
Linear Exact Repair Rate Region of (k + 1, k, k)
Distributed Storage Systems: A New Approach

Mehran Elyasi
Department of ECE

University of Minnesota
melyasi@umn.edu

Soheil Mohajer
Department of ECE

University of Minnesota
soheil@umn.edu

Ravi Tandon
Department of Computer Science

Virginia Tech
tandonr@vt.edu

Abstract—Characterizing the exact repair storage-vs-repair
bandwidth tradeoff for distributed storage systems remains an
open problem for more than four storage nodes. Motivated by the
prevalence and practical applicability of linear codes, the exact
repair problem when restricted to linear codes is considered.
The main result of this paper is a new approach to develop
bounds for exact repair distributed storage systems with linear
codes (LDSS). Using this approach, the exact repair region for
the (k + 1, k, k) LDSS is completely characterized. The new
approach utilizes the properties of linear codes together with the
exact repair constraints. These constraints are formally captured
through an optimization problem with a recursive structure, and
its solution finally yields the new bounds for the LDSS. These
bounds together with recent code constructions characterize the
exact repair region for (k + 1, k, k) LDSS.

I. INTRODUCTION

Distributed storage systems (DSS) are increasingly being
employed by various technologies. While the size of data,
number of storage components, and number of users connect-
ing to these servers are dramatically growing, efficiency of the
system, in the sense of a fundamental tradeoff between the
overhead penalty paid to provide robustness and the cost of
system maintenance, is becoming the key factor to determine
their performance. In order to reduce the computational com-
plexity of encoding/decoding as well as system maintenance,
linearity and exact-repairability are two essentially important
properties required for practical purposes. Characterizing the
optimal tradeoff between storage and repair-bandwidth is a
challenging open problem for a general (n, k, d) DSS with
exact repair property. Since the work of Dimakis et.al [1],
which established the functional repair tradeoff, there have
been several works on exact repair code constructions such
as [4], [8]–[10] (also see the references therein), and non-
achievability of some points on the functional repair tradeoff
[3]. However, the fundamental question regarding the gap
between functional and exact repair tradeoff remained open
until recently shown by Tian in [5] (also see [7], [11] for
more recent results).

In particular, for the (4, 3, 3) system, it was shown in [5]
that functional and exact repair tradeoffs are different through
a novel computer-aided proof. Despite its originality, the
solution involved an optimization problem over a large number
of variables, making this approach non-scalable and intractable
for larger system parameters. Moreover, such a computer-aided

approach does not necessarily lead to intuition and insights
which are very valuable for system design.

In practice, most of the codes that are currently being used
in DSS implementations are linear codes (such as codes from
the RAID family, and variations of Reed-Solomon codes).
Motivated by the popularity and practical relevance of linear
codes, in this paper, we focus on linear codes with the exact
repair property. Henceforth, we refer LDSS as distributed
storage systems which employ linear codes.

Our key approach is to use the underlying algebraic struc-
ture of linear codes to provide bounds on the performance of
LDSS. In particular, we exploit the duality between the multi-
dimensional subspaces over finite fields and linear codes in
order to understand the structure of an optimal exact repair
code. This results in a computationally feasible optimization
problem to bound the performance of the system. Together
with the recent code constructions in [9], our bounds charac-
terize the exact repair region for the (k + 1, k, k) LDSS.

II. PROBLEM STATEMENT

We first describe the exact repair problem for distributed
storage systems. An exact repair DSS with parameters
(n, k, d) = (k + 1, k, k) and (α, β) consists of n = k + 1
storage devices, each with storage capacity α. The entire data
(Data) is encoded and stored distributedly over n nodes.
Notation: We use [i : j] = {i, i+1, . . . , j} to denote the set of
positive integers between (and including) i and j. If i = 1, we
drop it, and simply use [j] to denote set {1, 2, . . . , j}, hence
[n] = {1, 2, . . . , n} denotes the set of all node indices. We
use Wi to denote the content stored in node i, and extend this
definition to WA = {Wi; i ∈ A} for any A ⊆ [n].

In the (k+1, k, k) DSS, the repair data sent from node i to
repair node j is denoted by Si→j . Note that since n = d+ 1,
there is a unique way of choosing d = k helper nodes to
repair any failed node within [n]. Therefore, the dependence
of Si→j on the remaining (d − 1) helper nodes, that is [n] \
{i, j}, is clear due to their uniqueness and is hence dropped
from the notation for simplicity. We also set Si→i, to be a
dummy variable with zero entropy, for consistency. Moreover,
SA→B = {Si→j : i ∈ A, j ∈ B} denotes the total data sent
by nodes in set A for the repair of nodes in set B.

The data recovery and failure node repairability are defined
as follows.

↵

F

�

F

3

10
8

30

1

4

2

7

2

5

3

11

2/11

1/8

1/5

3/20

1/10

1/9

1/4

1

3

Repair bandwidth

Storage

F 3↵ + �

3F 5↵ + 10�

Functional repair [1]

Achievable points [9]

6F 15↵ + 10�

Existing exact repair (IT)[11]

New exact repair (Linear)

Fig. 1. Existing and new results for (5, 4, 4) DSS.

• MDS Property (data recovery): The entire file can
be recovered from the content of any k nodes:
H(Data|WA) = 0 for any A ⊆ [k+1] satisfying |A| ≥ k.

• Failure Node (Exact) Repairability: The content of
any failed node can be exactly recovered (repaired) by
receiving no more that β units of repair data from
any other d nodes, that is, H(Wi|SA→i) = 0 for any
A ⊆ [k + 1] \ {i}, with |A| ≥ d, where H(Si→j) ≤ β
and H(Si→j |Wi) = 0.

The following theorem is the main result of this work
which provides a new outer bound for the linear capacity of
distributed storage systems with exact repair.

Theorem 1. The exact repair capacity of a (k+ 1, k, k) DSS
with per node storage α and total node repair bandwith kβ
is upper bounded by

Fk(α, β) ≤ max
(π1,π2,...,πk)∈Pk(α,β)

Φk(α, β;π1, π2, . . . , πk).

(1)

where the maximum is taken over all feasible (π1, π2, . . . , πk),
defined as

Pk(α, β) =

(π1, π2, . . . , πk) :
0 ≤ π1 ≤ π2 ≤ · · · ≤ πk = α
πk−1 ≥ α− β
πi ≥

∑i
j=1(−1)i−j

(
i
j

)
πj

 . (2)

The following corollary is direct consequences of Theo-
rem 1, by solving the optimization problem1 for (5, 4, 4)-
DSS. Essentially, the outer bound given in Theorem 1 together
with the code construction from [9] provide the complete
characterization of the optimum tradeoff.

1It is easy to show that the optimum bound of Tian [5] for (4, 3, 3) can be
also subsumed from this theorem.

Corollary 1. The optimum storage-bandwith exact-repair
tradeoff of the (5, 4, 4)-DSS with linear codes is given by

F4(α, β) ≤ min
(

4α, 3α+ β,
5

2
α+

5

3
β,

5

3
α+

10

3
β, 10β

)
.

III. LINEAR DISTRIBUTED STORAGE SYSTEM

In a linear code for DSS, the original file of size F is
divided into F sub-packets. These sub-packets form a basis
for an F -dimensional vector space, namely F , over a finite
filed Fq , which determines the original file. Therefore, each
unit of stored data can be expressed as a linear combination
of the sub-packets, which is indeed a vector in F , and thus,
the content of each disk is equivalent to a subspace of F . We
denote by Wi the subspace spanned by the vectors stored on
the i-th node. Moreover, Si→j denotes the subspace spanned
by the vectors sent from node i to node j in order to repair
j. In the following, we explain our approach to analyze the
relationship between these subspaces with the exact repair
property, and derive bounds on the optimum tradeoff of the
LDSS.

In this new framework, the concept of exact regeneration
code can be redefined as the following.

Definition 1. An exact regeneration code for a (k + 1, k, k)
DSS with parameters (α, β) is defined as a vector space F
defined over a finite field Fq , where

i) each node i stores a subspaceWi ⊆ F with dim(Wi) ≤
α;

ii) the summation of every k node subspaces suffice to cover
the entire vector space, that is, F =

∑
i∈AWi for every

A ⊂ [k + 1] with |A| = k.
iii) in case of failure of node j, all other nodes can send

a (at most) β-dimensional subspace of their own vector
space, such that the missing vector space Wj can be
recovered, that is Wj ⊂

∑
i∈[k+1]\{j} Si→j , where

Si→j ⊆ Wi and dim(Si→j) ≤ β.

Definition 2. An achievable operation point (α, β) for an
(n, k, d) DSS is called pareto-optimum if any other achievable
point (α′, β′) satisfies either α′ > α or β′ > β.

Our focus is on the storage-repair bandwidth tradeoff of
the optimum regeneration codes. In particular, in an optimum
code we have dim(Wi) = α and dim(Si→j) = β, because
otherwise, we can shrink at least one of the subspaces, and
obtain a code with a better tradeoff.

We start with some basic definitions from linear algebra.

Definition 3. We define the following operations between
subspaces.

i) For two subspace V,U ⊆ F over F , their intersection
is defined as

V ∩ U = {v : v ∈ V, v ∈ U}.

The intersection of any two vector spaces is always a
vector spaces.

ii) For two subspace V,U ⊆ F over F , their summation
is defined as

V + U = {v + u : v ∈ V, u ∈ U}.

The summation of two subspaces is called direct sum
and denoted by V ⊕ U , if U ∩ V = {0}. Note that the
summation of any two subspaces is also a vector space.

A very important distinction between vector spaces defined
on R (or C) and those defined on finite fields is due to the fun-
damentally different concept of orthogonality. In real field, two
orthogonal are always disjoint (except their trivial intersection
at {0}), while in vector spaces defined over finite fields, a
vector can be orthogonal to it self (e.g. [1, 1] · [1, 1]T = 0
in F2). Hence, we need an alternative approach to define the
complement of a subspace. This is formally defined as follows.

Definition 4. Consider two vector spaces U and V , and
assume B(U∩V) = {v1, . . . , vp} forms a linearly independent
basis for U ∩ V . We can extend this set of vectors, to
B = {v1, v2, . . . , vp, vp+1, . . . , vq}, to form a basis for U .
Then we define [U]mod(V) (U after nulling V) as

[U]mod(V) , span(B(U)\B(U∩V)) = span({vp+1, . . . , vq}).

In other words, one can think of [U]mod(V) as the complement
of U with respect to V , that is U ⊆ [U]mod(V) ⊕ V .

The following lemma characterizes some of the basic prop-
erties of this operator. The proof of this lemma is just based
on basic concepts of linear algebra, and hence skipped here
for sake of brevity.

Lemma 1. For any two vector spaces A and B, we have
P1) [·]mod(U) is a linear operator on vector spaces, that is,

[U1 + U2]mod(V) = [U1]mod(V) + [U2]mod(V).

P2) More generally, [·]mod(U) preserves subspace relation-
ship, i.e., if U1 ⊆ U2, then [U1]mod(V) ⊆ [U2]mod(V).

P3) dim([U]mod(V)) = dim(U)− dim(U ∩ V).

Definition 5. Let A ⊂ [k + 1] be a subset of nodes and node
i /∈ A. Consider the vector space formed by the sum of the
subspaces of the nodes in A. We denote the intersection of this
subspace and Wi by

W(A; i) ,
(∑

j∈A
Wj

)
∩Wi.

Definition 6. Consider a symmetric (k + 1, k, k) DSS with a
regeneration code operating at parameters (α, β). We call the
code a (π1, π2, . . . , πk)-code if the associated vector spaces
to the nodes satisfy

dim
((∑

j∈A
Wj

)
∩Wi

)
= π|A| (3)

for every A ⊂ [n] and i /∈ A.
A sequence π = (π1, π2, . . . , πk) is called feasible if there

exists a (π1, π2, . . . , πk) regeneration code for (k + 1, k, k)
DSS.

Note that elements of π are jointly defined over a family of
subspaces. Hence, they are not isolated (independent of each
other), and any sequence π associated with a regeneration code
should satisfy a set of constraints.

The following lemma states some necessary conditions on
feasible sequences.

Lemma 2. A sequence (π1, π2, . . . , πk) is feasible to be
associated with a family of subspaces (W1,W2, . . . ,Wk+1),
only if
(1) 0 ≤ π1 ≤ π2 ≤ · · · ≤ πk = α.
(2) πk−1 ≥ α− β
(3) πi ≥

∑i
j=1(−1)i−j

(
i
j

)
πj .

We denote the set of all π-vectors satisfying (1), (2), (3)
by P (α, β).

Proof of Lemma 2. First note that in any (π1, π2, . . . , πk)-
code, all the πi’s are non-negative integers. Moreover, for any
pair of sets (A,B) with B = A∪{j} (where j /∈ A), we have∑
i∈AWi ⊂ (

∑
i∈AWi) +Wj =

∑
i∈BWi. Hence,

W(A; i) ⊂ W(B; i)

which implies

π|A| = dim(W(A; i)) ≤ dim(W(B; i)) = π|A|+1,

which shows π is a non-decreasing sequence.
Next, note that for any (k + 1, k, k) DSS, the entire data

can be recovered from the first k nodes. That means Wk+1 ⊂
F =

∑
i∈[k]Wi, which implies

πk = dim

((∑
i∈[k]
Wi

)
∩Wk+1

)
= dim(F ∩Wk+1) = dim(Wk+1) = α.

This completes the proof of (1).
In order to show (2), recall thatWk+1 can be reconstructed

by the sum of the repair data Si→k+1 sent from node i =
1, 2, . . . , k to k+1, i.e.,Wk+1 ⊆

∑k
i=1 Si→k+1. Hence, since

Si→k+1 ⊆ Wi, we have

α = dim(Wk) = dim

((∑k

i=1
Si→k+1

)
∩Wk+1

)
≤ dim

((
S1→k+1 +

∑k

i=2
Wi

)
∩Wk+1

)
≤ dim

((∑k

i=2
Wi

)
∩Wk+1

)
+ dim(S1→k+1)

= πk−1 + β.

This implies πk−1 ≥ α− β.
Finally, last constraint is based on inclusionexclusion prin-

ciple. The complete proof is rather involved and refer the
interested reader to our technical report [12]. However, the
sketch of the proof is as follows. Consider a set A ⊂ [k + 1]
with |A| = i and ` /∈ A. It is clear that

W(B, `) ⊆ W(A, `), ∀B ⊆ A.

Now, consider all
(
i
i−1
)

subsets of A each of size (i−1). Each
of them contribute a πi−1-dimensional subspace intoW(A, `).
However, by summing up all these dimensions, we are over
counting their intersection. Let B,C be two subsets of A,
each of size (i − 1) such that |D| = |B ∩ C| = i − 2. Since
W(D, `) ⊆ W(B, `) andW(D, `) ⊆ W(C, `), every vector in
W(D, `) is over counted in

(
i
i−1
)
πi−1. Thus, we compensate

for that by subtracting all those over-counting by subtracting(
i
i−2
)
πi−2. A similar argument can be followed to obtain the

desired inequality.

Next, we define the linear capacity of a distributed storage
system that employs a (π1, π2, . . . , πk)-code.

Definition 7. We denote the capacity of a (k + 1, k, k) DSS
operating at (α, β) and using a (π1, π2, . . . , πk)-code by
Φk(π1, π2, . . . , πk).

Recall that symmetric regeneration codes achieve the op-
timum capacity of DSS. On the other hand, any symmetric
code, is associated with some feasible π ∈ P(α, β). Hence,
we can immediately conclude the following lemma.

Lemma 3. The linear capacity of a (n, k, d) = (k + 1, k, k)
DSS with per node capacity α and total repair bandwith dβ
is given by

Fk(α, β) ≤ max
(π1,π2,...,πk)∈P (α,β)

Φk(α, β;π1, π2, . . . , πk). (4)

The following theorem allows us to construct an exact-repair
regeneration code for a (k, k − 1, k − 1) system from any
existing symmetric code for a (k + 1, k, k) DSS.

Theorem 2. Let (W1,W2, . . . ,Wk,Wk+1) be a
(π1, π2, . . . , πk)-regeneration code for a (k + 1, k, k)-
DSS, that operates at (α, β). Then (W ′1,W ′2, . . . ,W ′k) is
a (π2 − π1, π3 − π2, . . . , πk − π1)-regeneration code for a
(k, k− 1, k− 1)-DSS with parameters (α′, β′) = (α− π1, β),
where

W ′i = [Wi]mod(Wk+1)
.

Moreover, this code can store F ′ = [F]mod(Wk+1)
on the

system, where dim(F ′) = dim(F)−min(α, kβ).

This theorem is the core contribution of this work, and we
present its proof in Section IV.

Using Theorem 2, we can obtain a recursive bound on the
exact-repair capacity of any distributed storage system under
linear codes.

The following lemma is a direct consequence of Theorem 2,
which establishes a recursive upper bound on the Φk(·)
function defined above.

Lemma 4. For any operation point (α, β), positive integer k,
and any feasible sequence π ∈ P (α, β), we have

Φk(α, β;π1, π2, . . . , πk) ≤ min(α, kβ)

+ Φk−1(α− π1, β;π2 − π1, π3 − π1, . . . , πk − π1) (5)

Proof of Lemma 4. Consider a (k+ 1, k, k) DSS with param-
eters (α, β). Let π = (π1, . . . , πk) be a feasible sequence for
this system. Consider an optimum code for this system, which
can stores Φk(α, β;π1, π2, . . . , πk) units of data on the system.

From Theorem 2, we can null the content of the last node
in this code Wk+1, to obtain a new code for the resulting
(k, k−1, k−1) system with parameters (α′, β′) = (α−π, β).
Regardless of this new code being optimum for the new system
or not, it can at most store Φk−1(α − π1, β;π2 − π1, π3 −
π1, . . . , πk−π1) units of data. However, Theorem 2 implies by
nulling we do not loose more that dim(Wk+1) = min(α, kβ)
units of data on the original system. Hence, the total dimension
(file size) of the original system could be at most min(α, kβ)+
Φk−1(α−π1, β;π2−π1, π3−π1, . . . , πk−π1). This completes
the proof of this lemma.

IV. PROOF OF THEOREM 2

Consider a (k + 1, k, k) DSS operating at (α, β) using a
(π1, π2, . . . , πk)-code. We denote by Wi the vector space of
the i-the node. We null Wk+1 in the entire system. Note that
W ′k+1 = {0}, since this operation maps every vector inWk+1

to the zero vector, and makes the last disk empty. Also the
entire vector space remained in this system after nullingWk+1

is F ′ = [F]mod(Wk+1)
, where

dim(F ′) (a)
= dim(F)− dim(Wk+1) = dim(F)−min(α, kβ).

Note that in (a) we used Property P3, together with the fact
that Wk+1 ⊆ F which leads to F ∩Wk+1 =Wk+1.

We prove the claims of the theorem through the following
steps:
Data recovery: We need to show that F ′ =

∑
i∈AW ′i for

every A ⊆ [k] with |A| = k − 1. Consider such an A, and
define B = A ∪ {k + 1}, so that |B| = k. Recall that data
recovery property of the original system with (k + 1) nodes
implies

F =
∑
i∈B
Wi =Wk+1 +

∑
i∈A
Wi.

Hence, using linearity of [·]mod(Wk+1)
, we have

F ′ = [F]mod(Wk+1)
=

[
Wk+1 +

∑
i∈A
Wi

]
mod(Wk+1)

(b)
= [Wk+1]mod(Wk+1)

+
∑
i∈A

[Wi]mod(Wk+1)

= {0}+
∑
i∈A
W ′i =

∑
i∈A
W ′i, (6)

where (b) follows from Property P1. This shows that nodes
in any subset of size (k − 1) in the new system are able to
recover the data. Also note that

dim(Wi) = dim([Wi]mod(Wk+1)
)

= dim(Wi)− dim(Wi ∩Wk+1) = α− π1. (7)

Node Repairability: Similar to the above argument, we start
with the repair of some node j ∈ [k] in the original system.
Since (W1, . . . ,Wk+1) is an exact-repair code, node i can be
repaired by the help of other k nodes in A = [k + 1] \ {j},
that isWj ⊆

∑
i∈A Si→j . Hence, since [·]mod(Wk+1)

preserves
subspace relationship, we have

W ′j = [Wj]mod(Wk+1)

(c)

⊆
[∑
i∈A
Si→j

]
mod(Wk+1)

= [Sk+1→j]mod(Wk+1)
+

 ∑
i∈A\{k+1}

Si→j

mod(Wk+1)

= {0}+
∑

i∈A\{k+1}

[Si→j]mod(Wk+1)

=
∑

i∈A\{k+1}

S ′i→j , (8)

where in (c) we used Property P2. This implies any node j
in the new system is repairable using S ′i→j repair data from
all other nodes. It is also worth mentioning that

dim(S ′i→j) ≤ dim(Si→j) ≤ β.
So, we have a linear (k, k − 1, k − 1) DSS with exact repair
property, with parameters (α′, β′) = (α− π1, β).

It only remains to show that for the new code we have

π′|A| = dim
((∑

j∈A
W ′j
)
∩W ′i

)
= π|A|+1 − π1,

for every pair of A ⊂ [k] and i /∈ A. Without loss of generality,
we can consider i = 1 and A ⊂ {2, . . . , k}. Let B = A∪{k+
1}.

First note that Wk+1 ∩W1 ⊆
(∑

j∈BWj

)
∩W1. Assume

B1 = {v1, v2, . . . , vπ1} be a basis vector for Wk+1 ∪ W1.
Extend it to B2 = {v1, . . . , vπ1 , vπ1+1, . . . , vπ|B|} to form a

basis for the larger subspace
(∑

j∈BWj

)
∩W1. These vectors

will be mapped to

v′` = [v`]mod(Wk+1)
, ` = 1, . . . , π|B|.

This is easy to see, by linearity of [·]mod(Wk+1)
, that every

vector in
(∑

j∈AW ′1
)
∩W ′i can be written as a linear combi-

nation of elements in {v′1, . . . , v′π|B|
}. Recall that v` ∈ Wk+1

for ` = 1, . . . , π1, and hence, after nulling Wk+1, we have
v′` = 0 for ` = 1, . . . , π1.

On the other hand, we can show that elements of
{v′π1+1, . . . , v

′
π|B|+1} are linearly independent. To this end,

assume
π|B|∑

`=π1+1

λ`v
′
` = 0,

for some set of coefficients λπ1+1, . . . , λπ|B| ∈ Fq . Then, we
have [π|B|∑

`=π1+1

λ`v`

]
mod(Wk+1)

=

π|B|∑
`=π1+1

λ`v
′
` = 0,

which further implies
∑π|B|
`=π1+1 λ`v` ∈ Wk+1, because it is

a vector which is mapped to 0 by nulling Wk+1. On the
other hand we know,

∑π|B|
`=π1+1 λ`v` ∈ W1, since each of

v`’s lie in W1. This implies
∑π|B|
`=π1+1 λ`v` ∈ Wk+1 ∩W1 =

span({v1, . . . , vπ1
}). Hence, there exists a set of coefficients

δ1, . . . , δπ1
such that

π|B|∑
`=π1+1

λ`v` =

π1∑
`=1

δ`v`.

This is only possible if all λ`’s and δ`’s are zero, since B2 =

{v` : ` = 1, ,̇π|B|} was a basis for
(∑

j∈BWj

)
∩ W1, and

thus consists of linearly independent vectors.
From this argument we can conclude that B2 ⊆ B1 forms

a basis for
(∑

j∈AW ′j
)
∩W ′1, and hence

π|A| = dim

∑
j∈A
W ′j

 ∩W ′1
 (9)

= |B2 ⊆ B1| = π|A|+1 − π1. (10)

This completes the proof of Theorem 2.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright and K. Ramchan-
dran, “Network coding for distributed storage systems,” IEEE Trans. Inf.
Theory, vol. 56, no. 9, pp. 4539–4551, Sept. 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inf. Theory, vol. 46, pp. 1204–1216, Jul. 2000.

[3] N. B. Shah, K. V. Rashmi, P. V. Kumar and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and non-achievability of
interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 1837–1852, Mar. 2012.

[4] V. Cadambe, S. Jafar, H. Maleki, K. Ramchandran and C. Suh,
“Asymptotic interference alignment for optimal repair of MDS codes in
distributed storage,” IEEE Trans Inf. Theory, vol. 59, no. 5, pp. 2974–
2987, May. 2013.

[5] C. Tian, “Rate region of the (4,3,3) exact-repair regenerating codes,” in
Proc. Intern. Symp. Inf Theory, ISIT, Istanbul, Turkey, Jun. 2013.

[6] T. M. Cover and J. A. Thomas, “Elements of Information Theory”, 1991.
New York: Wiley.

[7] B. Sasidharan, K. Senthoor, P. V. Kumar , “An Improved Outer Bound on
the Storage-Repair-Bandwidth Tradeoff of Exact-Repair Regenerating
Codes”, in arXiv:1312.6079, Dec. 2013.

[8] C. Tian, B. Sasidharan, V. Aggarwal, V. A. Vaishampayan, P. V. Ku-
mar, “Layered, Exact-Repair Regenerating Codes Via Embedded Error
Correction and Block Designs”, in arXiv:1408.0377, Aug. 2014.

[9] S. Goparaju, S. El Rouayheb, R. Calderbank , “New Codes and
Inner Bounds for Exact Repair in Distributed Storage Systems”, in
arXiv:1402.2343, Feb. 2014.

[10] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-
Regenerating Codes for Distributed Storage at the MSR and MBR
Points via a Product-Matrix Construction,” in IEEE Transactions on
Information Theory, vol. 57, pp. 5227–5239, Aug. 2011.

[11] S. Mohajer and R. Tandon, “Exact Repair for Distributed Storage
Systems: Partial Characterization via New Bounds”, Information Theory
and Applications Workshop (ITA), San Diego, Feb. 2015.

[12] S. Mohajer and R. Tandon, “Exact Repair for Linear Distributed Stor-
age Systems”, Technical Report., Available at http://www.ece.umn.edu/
∼soheil/Publications files/Tech Rep 1.pdf

