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Abstract—The exact-repair problem for distributed storage
systems is considered. Characterizing the optimal storage-vs-
repair bandwidth tradeoff for such systems remains an open
problem for more than four storage nodes. A new family of
information theoretic lower bounds is provided for the storage-vs-
repair bandwidth tradeoff. The bound recovers Tians bound for
the (4, 3, 3) system, and hence suffices for exact characterization
for this system. Moreover, the bound improves upon the existing
lower bounds for the (5, 4, 4) system and also characterizes the
partial boundary of optimal exact repair tradeoff.

I. INTRODUCTION

Contemporary distributed storage systems store massive
amounts of data over a set of distributed nodes. Besides
the traditional goals of achieving reliability by introducing
redundancy, new aspects such as efficient repair of failed
storage nodes are becoming increasingly important. To address
these issues, the concept of regenerating codes for distributed
storage systems was introduced by Dimakis et al. [1]. A
distributed storage system (DSS) consists of n storage nodes
each with a storage capacity of α units of data such that the
entire file of size B can be recovered by accessing any k < n
nodes. This is called as the reconstruction property of the DSS.
Whenever a node fails, d nodes (where k ≤ d ≤ n − 1)
participate in the repair process by sending β units of data
each. This procedure is termed as the regeneration of a failed
node and β is referred to as the per-node repair bandwidth. In
[1], it was shown that the maximum amount of data, F , that
any regenerating code can store satisfies

F ≤
k−1∑
i=0

min (α, (d− i)β) . (1)

Thus, in order to store data of size F , there exists a fun-
damental tradeoff between α (storage) and dβ (total repair
bandwidth). It was also shown in [1] that the above tradeoff
is achievable for functional repair, which does not require the
contents of the repaired node to be the same as the original
node.

In contrast to functional repair, exact repair requires that
the contents of the failed node must match with those stored
in the original node. Exact repair is a practically appealing
property specially when it is desirable that the stored contents
remain intact over time. Furthermore, the file recovery process

is also easier in this case as the reconstruction procedure
need not change whenever a failed node is replaced. While
characterizing the storage-vs-bandwidth tradeoff for the case
of exact repair remains a challenging open problem in general,
two extreme points of this tradeoff namely, the minimum
storage regenerating case (MSR) and the minimum bandwidth
regenerating (MBR) case have been studied extensively (see
[3], [4] and references therein). Other notable works on code
constructions beyond MSR and MBR points include [8], [9].

Tian has recently characterized the exact repair tradeoff
for the (4, 3, 3)-DSS [5]. This result, which is based on a
novel computer-aided approach showed that functional and
exact repair problems are fundamentally different. Despite its
originality, the solution involved solving an optimization prob-
lem which included 65535 variables and 1966112 constraints,
making this approach non-scalable and intractable for larger
system parameters. Moreover, such a computer-aided approach
does not necessarily lead to intuition and insights which could
be used to understand the exact repair problem for a general
set of parameters. Notably, Sasidharan et.al in [7] brought
some intuition in this regard and presented a simpler proof
for the (4, 3, 3) problem and also presented new bounds for
the (5, 4, 4)-DSS.

In this paper, we present a new and general approach for
obtaining information theoretic upper bounds on F for the
exact repair problem. We first explain the key ideas through a
simple proof for the (4, 3, 3) problem recovering Tian’s result.
We next consider the (5, 4, 4)-DSS and obtain new bounds
for its exact repair tradeoff. Through our general bounding
framework, we recover the bound in [7]. More interestingly,
we obtain a new bound which together with the achievability
results in [9], characterize the optimal exact-repair tradeoff for
α ≥ 2β.

II. PROBLEM STATEMENT AND RESULT

Notation: We use [i] = {1, 2, . . . , i} to denote the set of
positive integeres not exceeding i, and denote the set of all
node indices N = [n] = {1, 2, . . . , n}. We use Wi to denote
the content stored in node i, and extend this definition to
WA = {Wi; i ∈ A} for any A ⊆ N . The repair data from i to j
is shown by Sj

i . Note that since n = d+1, there is unique way
to repair any node i, and thus this definition is well-defined.



We also set Si
i , to be dummy variable with zero entropy, for

consistency. Moreover, SB
A = {Sj

i : i ∈ A, j ∈ B}.
Next we describe the exact repair problem and the asso-

ciated constraints. An exact repair distributed storage system
with parameters (n, k, d) and (α, β) is defined as follows. A
DSS including a total of n storage device, each with capacity
α. Some Data will be encoded, partitioned and stored on this
system in a distributed fashion, such that following hold.
• MDS Property (data recovery)

- Data can be deterministically recovered from the con-
tent of any k nodes: H(Data|WA) = 0 for any A ⊆ N
satisfying |A| ≥ k.

• Repairability Requirements
- The content of any failed node can be recovered
(repaired/duplicated) by receiving no more that β units of
repair data from any other d nodes, that is, H(Wi|Si

A) =
0 for any A ⊆ N \ {i}, with |A| ≥ d, where H(Si

j) ≤ β
and H(Si

j |Wi) = 0.
We next present the main result of this paper which is a new
set of lower bounds on the exact repair tradeoff for the (5, 4, 4)
distributed storage system.

Theorem 1. The exact repair capacity of an (n, k, d) =
(5, 4, 4) distributed storage system with per node storage α
and total repair bandwidth dβ satisfies

F ≤ 4α

F ≤ 3α+ β

3F ≤ 7α+ 6β

3F ≤ 5α+ 10β

F ≤ 10β.

For (5, 4, 4)-DSS, the functional repair-tradeoff is given by

F ≤ min(α, 4β) + min(α, 3β) + min(α, 2β) + min(α, β).

Hence, the inequalities F ≤ 4α, F ≤ 3α + β, and F ≤ 10β
follow directly from this bound. The bounds 3F ≤ 7α+6β and
3F ≤ 5α+ 10β demarcate the exact repair tradeoff from the
functional repair tradeoff for this problem. We note here that
the bound 3F ≤ 7α+6β was also obtained in [7], however, our
mechanism for obtaining this bound is completely different.
Perhaps the most interesting aspect of Theorem 1 is the bound
3F ≤ 5α + 10β, which together with a recent scheme of
[9] leads to the optimal characterization of the exact-
repair tradeoff for α ≥ 2β. All of these bounds, together
with the achievable points resulting from the best-known code
constructions are shown in Fig. 1.

In the next section, we present a general bounding mecha-
nism which is used to prove Theorem 1 by showing the new
inequalities: 3F ≤ 7α+ 6β and 3F ≤ 5α+ 10β. We remark
here that the key novelty is the bounding mechanism, which is
completely general (i.e., not specific to the (5, 4, 4) problem)
and can be readily applied to the exact-repair problem with
more general parameters.

We remark here that the proposed bounding technique leads
to a simple proof of the exact-repair tradeoff for the (4, 3, 3)
DSS, which is presented in Section IV.
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Fig. 1. Existing and new results for (5, 4, 4) DSS.

III. PROOF OF THEOREM 1

For the sake of brevity and simplicity, we focus on the
tradeoff of the symmetric1 exact-repair regeneration codes
for distributed storage systems, in which the information-
theoretical quantities are invariant under any relabeling of the
nodes. We adopt the notation in [5] in order to formally define
this symmetry:

Definition 1. A permutation π is a one-to-one mapping

π : N → N,

where N = {1, 2, 3, 4, 5}. We denote the set of all permuta-
tions by Π.

Then a symmetric DSS can be defined as the following.

Definition 2. An (n, k, d) exact-repair regeneration is called
symmetric if for any subset of disk contents A ⊆ {Wi : i =
1, 2, . . . , 5} and repair data B ⊆ {Sj

i : i, j = 1, 2, . . . , 5} and
permutation π ∈ Π,

H(A,B) = H(π(A), π(B)).

We next present the statement and proof of lemma, which
plays a central role in the proofs of the outer bounds. To this
end, let N = {1, 2, 3, 4, 5} denote the set of nodes in the
system.

Lemma 1. For any subsets of nodes A,B,C ⊆ {1, 2, 3, 4, 5},
we have

H(SA∪B
N |WC) +H(SB

A , S
A
B |WC)

≤ H(SA
N |WC) +H(SB

N |WC).

1We note here that the symmetry assumption is made without any loss in
generality, as any asymmetric code can be symmetrized by augmenting its
n! copies, each copy corresponding to a permutation of the node labels. The
resulting symmetric code and the original asymmetric code would achieve the
same (F, α, β) upto the scaling factor of n!.



Proof. First note that SA
N includes SA

B since B ⊆ N . More-
over, SA

N provides all repair data required to repair nodes in
A. Hence WA can be reconstructed from SA

N , from which the
outgoing repair data SB

A can be found. Hence

H(SA
N |WC) = H(SA

N , S
B
A , S

A
B |WC), (2)

and similarly

H(SB
N |WC) = H(SA

N , S
B
A , S

A
B |WC). (3)

Therefore, using the inequality

H(X,Y |T ) +H(X,Z|T ) ≥ H(X,Y, Z|T ) +H(X|T ),

we get

H(SA
N |WC) +H(SB

N |WC)

= H(SA
N , S

B
A , S

A
B |WC) +H(SA

N , S
B
A , S

A
B |WC)

≥ H(SA∪B
N , SB

A , S
A
B |WC) +H(SB

A , S
A
B |WC)

= H(SA∪B
N |WC) +H(SB

A , S
A
B |WC), (4)

which implies the desired inequality.

Having this lemma, we are ready to present the proof for
the two inequality of interest.

A. Proof of 3F ≤ 5α+ 10β

Due to the fact that Data can be recovered from the content
stored on any k = 4 nodes, we have

F = H(Data) = H(W1,W2,W3,W4)

=

4∑
i=1

H
(
Wi|W[i−1]

)
=

4∑
i=1

[H(Wi)− I
(
Wi;W[i−1]

)
]

≤ 4α−
∑4

i=2
I
(
Wi;W[i−1]

)
. (5)

In order to further bound the data size F , we need to lower
bound the summation

∑4
i=2 I

(
Wi;W[i−1]

)
. First note that

since the outgoing repair data from each node is a deterministic
function of its content, we can write
4∑

i=2

I
(
Wi;W[i−1]

)
≥

4∑
i=1

I
(
S
[i−1]
i ;Si

[i−1]

)
=

4∑
i=2

[
H
(
S
[i−1]
i

)
+H

(
Si
[i−1]

)
−H

(
S
[i−1]
i , Si

[i−1]

)]
=

4∑
i=2

H
(
S
[i−1]
i

)
︸ ︷︷ ︸

Term1

+

4∑
i=2

H
(
Si
[i−1]

)
︸ ︷︷ ︸

Term2

−
4∑

i=2

H
(
S
[i−1]
i , Si

[i−1]

)
︸ ︷︷ ︸

Term3

. (6)

Hence, we can write
4∑

i=2

I
(
Wi;W[i−1]

)
≥ Term1 + Term2 − Term3. (7)

Next we individually bound each of the terms in (6). In order
to bound the first term, we can write

Term1 +H(S1234
5 )

= H(S1
2) +H(S12

3 ) +H(S123
4 ) +H(S1234

5 )

≥ H(S1
2 , S

12
3 , S123

4 , S1234
5 )

= H(S1
2345, S

2
345, S

3
45, S

4
5)

= H(S1
2345,W1, S

234
1 , S2

345, S
3
45, S

4
5)

≥ H(W1, S
2
1345,W2, S

34
2 , S3

145, S
4
15)

≥ H(W1,W2, S
3
1245,W3, S

4
3 , S

4
125)

≥ H(W1,W2,W3, S
4
1235)

≥ H(W1,W2,W3,W4) = H(Data) = F, (8)

which implies that

Term1 =

4∑
i=2

H
(
S
[i−1]
i

)
≥ F −H

(
S1234
5

)
≥ F −H(W5) ≥ F − α. (9)

Moreover, each term in the summation on Term2 in (6) can
be lower bounded as follows. For i = 2, we have

H(S2
1) =

1

4

[
H(S2

1) +H(S2
3) +H(S2

4) +H(S2
5)
]

≥ 1

4
H(S2

1345) =
1

4
H(S1

N ). (10)

Similarly, for i = 3, we get

H(S3
12) =

1

6

[
H(S3

12) +H(S3
14) +H(S3

15)

+H(S3
24) +H(S3

25) +H(S3
45)
]

(∗)
≥ 3

6
H(S3

1245) =
1

2
H(S1

N ). (11)

where in (∗) we have used Han’s inequality [6]. Lastly, for
i = 3 we have

H(S4
123) =

1

4

[
H(S4

123) +H(S4
125) +H(S4

135) +H(S4
235

]
(∗)
≥ 3

4
H(S4

1235) =
3

4
H(S1

N ). (12)

Hence, we have

Term2 = H(S2
1) +H(S3

12) +H(S4
123)

≥ 3

2
H(S1

N ). (13)

Finally Term3 in (6) can be bound using Lemma 1. Apply-
ing the lemma three times for C = ∅, and

a) (A,B) = ({1}, {2}):

H(S12
N ) +H(S2

1 , S
1
2) ≤ H(S1

N ) +H(S2
N ). (14)



b) (A,B) = ({1, 2}, {3}):

H(S123
N ) +H(S3

12, S
12
3 ) ≤ H(S12

N ) +H(S3
N ). (15)

c) (A,B) = ({1, 2, 3}, {4}):

H(S1234
N ) +H(S4

123, S
123
4 ) ≤ H(S123

N ) +H(S4
N ). (16)

We can add up (14)-(16), to obtain

Term3 = H(S2
1 , S

1
2) +H(S3

12, S
12
3 ) +H(S4

123, S
123
4 )

≤ H(S1
N ) +H(S2

N ) +H(S3
N ) +H(S4

N )−H(S1234
N )

= 4H(S1
N )− F. (17)

Substituting (9), (13), and (17) into (6), we get

4∑
i=2

I
(
Wi;W[i−1]

)
≥

4∑
i=2

[
H
(
S
[i−1]
i

)
+H

(
Si
[i−1]

)
−H

(
S
[i−1]
i , Si

[i−1]

)]
= Term1 + Term2 − Term3

≥ [F − α] +
3

2
H(S1

N )−
[
4H(Si

N − F )
]

= 2F − α− 5

2
H(S1

N ), (18)

which together with (5) implies

F ≤ 4α−
[
2F − α− 5

2
H(S1

N )

]
. (19)

Note that H(S1
N ) = H(S1

2 , S
1
3 , S

1
4 , S

1
5) ≤ 4β. Therefore, by

simplifying this bound, we get the first claimed result

3F ≤ 5α+ 10β. (20)

B. Proof of 3F ≤ 7α+ 6β

The essence of proof here is similar to that presented in the
proof of the previous section. The main distinction is that from
the very first step we condition all the entropies and mutual
information terms on W5, the content of the fifth node.

F = H(Data) = H(W1,W2,W3,W5)

= H(W5) +H(W1,W2,W3|W5)

= H(W5) +

3∑
i=1

H(Wi|W[i−1],W5)

= H(W5) +

3∑
i=1

[H(Wi|W5)− I(Wi;W[i−1]|W5)

≤ H(W5) +

3∑
i=1

H(Wi|W5)−
3∑

i=2

I(Wi;W[i−1]|W5)

≤ 4α−
3∑

i=2

I(Wi;W[i−1]|W5). (21)

Next, we have

3∑
i=2

I(Wi;W[i−1]|W5) ≥
3∑

i=2

I
(
S
[i−1]
i ;Si

[i−1|W5

)
=

3∑
i=2

[
H
(
S
[i−1]
i |W5

)
+H

(
Si
[i−1]|W5

)
−H

(
S
[i−1]
i , Si

[i−1]|W5

)]
=

3∑
i=2

H
(
S
[i−1]
i |W5

)
︸ ︷︷ ︸

Term1

+

3∑
i=2

H
(
Si
[i−1]|W5

)
︸ ︷︷ ︸

Term2

−
3∑

i=2

H
(
S
[i−1]
i , Si

[i−1]|W5

)
︸ ︷︷ ︸

Term3

. (22)

We can bound each term in (22), separately.

Term1 +H(S123
4 |W5)

= H(S1
2 |W5) +H(S12

3 |W5) +H(S123
4 |W5)

≥ H(S1
2 , S

12
3 S123

4 |W5)

= H(S1
2345, S

2
345, S

3
45, S

4
5 ||W5)

≥ H(W1,W2,W3,W4|W5) (23)
= H(Data|W5) ≥ F − α. (24)

where (23) follows from a similar argument as in (8).
Next, we use the symmetry of the problem, which further

implies symmetry of the information-theoretical quantities,
and write

H(S2
1 |W5) =

1

3

[
H(S2

1 |W5) +H(S2
3 |W5) +H(S2

4 |W5)
]

≥ 1

3
H(S2

134|W5) =
1

3
H(S1

N |W5). (25)

Similarly,

H(S3
12|W5) =

1

3

[
H(S3

12|W5) +H(S3
14|W5) +H(S3

24|W5)
]

(∗)
≥ 2

3
H(S3

124|W5) =
2

3
H(S1

N |W5), (26)

where again inequality in (∗) is due to the conditional version
of Han’s inequality [6]. Thus, (25) along with (26) provides a
lower bound on Term2 in (22).

Additionally, in order to bound Term3 in (22), we applying
Lemma 1 with C = {5} to

a) (A,B) = ({1}, {2}):

H(S12
N |W5) +H(S1

2 , S
2
1 |W5)

≤ H(S1
N |W5) +H(S1

N |W5). (27)

b) (A,B) = ({1, 2}, {3}):

H(S123
N |W5) +H(S3

12, S
12
3 |W5)

≤ H(S12
N |W5) +H(S3

N |W5). (28)



By summing up (27) and (28) we obtain

Term3 = H(S1
2 , S

2
1 |W5) +H(S3

12, S
12
3 |W5)

≤
∑3

i=1
H(Si

N |W5)−H(S123
N |W5)

= 3H(S1
N |W5)−H(W1,W2,W3,W5|W5)

= 3H(S1
N |W5)−H(Data|W5)

= 3H(S1
N |W5)− F + α (29)

Finally, we substitute (24), (25), (26), and (29) into (22) to
get∑3

i=2
I(Wi;W[i−1]|W5)

≥ Term1 + Term2 − Term3

≥
[
F − α−H(S123

4 |W5)
]

+H(S1
N |W5)

−
[
3H(S1

N |W5)− F + α
]

= 2F − 2α−H(S123
4 |W5)− 2H(S1

N |W5), (30)

which together with (21) implies

F ≤ 4α−
[
2F − 2α−H(S123

4 |W5)− 2H(S1
N |W5)

]
. (31)

Again note that H(S1
N |W5) = H(S1

2 , S
1
3 , S

1
4 |W5) ≤ 3β. On

the other hand, we have

H(S123
4 |W5) ≤ H(W4|W5) ≤ H(W4) ≤ α. (32)

Hence, using these inequalities, we have the proof for

3F ≤ 7α+ 6β. (33)

IV. PROOF OF 3F ≤ 4α+ 6β BOUND FOR (4, 3, 3) DSS
In this section we show that the machinery proposed in

this paper to obtain upper bounds on the optimum tradeff of
exact repair DSS can be applied to a wide range of system
peremeters. In particular, we demonstrate how the novel bound
of [5] for (4, 3, 3) system can be subsumed from a similar
argument.

Consider the (4, 3, 3) exact-repair system, and let N = [4] =
{1, 2, 3, 4}. Similar to (5), we have

F = H(Data) = H(W1,W2,W3) =

3∑
i=1

H
(
Wi|W[i−1]

)
≤ 3α−

3∑
i=2

I
(
Wi;W[i−1]

)
≤ 3α−

3∑
i=2

I
(
S
[i−1]
i ;Si

[i−1]

)
=3α−

3∑
i=2

H
(
S
[i−1]
i

)
︸ ︷︷ ︸

Term1

−
3∑

i=2

H
(
Si
[i−1]

)
︸ ︷︷ ︸

Term2

+

3∑
i=2

H
(
S
[i−1]
i , Si

[i−1]

)
︸ ︷︷ ︸

Term3

.

The bounding techniques for Term1, Term2 and Term3 follow
along the same line of arguments as used for the (5, 4, 4) DSS.
More precisely, it can be readily show that

Term1 +H(S123
4 ) ≥ H(W1,W2,W3) = F. (34)

Moreover, using Han’s inequality, we have

H(S2
1) ≥ 1

3
H(S1

N ), and H(S3
12) ≥ 2

3
H(S1

N )

which together imply

Term2 =

3∑
i=2

H
(
Si
[i−1]

)
≥ H(S1

N ). (35)

Finally, we use Lemma 1 with C = ∅, for (A,B) = ({1}, {2})
and (A,B) = ({1, 2}, {3}) to get

H(S12
N ) +H(S2

1 , S
1
2) ≤ H(S1

N ) +H(S2
N ),

H(S123
N ) +H(S3

12, S
12
3 ) ≤ H(S12

N ) +H(S3
N ).

These inequalities lead to

Term3 =

3∑
i=2

H
(
Si
[i−1], S

[i−1]
i

)
≤ 3H(S1

N )− F. (36)

Using the inequalities (34)-(36), we arrive at

F ≤ 3α− Term1 − Term2 + Term3

≤ 3α− [F −H(S123
4 )]−H(S1

N ) + [3H(S1
N )− F ],

(37)

which implies

3F ≤ 3α+H(S123
4 ) + 2H(S1

N ) ≤ 4α+ 6β. (38)

Note that the last inequality follows from the facts that
H(S123

4 ) ≤ H(W4) ≤ α, and H(S1
N ) = H(S1

2 , S
1
3 , S

1
4) ≤ 3β.

This concludes the proof of the bound for the (4, 3, 3) DSS,
highlighting the usefulness of the proposed bounding mecha-
nism for exact-repair DSS.

V. DISCUSSIONS

We studied the exact-repair problem for the (5, 4, 4)-
distributed storage system and obtained new bounds on its
optimum tradeoff. Our bounds indicate a gap between its
functional and exact-repair tradeoffs for a wide range of
parameters, namely α/β ∈ (3/2, 2). The novel bound is
achievable for α ≥ 2β, which characterizes the optimum
tradeoff for this regime.

On the other hand, for the regime α/β < 4/3, functional
and exact repair tradeoffs are the same and follow directly
from existing results. However, for α/β ∈ (4/3, 2), there
is a gap between the outer bound and the tradeoff one can
achieve by space-sharing over the best known codes in this
regime, corresponding to (α/F, β/F ) = (4/15, 3/15) and
(α/F, β/F ) = (6/20, 3/20). We conjecture that space-sharing
between these codes is indeed optimal for this regime, and the
upper bound needs refinement. In particular, we believe that
the bound in (32) is loose, and needs a more careful treatment.

While our results provide the state-of-the-art bounds for
(5, 4, 4) exact-repair distributed storage system, and partially
characterizes its optimum tradeoff, the central contribution of
this paper is to introduce a novel bounding mechanism and
demonstrate its applicability in finding necessary conditions on
the maximum system capacity. The advantage of the proposed
approach is its applicability to the exact repair problem for a
wide range of system parameters. We will present a general
version of these bounding techniques and the resulting bounds
in [13].
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