e., F' < k(k+1)5/2 is simply the cut-set bound. More-
over, achievability of the MBR point (a, 3) = (,3—51 k(%))
is given in [10].

Finally, the other extreme point of this region is («, 5) =
( 3F 3F

20k+1) k(k+1)
construction in [9, Theorem 1 for k = 2] for every k. O

, which is shown to be achievable by the code
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Fig. 1. Existing and new results for (5,4, 4) DSS.

Remark 1. For the (4,3,3)-DSS, setting m =d =k = 3, we
obtain 3F < 4a + 68, which is precisely the new converse
bound obtained by Tian [5] through a novel computer aided
approach. This bound together with the cut-set bound and the
achievability in [5] suffices to characterize the exact repair
tradeoff for (4, 3,3)-DSS.

Remark 2. For the (5,4,4)-DSS, Theorem 1 leads to the
following set of new bounds which improve upon the cut-set
bound:

1) 3F <5a+ 108

2) 3F <T7a+60
It is interesting to note that the bound 3F < Ta+603 was also
obtained in [7] through a different set of arguments. Moreover,
the other bound 3F < 5a + 1083 (corresponding' to m = 4)
gives the optimal characterization of the exact repair tradeoff
for the regime in which B < 2a/k (see Corollary I). These
bounds together with the cut-set bound and the best known
code-constructions are shown in Fig. I.

(setting m = 4)
(setting m = 3)

III. PROOF OF THEOREM 1

For the sake of brevity and simplicity, we focus on the
tradeoff of the symmetric’> exact-repair regeneration codes
for DSSs, in which the information-theoretical quantities are
invariant under any relabeling of the nodes. We adopt the
notation in [5] in order to formally define this symmetry:

Definition 1. A permutation 7 is given by a one-to-one
mapping w : [n] — [n]. We denote the set of all permutations
by 1L

Then a symmetric DSS can be defined as the following.

I'This specific bound for (5,4, 4) first appeared in our prior work [11]. In
contrast to [11], the bounding technique of this paper is general and applicable
to any (n, k,d) DSS.

2Note that the symmetry assumption is made without any loss in generality,
as any asymmetric code can be symmetrized by augmenting its n! copies,
each copy corresponding to a permutation of the node labels. The resulting
symmetric code and the original asymmetric code achieve the same (F, o, 8)
upto the scaling factor of n!.
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Fig. 2. Pictorial illustration of Lemma 1. Starting from node 1, we can repair
nodes in a serial fashion, and then use their outgoing repair data.

(d—k+1)

Definition 2. An (n,k,d) exact-repair regeneration is called
symmetric if for any subset of node A C W, and repair data
B C {8 :i,j € [n]} and permutation € TI,

H(A,B) = H(w(A),n(B)).

In the following we focus on a subset of nodes in the DSS.
Let N = {1,2,...,d+ 1} C {1,2,...,n}. Both the data-
recovery and node-repairability property should also hold from
nodes in N. Moreover, any outer bound derived for the nodes
in N will also be a valid bound for the entire set of nodes.
The main advantage of restriction to nodes in N is the fact
that there is only one possibility for the repair of each node
within NV, which further simplifies our notation.

We next present three key lemmas, which play a central role
in the proofs of the outer bounds. The proofs of these lemma
are presented in Appendix. A.

Lemma 1. Let B={m+1,m+3,...,
nodes for some m < k. Then,

ZH( FNWe) + (1 - k) H (SEL|Ws)

—|Bla. 3)
In spite of its complicated statement, Lemma 1 is just a
simple cut-set bound. As shown in Figure 2, the repair data
on the LHS of (3) (shown by solid arrows) suffice to recover
W1, which further determines outgoing repair data from W;
(shown in dashed arrows). Then W5 can be recovered, and the
procedure continues until we repair k£ nodes, which suffice to
recover the entire data.

k} be a subset of

Lemma 2. For any pair of disjoints sets A, B C N with
|A| +|B| <d, and i ¢ AU B, we have

A
d—|B|

H(S4|Wg) > H(Sy|Wg). 4)

Lemma 3. For any subsets of nodes A, B,C C N, we have

H(SaB|\We) + H(SE, SplWe)

< H(Sn|We) + H(SEIWe). (5)

Having these lemmas, we are ready to present the proof of
the main theorem. Consider an arbitrary integer 1 < m < k,
and two disjoint sets P = {1,2,...,m} and Q = {m +
1,m+2,...,k}. Then, since |PUQ)| = k, the entire data can
be recovered from disks in P U . Hence,

F = H(Data) = H(WPUQ) = H(WQ) + H(WP|WQ)

=H(Wq) + ZH(WAW[FU,WQ)

i=1

H(Wg) +Z (WilWq) — I(Wi; Wi_y|Wa)]

H(Wq) + ZH(Wi|WQ) - ZI(Wi§ Wii—n|Wa)

i=1

< (k - m)Oé + mao — ZI(W“ W[l,1]|WQ)

i=1

=ka = I(Wi Wi;_q[Wo). (6)
=1

Next, note that the repair data Sl[i_ll (which is sent by node %)
is a function of W;. Similarly, S| [il._l] is a function of Wi;_y).
Hence we can write

EI(W%WHAHWQ) > 21(5[Z i P Sh 1]|WQ)
:2 {H<Sz[i71] ‘WQ) +H (S[iifu |WQ) _H(Si[ii”a S[iifl] |WQ)}
=S H (S we) + 3 H (Shoyiwe)
i=1 i=1
Term;y Terms
=Y (S s ylwo). ™
i=1
Terms
which together with (6) implies that
F < ka — [Term; + Termy — Terms] . 8)

Our next goal is lower bounding Term; and Term,, and upper
bounding Terms.

A. Lower Bounding Term,

First we use Lemma 1 for B = @ to get

SoH (SEWe) + (d+1 -k H(SEL W) = F = |Qla.

i=1

Hence,

Term; = i H (SZ[F”)WQ>
i=1

ZF—(k—m)a—(d+1—k)H( ,M]WQ) )



B. Lower Bounding Terms

Next, we use Lemma 2 to lower bound each individual
conditional entropy in the summation in Terms,. Evaluating
Lemma 2 for A =[i — 1] and B = @, we get

. — 1 .
H (Si_yIWa) = 'CEZ_ | Q]|'H(S§VWQ>
_ i—1 1

where in the last equality we used the symmetry property
implying that H(S%|Wq) = H(Sk|Wg). Summing up (10)

for:=1,2,...,m, we get
m ; m i—1
Term, :ZH (S[Fl]\WQ> > ZmH(SMWQ)
i=1 i=1
m(m — 1) 1
=———"—H . 11

C. Upper Bounding Terms

Finally, in order to bound Terms in (7), we apply Lemma 3
with C = @ and (4, B) = ([ — 1], {¢}) (so that AU B = [i])
to get

H(s§
Summing up (12) for ¢ =1,2,...,
H (557Wa) + 3 1 (1, )
giH(S;‘V‘WQ). (13)
i=1

Recall that P = [m], and having the repair data from every
node in N to P (ie., Sj[:,n]), we can recover the contents for
every node in P (i.e., Wp). Thus we have

)+ H (Sfi_l],sl["‘”]WQ)
<H (S}@‘”’WQ) +H( i

). (12)

m, we get

H (55| W) = H(We|Wo) = HWruolWo)
= H(Data|Wg) = H(Data) — H(Wp)
>F—(k—m)a. (14)
Hence (13) together with (14) imply
Termz = ZH( 1S ‘WQ)
=1
<3 (sifwa) 1 (s o)
i=1
<38 (83 [Wo) ~ [F - (k — m)al
i=1
H(S}V’WQ) Y (k—m)a—F, (15

where the last equality follows from the symmetry property,
that is H (S}V)WQ) —H (S}V‘WQ) fori=1,2,....,m

D. Upper Bounding F
Next, we plug (9), (11) and (15) in (8), to get

F < ka — Term;
< ka — [F—(k—m)a—(d-i-l—k)H( k+1’WQ)]

B m(m — 1) 1
[2<d— " —m))H“N'WQ)}

+ [mH (S}V‘WQ) + (k= m)a — F|

— Termy + Terms

= (3k—2m)a + m%i? d__k;)i";‘nj Ua (sy|wo)
+(d+1-K)H (P W) —2F. (16)

Hence, since

H (S}V‘WQ) =H (S}V\(QU{I})‘WQ> <(d-lQ)s
=(d—(k—m))p
and
H( k+1\WQ) < min(a, k), (17)
we have
3F < (3k — 2m)a + m[Q(d_k2)+m+”ﬁ
+ (d+1— k) min(a, kB). (18)

This concludes the proof of Theorem 1.

IV. CONCLUSION

We studied the exact-repair problem for the (n,k,d)-
distributed storage system and obtained new bounds on its
optimum tradeoff. Our bounds indicate a gap between the
functional and exact-repair tradeoffs for a wide range of
parameters. Furthermore, the proposed bound is achievable
for (n,k,d) = (n,n — 1,n — 1)-DSS when 8 € (a/d,2a/d],
and consequently characterizes the optimum tradeoff in this
regime.

While our results provide the state-of-the-art bounds for
(n, k, d) exact-repair distributed storage systems, and partially
characterize their optimum tradeoff, the central contribution
of this paper is to introduce a novel bounding mechanism and
demonstrate its applicability in finding upper bounds on the
optimum tradeoff of exact repair DSS problem for a wide
range of system parameters.

APPENDIX
Proof of Lemma 1. First note that

f:H (s}if” ‘WB) > H ({sﬁ*” Li € [m]
- H({SHlm Lic [m]}‘WB)

H (S i € ML ASI €
—H ({S@H:k] Lie m]}‘WB),

i)

m+1: k]}‘WB)
(19)



where in (a) we used the fact that Sg"] = S[[;LLMC] is a

function of Wp. On the other hand, using the symmetry
property in Definition 2, we have

d+1
> H (sMws)

i=k+1

(@—k+DH (S| wi) =

>H({SW ielk+1:d+ 1]}‘WB>
= H ({Siesrann s € W} Wa) . 0)
Hence, adding (19) and (20) we get

éH (1| w) + (@ &+ 0m (5P |w)

> H ({Sfy1a i € [m]}| W)
+H ({Sfran 1 € ()W)
> H ({Sfi1a4 21 € K]} W)

Next note that 8[12: A1) in (21) provides enough information
to repair W7, and hence the outgoing repair data from 7.
Once Sgk] is reconstructed, this together with 5[23: d+1) suffices
to repair W, from which Wy and its outgoing repair data
G.e., Sgc] ) can be recovered. Thereafter having (Sgk],ng])
and S[%l: a+1) We can recover Ws. A similar line of reason-
ing shows that {S[lZ +tapy ¢ ¢ € [K]} suffices to recover
(W1, W, ..., Wy), and hence the entire original data can be
recovered by the MDS property. Thus,

21

SoH (SEWe) + (@ - K+ 1) H (S W)
i=1
> H(Data|Wg) = H(Data) — H(Wg) > F — |B|a.
This completes the proof of Lemma 1. O

Proof of Lemma 2. Let C = N \ (B U {i}). It is clear that
A C C,and |CUB| = |N|—1 = d. Now consider any arbitrary
A" C C with |A’| = |A]. The symmetry property of the
code (Definition 2) implies that H(S%|Wg) = H(S%,|Wg).
Hence, we can write

1 ; 11 ;
WH(SAWVB) = WW > H(S4|Wg)
lAl)  a'ce
|A"[=]A]
= — H(S%/|Wg)
C Z A
|A|(|\A\I) A'cc
|A"[=]A]
() 1 ;
S g
lcl) c'ce
IC]=|C]
1 ,

where in (x) we used the conditional version of Han’s inequal-
ity [6]. Next note that, given Wp, all the repair data outgoing

from nodes in B are determined. Moreover, S! is just a dummy
variable with zero entropy. Hence,

H(SL|Wp) = H(Sk, S5, Si|Wg) = H(Sk|W5).  (23)

Substituting (23) in (22), and incorporating |C| = d — | B|, we
get the desired bound. [

Proof of Lemma 3. First note that S4 includes S4 since B C
N. Moreover, Si provides all repair data required to repair
nodes in A. Hence W4 can be reconstructed from Sj(‘,, from
which the outgoing repair data S% can be found. Hence

H(Sn|We) = H(SR, S5, SIWe), (24)
and similarly
H(SFIWe) = H(Sy,S%, SpIWe). (25)

Therefore, using the inequality

H(X,Y|T) + H(X, Z|T) > H(X,Y, Z|T) + H(X|T)
we get
H(Sy|We) + H(S{IWe)
Sy. 84, S5IWe) + H(Sy, S, S5|We)
Sy7P SE,S5IWe) + H(SE, S5|We)
= H(Sx""|We) + H(SF, SpWe),  (20)

H{(
H

v

which implies the desired inequality. O
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